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Abstract. Estimating fundamental matrices is a classic problem in com-
puter vision. Traditional methods rely heavily on the correctness of esti-
mated key-point correspondences, which can be noisy and unreliable. As
a result, it is difficult for these methods to handle image pairs with large
occlusion or significantly different camera poses. In this paper, we pro-
pose novel neural network architectures to estimate fundamental matri-
ces in an end-to-end manner without relying on point correspondences.
New modules and layers are introduced in order to preserve mathemati-
cal properties of the fundamental matrix as a homogeneous rank-2 matrix
with seven degrees of freedom. We analyze performance of the proposed
models using various metrics on the KITTI dataset, and show that they
achieve competitive performance with traditional methods without the
need for extracting correspondences.

Keywords: Fundamental matrix · Epipolar geometry ·
Deep learning · Stereo

The Fundamental matrix (F-matrix) contains rich information relating two
stereo images. The ability to estimate fundamental matrices is essential for many
computer vision applications such as camera calibration and localization, image
rectification, depth estimation and 3D reconstruction. The current approach to
this problem is based on detecting and matching local feature points, and using
the obtained correspondences to compute the fundamental matrix by solving an
optimization problem about the epipolar constraints [16,27]. The performance of
such methods is highly dependent on the accuracy of the local feature matches,
which are based on algorithms such as SIFT [28]. However, these methods are not
always reliable, especially when there is occlusion, large translation or rotation
between images of the scene.

In this paper, we propose end-to-end trainable convolutional neural networks
for F-matrix estimation that do not rely on key-point correspondences. The main
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challenge of directly regressing the entries of the F-matrix is to preserve its math-
ematical properties as a homogeneous rank-2 matrix with seven degrees of free-
dom. We propose a reconstruction module and a normalization layer (Sect. 2.2)
to address this challenge. We demonstrate that by using these layers, we can
accurately estimate the fundamental matrix, while a simple regression approach
does not yield good results. Our detailed network architectures are presented
in Sect. 2. Empirical experiments are performed on the KITTI dataset [13] in
Sect. 3. The results indicate that we can achieve competitive results with tradi-
tional methods without relying on correspondences.

1 Background and Related Work

1.1 Fundamental Matrix and Epipolar Geometry

When two cameras view the same 3D scene from different viewpoints, geometric
relations among the 3D points and their projections onto the 2D plane lead to
constraints on the image points. This intrinsic projective geometry is referred
to as the epipolar geometry, and is encapsulated by the fundamental matrix F.
This matrix only depends on the cameras’ internal parameters and their relative
pose, and can be computed as:

F = K2
−T [t]×RK1

−1 (1)

where K1 and K2 represent camera intrinsics, and R and [t]× are the relative
camera rotation and translation respectively [16]. More specifically:

Ki =

⎡
⎢⎣

f−1
i 0 cx
0 f−1

i cy
0 0 1

⎤
⎥⎦ (2)

t× =

⎡
⎣

0 −tz ty
tz 0 −tx

−ty tx 0

⎤
⎦ (3)

R = Rx(rx)Ry(ry)Rz(rz) (4)

in which (cx, cy)T is the principal point of the camera, fi is the focal length of
camera i = 1, 2, and tx, ty and tz are the relative displacements along the x, y
and z axes respectively. R is the rotation matrix which can be decomposed into
rotations along x, y and z axes. We assume that the principal point is in the
middle of the image plane.

While the fundamental matrix is independent of the scene structure, it can be
computed from correspondences of projected scene points alone, without requir-
ing knowledge of the cameras’ internal parameters or relative pose. If p and q
are matching points in two stereo images, the fundamental matrix F satisfies the
equation:

qTFp = 0 (5)
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Writing p = (x, y, 1)T and q = (x′, y′, 1)T and F = [fij ], Eq. 5 can be written as:

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0. (6)

Let f represent the 9-vector made up of the entries of F. Then Eq. 6 can be
written as:

(x′x, x′y, x′, y′x, y′y, y′, x, y, 1)f = 0 (7)

A set of linear equations can be obtained from n point correspondences:

Af =

⎡
⎢⎢⎣

x′
1x1 x′

1y1 x′
1 y′

1x1 y′
1y1 y′

1 x1 y1 1
...

...
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...
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...
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nxn x′
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nyn y′

n xn yn 1

⎤
⎥⎥⎦ f = 0 (8)

Various methods have been proposed for estimating fundamental matrices
based on Eq. 8. The simplest method is the eight-point algorithm which was
proposed by Longuet-Higgins [27]. Using (at least) 8 point correspondences, it
computes a (least-squares) solution to Eq. 8. It enforces the rank-2 constraint
using Singular Value Decomposition (SVD), and finds a matrix with the min-
imum Frobenius distance to the computed (rank-3) solution. Hartley [17] pro-
posed a normalized version of the eight-point algorithm which achieves improved
results and better stability. The algorithm involves translation and scaling of the
points in the image before formulating the linear Eq. 8.

