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Abstract. Recently proposed Capsule Network is a brain inspired archi-
tecture that brings a new paradigm to deep learning by modelling input
domain variations through vector based representations. Despite being
a seminal contribution, CapsNet does not explicitly model structured
relationships between the detected entities and among the capsule fea-
tures for related inputs. Motivated by the working of cortical network
in HVS, we seek to resolve CapsNet limitations by proposing several
intuitive modifications to the CapsNet architecture. We introduce, (1) a
novel routing weight initialization technique, (2) an improved CapsNet
design that exploits semantic relationships between the primary capsule
activations using a densely connected Conditional Random Field and (3)
a Cholesky transformation based correlation module to learn a general
priority scheme. Our proposed design allows CapsNet to scale better to
more complex problems, such as the multi-label classification task, where
semantically related categories co-exist with various interdependencies.
We present theoretical bases for our extensions and demonstrate signifi-
cant improvements on ADE20K scene dataset.

1 Introduction

After nearly two decades since its inception, convolutional neural networks
(CNNs) [1] have eventually become the norm for computer vision tasks. Vision
tasks that widely use CNNs include object recognition [2,3], object detection
[4,5] and semantic segmentation [6,7]. Despite their popularity and high effec-
tiveness in most vision tasks, previous works have pointed out several limitations
of CNNs in vision applications. One major limitation is the notable trade-off
between preserved spatial information and the transformation invariance with
pooling operations. Furthermore, CNNs marginally tackle rotational invariance.

To overcome aforementioned limitations in CNNs, recently introduced Cap-
sule Networks (CapsNets) [8] propose a novel deep architecture for feature
abstraction while preserving underlying spatial information. This architecture
is motivated by human brain function and suggests equivariance over invari-
ance while demonstrating comparable performance on digit classification with
MNIST dataset [9]. These early results of CapsNet manifest a new direction
for future deep architectures. However to our knowledge, CapsNet architecture
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has not been used for larger and complex datasets, specifically for multi-label
classification tasks where the goal is to tag an input image with multiple object
categories. This is due to the reason that original CapsNet does not incorporate
contextual information necessary for complex tasks such as multi-label classifi-
cation. In this work we evaluate the original CapsNet architecture on a large
image dataset with over 150 object classes that appear in complex real-world
scenes. We then propose a new context-aware CapsNet architecture that makes
informed predictions by exploiting semantic relationships of object classes as
well as underlying correlations of low-level capsules. Our model is inspired by
the working of human brain where contextual and prior information is effectively
modeled [10].

To enable faster training on large datasets, we first propose a novel weight
initialization scheme based on trainable parameters with back-propagation. This
update allows initial routing weights to capture low-level feature distributions
and improves the convergence rate and accuracy compared to equal routing
weight initialization of the original CapsNet. Second, we argue that the corre-
sponding elements of primary capsule predictions are interrelated since primary
capsule predictions encapsulate the attributes of object classes. In simple terms,
this means that the presence of object attributes (such as position, rotation
and texture) in one capsule’s output are dependent on similar attributes that
are detected by neighbouring capsules. This property was not utilized in the
original CapsNet architecture. To characterize this, we introduce an end-to-end
trainable Conditional Random Field (CRF) to encourage network predictions
to be more context specific. Third, the original CapsNet captures the priority
between primary and decision capsules independently for each data point. We
argue that there exists a general priority scheme between decision and primary
capsules, which is distributed across the dataset. Therefore, we propose a cor-
relation module to capture the overall priority of primary capsule predictions
throughout the dataset that effectively encapsulates broader context.

We apply proposed architecture for multi-label classification on a large scene
dataset, ADE20K [11], and report significant improvements over the original
CapsNet architecture.

2 Related Work

Hinton et al. [12] first proposed capsule as a new module in deep neural networks
by transforming auto-encoders architecture. Capsules were suggested as an alter-
native to widely adapted subsampling layers of CNNs and to encapsulate more
precise spatial relationships. Sabour et al. [8] recently proposed a complete neural
network architecture for capsules with dynamic routing and a reconstruction loss.
They demonstrated state of the art performance on MNIST dataset [9]. They
also outperformed existing CNN architectures on a new dataset, MultiMNIST
[8], created by overlaying one digit on top of another digit from a different class.
More recently, Hinton et al. [13] proposed an updated capsule architecture with
a logistic unit and a new iterative routing procedure between capsule layers
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based on the Expectation-Maximization (EM) algorithm [14]. This new capsule
architecture significantly outperformed baseline CNN models on small-NORB
dataset [15] and reported that the new architecture is less vulnerable to white
box adversarial attacks. Xi et al. [16] extended initial CapsNet work by utilizing
it on CIFAR10 classification task. However, CapsNet has not been used before
for complex structured prediction tasks and our work is a key step towards this
direction.

3 Methodology

A decision capsule is considered to be a complete representation of an object
class. That means each of its scalar element describes a certain attribute of an
object class such as rotation or position. These attributes may not be seman-
tically meaningful, but an object can be completely reconstructed using the
elements of the corresponding capsule. Each corresponding element of different
decision capsules represents similar attributes of different objects. For example,
the ith scalar element of jth decision capsule may represent the rotation of a
chair, while ith scalar element of (j + 1)th decision capsule may describe the
rotation of a desk.

The predictions by primary capsules for decision capsules encapsulate the
attributes of an object class. Therefore, the corresponding elements of outputs
from primary capsules are conditioned upon each other. For example, there may
be a hidden condition such that if the primary capsule is in state A, a chair cannot
be rotated in α direction when a spatially nearby desk is rotated in β direction.
To exploit this behavior we feed primary capsule predictions to an end-to-end
trainable CRF module to learn the inter-dependencies among attributes.

Here, CRF module is used as a structured prediction mechanism for each
primary capsule to conditionally alter its predictions. Thus the CRF is able
to capture semantic relationships across object classes. Moreover, we introduce
a correlation module which can prioritize predictions by primary capsules and
effectively predict decision capsules. The overall architecture is illustrated in
Fig. 1. We first begin with the description of routing weight initialization and
then explain the densely connected CRF and the correlation module in subse-
quent sections.

3.1 Initializing Routing Weights

In the original CapsNet, primary capsules can be interpreted as a set of Z stacked
feature maps. Each primary capsule element can be considered as a part of a
low-level feature. Following this assumption we rearrange primary capsules as a
N ×N ×D grid where N ×N ×D is the total number of primary capsules. Each
item in the grid is a capsule with I dimensions. Hence, D = Z/I.

Instead of initializing routing weights equally, we modify the initial rout-
ing weights as trainable parameters and use backpropagation to train them.
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Fig. 1. Proposed CapsNet architecture

This forces the initial routing weights to be dependent on the low-level feature
distribution resulting faster convergence.

To this end, we first define a statistical value per capsule to represent
its element distribution. Let K and J be the number of primary and deci-
sion capsules respectively, and C =

{
c1, c2, . . . , cK

}
be the set of primary

capsules. Then we map the capsules to a set S =
{
s1, s2, . . . , sK

}
where

sk = μk

max(σk,ε) ,∀0 < k < K, 0 < ε << 1 and μk and σk are mean and stan-
dard deviation of kth primary capsule elements respectively. max(σk, ε) gives
the maximum value between σk and ε for each k. The operation outputs a real
valued N × N × D dimensional tensor. Treating this tensor as a stacked set of
feature maps and convolving it with a single f ×f kernel with (f −1)/2 padding,
where f is a positive integer (we use f = 5 in our experiments), give a set of fea-
ture maps with dimensions N ×N ×D. We obtain K ×J dimension matrix B by
transforming the elements of the feature maps as a row vector b̂ = (b1, b2, ..., bK),
and then repeating it J times. We use elements of B as initial routing weights
between primary and decision capsules.

3.2 CRF Module

CRF is an effective technique for structured prediction where output variables
are interdependent. Furthermore, CRFs are capable of discriminative training
due to conditional probabilistic modeling. They are widely used in important
applications of computer vision, natural language processing and bioinformatics.
We propose to use CRFs to model relationships between primary capsules in the
CapsNet. The CRF models each element of each primary capsule prediction as
a random variable and forms a Markov Random Field when the variables are
conditioned upon inputs.

Let Pk,j(i) denote the ith element of the prediction by kth primary capsule
for the jth decision capsule. Considering predictions for all decision capsules by
primary capsules, we define the energy function,

Z(x) =
K∑

k=0

I∑

i=0

J∑

j=0

Eu(Pk,j(i)) +
K∑

k=0

I∑

i=0

J∑

j′=0

J∑

j=0,j �=j′
Ep(Pk,j(i), Pk,j′(i)) (1)
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where Eu(Pk,j(i)) is cost of prediction Pk,j(i) and Ep(Pk,j(i), Pk,j′(i)) is the cost
of Pk,j(i) and Pk,j′(i) occurring simultaneously. It is evident from Eq. 1 that
pairwise potentials only take corresponding elements of predictions by the same
primary capsule in to account. Therefore minimizing energy function in Eq. 1 is
equivalent to minimizing each Z(x)k,i for i < I and k < K independently where,

Z(x)k,i =
J∑

j=0

Eu(Pk,j(i)) +
J∑

j′=0

J∑

j=0,j �=j′
Ep(Pk,j(i), Pk,j′(i)) (2)

Mean-field approximation provides an iterative approach to minimize dense CRF
energy functions. This technique approximates a total energy function Z(x)k,i

as a product of simple marginal energy functions Z(X)k,i =
∏

l H
l
k,i(xl).

Zheng et al. [17] leveraged this idea by formulating a dense CRF as a stack
of differentiable layers. They also showed that multiple iterations of this stack
of layers can be treated as an RNN. We adapt this technique to minimize the
energy function Eq. 2.

Algorithm 1. CRF as a stack of CNN layers

1: Hkj(i) = 1
Xik

exp(Eu(Pk,j(i))∀i, j, k � Initialization
2: for itr = 0 to MaxItr do
3: H̄kj(i) =

∑
j′ Ep(Hkj(i), Hkj′(i)) � Calculation of pair-wise potentials

4: H̃kj(i) = Hkj(i) − H̄kj(i) � Addition of pair-wise potentials to unary
potentials

5: Hkj(i) = 1
Xik

eH̃kj(i) � Normalization
6: end for

The first line is the initialization. Here, Xi,k =
∑J

j=0 ePk
ij where J is the

number of decision capsules. Since Eu(Pk,j(i)) is the cost of the ith element of
the prediction, we can treat the predicted element as Pk,j = −Eu(Pk,j(i)). This
is equivalent to applying the softmax function over each set of ith elements of
the predictions by kth primary capsule for jth decision capsules. Line number
3 illustrates the cost of pair-wise potentials. Instead of deriving the pair-wise
potential function manually, using back-propagation to find optimum mapping
is both effective and efficient. Since all the corresponding element pairs have to
be taken into account, we apply a fully connected layer on top of the predictions
to learn this pair-wise potential function. Since we are minimizing Z(x)k,i for
each i and k independently, these layers are not connected across i or k, which
reduces the computational complexity significantly. Line number 4 illustrates
adding the unary potentials to pair-wise potentials. Line number 5 is equivalent
to applying softmax function over the outputs.

3.3 Correlation Module

In the CapsNet architecture, each primary capsule has a unique prediction for
each decision capsule. Since primary capsules are essentially a set of low-level
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features, this can be viewed as each low level feature estimating the state of the
output class. Moreover, each low-level feature priority depends on the output
class. For example, a circle detector may perform better in predicting the state
of a wheel, while a horizontal edge detector may perform better in predicting
the state of a bridge.

The original routing technique tries to capture these varying priorities of
primary capsules with respect to decision capsules by a weighted sum of pre-
dictions. The routing weights are adjusted in the next iteration according to
the similarity between primary capsule predictions and the decision capsule of
the current iteration. The magnitude of similarity is estimated by dot product.
Following this method the network learns the priorities independently for each
data point. However, we argue that there is also a general priority scheme that
is distributed across the whole dataset, that can be learned during the train-
ing. Therefore, we propose a novel correlation based approach to discover these
priorities and estimate final prediction.

Unlike the CRF module, our objective here is to find correlation between
the attribute distributions of corresponding predictions of primary capsules and
a decision capsule, instead of finding the dependency between each single cor-
responding attribute of predictions. Given a set of predictions for a specific
decision capsule, the goal of the correlation module is to find the decision
capsule elements by exploiting priorities of each primary capsule. The corre-
lation coefficients between a decision capsule and a primary capsule predictions
are learned throughout the training. Furthermore, these correlation coefficients
should depend on the low-level feature distribution and also should be trainable.
To this end, we use a property of Cholesky transformation [18] and derive a
generic function to achieve this task.

Let two distributions be Q and R. Cholesky transformation ensures,
[

Q̄
R̄

]
=

[
0 1
ρ1

√
1 − ρ12

] [
Q
R

]
(3)

Q̄ = R, R̄ = ρ1Q +
√

1 − ρ12R (4)

and produces two distributions Q̄, R̄ which are correlated by a factor of ρ1.
Likewise,

[ ¯̄Q
¯̄R

]
=

[
0 1
ρ2

√
1 − ρ22

] [
R
Q

]
(5)

¯̄Q = Q, ¯̄R = ρ2R +
√

1 − ρ22Q (6)

produces two distributions ¯̄Q, ¯̄R which are correlated by a factor of ρ2. Therefore
if we choose,

ρ2 =
√

1 − ρ12 (7)

we get T = R̄ = ¯̄R, where T and R are correlated by ρ1 and, T and Q are
correlated by ρ2. Using this property and considering two component distribu-
tions D1 = Pk,j and D2 = Pk′,j , where Pk,j is the component distribution of kth
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primary capsule prediction for jth decision capsule, we obtain a new distribution
D̂, satisfying ρD̂,D1

= ρ1 , and ρD̂,D2
= αρ1. Here, ρx1,x2 denotes the correlation

between the two particular distributions x1 and x2. Using Eq. 7,
ρ1
α

=
√

1 − ρ12, ρ1 =
α√

1 + α2
(8)

D̂ =
[ α√

1 + α2
D1 +

1√
1 + α2

D2

]
(9)

Using Eq. 9, we define a recursive function fρ to obtain a correlated element
distribution.

fρ(P1,j |P2,j . . . , Pk,j , . . . , PK,j) =
αK√

1 + α2
K

fρ(P1,j |P2,j . . . , Pk,j , . . . , PK−1,j)

+
PK,j√
1 + α2

K

,∀0 < k ≤ K, 0 < j ≤ J (10)

where fρ(P1,j |P2,j) =
[

α2√
1+α2

2

P1,j+ 1√
1+α2

2

P2,j

]
. Using this derivation, we obtain

the jth decision capsule Cj = fρ(P1,j |P2,j . . . , Pk,j , . . . , PK,j). Here, α requires be
trainable and dependent on low-level feature distributions. Since the above oper-
ation is differentiable, the first criteria is fulfilled. To enforce α to be dependent
on low-level features, we use the following method.

Consider a N × N low-level feature map. Since we need J(K − 1) trainable
parameters as per Eq. 10, we convolve this particular feature map with a set of
J(K −1) kernels with sizes N ×N each. This outputs J(K −1) number of scalar
values, which can be used as α parameters.

4 Experiments

We conduct experiments to demonstrate the effectiveness of each of the improve-
ments; new initialization scheme of routing weights, CRF module and the cor-
relation module. We use mean average precision (mAP) as the evaluation met-
ric throughout the experiments with precision threshold 0.5. We use ADE20K
dataset to evaluate the proposed architecture given its complex scenes and rich
multi-label annotations for training images. ADE20K provides over 20, 000 train-
ing and testing images annotated with 150 semantic object categories.

4.1 Importance of Trainable Initial Routing Weights

The goal of replacing the equal initialization of routing weights with trainable
weights is faster convergence. In order to test the significance of this, we train
the proposed architecture with and without the trainable initial routing scheme
and test the validation mAP. The results are illustrated in Fig. 2.

As shown in Fig. 2 the validation mAP stabilizes around 15th epoch for the
CapsNet without the proposed routing weight initialization method. On the
contrary, the CapsNet with the proposed routing weight initialization method
stabilizes around 9th epoch. Therefore it is evident that the proposed method is
able to achieve faster convergence compared to equal initial routing weights.
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Fig. 2. Evaluation of convergence gain by
trainable initial routing weights.

Table 1. Comparison of the proposed
architecture with the baseline

Method mAP

Original CapsNet 42.38

Ours (RW + CRF) 52.50

Ours (RW + CRF + CORR) 56.71

4.2 Comparison with the Baseline

We compare the original CapsNet architecture with the proposed one by mea-
suring the mAP measure. Table 1 shows the comparison results. We gain a sig-
nificant 14.33 mAP gain over total 150 object classes compared to the original
architecture. Furthermore, we demonstrate performance gains by CRF and cor-
relation modules, and show that each module provides complementary improve-
ments. We gain an improvement of 10.12 mAP by adding the CRF module and
a 4.21 mAP improvement by adding the correlation module on top of the CRF
module. All the architectures are trained for 20 epochs.

5 Conclusions

In this work we attempt to overcome several limitations of CapsNet by intro-
ducing an improved architecture inspired by the contextual modeling in visual
cortex [10]. Our objective is two fold: effectively capture complex interactions
between primary capsules and leverage data wide correlations between represen-
tations of similar inputs. To this end, we introduced three novel ideas. Firstly,
we proposed a new routing weight initialization that can be trained using back-
propagation. This replaced existing equal initial routing weights with a more
intuitive and efficient technique. Secondly, we introduced a CRF based method
to exploit conditional attributes of primary capsule predictions to capture the
context of neighbouring objects. Thirdly, we proposed a correlation module to
learn dataset-wise priority scheme instead of capturing the priority separately for
each data point. As demonstrated through our experiments, these improvements
in CapsNet model design contributes to a substantial accuracy improvement of
over 33% in multi-label classification on a challenging dataset.
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