The Algebraic Minimization algorithm uses a different procedure for enforc-
ing the rank-2 constraint. It tries to minimize the algebraic error A‖f‖ subject
to ‖f‖ = 1. It uses the fact that we can write the singular fundamental matrix
as F = M[e]× where M is a non-singular matrix and [e]× is a skew-symmetric
matrix with e corresponding to the epipole in the first image. This equation
can be written as f = Em, where f and m are vectors comprised of entries of
F and M, and E is a 9 × 9 matrix comprised of elements of [e]×. Then the
minimization problem becomes:

minimize ‖AEm‖ subject to ‖Em‖ = 1 (9)

To solve this optimization problem, we can start from an initial estimate of F
and set e as the generator of the right null space of F. Then we can iteratively
update e and F to minimize the algebraic error. More details are given in [16].

The Gold Standard geometric algorithm assumes that the noise in image
point measurements obeys a Gaussian distribution. It tries to find the Maximum
Likelihood estimate of the fundamental matrix which minimizes the geometric
distance ∑

i

d(pi, p̂i)2 + d(qi, q̂i)2 (10)

in which pi and qi are true correspondences satisfying Eq. 5, and p̂i and q̂i are
the estimated correspondences.

Another algorithm uses RANSAC [11] to compute the fundamental matrix.
It computes interest points in each image, and finds correspondences based on
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proximity and similarity of their intensity neighborhood. In each iteration, it ran-
domly samples 7 correspondences and computes the F-matrix based on them.
It then calculates the re-projection error for each correspondence, and counts
the number of inliers for which the error is less than a specified threshold. After
sufficient number of iterations, it chooses the F-matrix with the largest number
of inliers. A generalization of RANSAC is MLESAC [40], which adopts the same
sampling strategy as RANSAC to generate putative solutions, but chooses the
solution that maximizes the likelihood rather than just the number of inliers.
MAPSAC [39] (Maximum A Posteriori SAmple Consensus) improves MLESAC
by being more robust against noise and outliers including Bayesian probabili-
ties in minimization. A global search genetic algorithm combined with a local
search hill climbing algorithm is proposed in [45] to optimize MAPSAC algo-
rithm for estimating fundamental matrices. [42] proposes an algorithm to cope
with the problem of fundamental matrix estimation for binocular vision system
used in wild field. It first acquires the edge points using Canny edge detector,
and then gets the pre-matched points by the GMM-based point set registra-
tion algorithm. It then computes the fundamental matrix using the RANSAC
algorithm. [10] proposes to use adaptive penalty methods for valid estimation
of Essential matrices as a product of translation and rotation matrices. A new
technique for calculating the fundamental matrix combined with feature lines is
introduced in [49]. The interested reader is referred to [1] for a survey of various
methods for estimating the F-matrix.

1.2 Deep Learning for Multi-view Geometry

Deep neural networks have achieved state-of-the-art performance on tasks such
as image recognition [18,24,37,38], semantic segmentation [3,26,43,47], object
detection [14,34,35], scene understanding [23,32,48] and generative model-
ing [15,19,31,33,44] in the last few years. Recently, there has been a surge
of interest in using deep learning for classic geometric problems in Computer
Vision. A method for estimating relative camera pose using convolutional neu-
ral networks is presented in [29]. It uses a simple convolutional network with
spatial pyramid pooling and fully connected layers to compute the relative rota-
tion and translation of the camera. An approach for camera re-localization is
presented in [25] which localizes a given query image by using a convolutional
neural network for first retrieving similar database images and then predicting
the relative pose between the query and the database images with known poses.
The camera location for the query image is obtained via triangulation from two
relative translation estimates using a RANSAC-based approach. [41] uses a deep
convolutional neural network to directly estimate the focal length of the camera
using only raw pixel intensities as input features. [2] proposes two strategies
for differentiating the RANSAC algorithm: using a soft argmax operator, and
probabilistic selection. [12] leverages deep neural networks for 6-DOF tracking
of rigid objects.

[5] presents a deep convolutional neural network for estimating the relative
homography between a pair of images. A more complicated algorithm is proposed



Deep Fundamental Matrix Estimation Without Correspondences 489

in [8] which contains a hierarchy of twin convolutional regression networks to
estimate the homography between a pair of images. [7] introduces two deep
convolutional neural networks, MagicPoint and MagicWarp. MagicPoint extracts
salient 2D points from a single image. MagicWarp operates on pairs of point
images (outputs of MagicPoint), and estimates the homography that relates
the inputs. [30] proposes an unsupervised learning algorithm that trains a deep
convolutional neural network to estimate planar homographies. A self-supervised
framework for training interest point detectors and descriptors is presented in [6].
A convolutional neural network architecture for geometric matching is proposed
in [36]. It uses feature extraction networks with shared weights and a matching
network which matches the descriptors. The output of the matching network
is passed through a regression network which outputs the parameters of the
geometric transformation. [22] presents a model which takes a set of images
and their corresponding camera parameters as input and directly infers the 3D
model.

2 Network Architecture

We leverage deep neural networks for estimating the fundamental matrix directly
from a pair of stereo images. Each network consists of a feature extractor to
obtain features from the images and a regression network to compute the entries
of the F-matrix from the features.

2.1 Feature Extraction

We consider two different architectures for feature extraction. In the first archi-
tecture, we concatenate the images across the channel dimension, and pass the
result to a neural network to extract features. Figure 1 illustrates the network
structure. We use two convolutional layers, each followed by ReLU and Batch
Normalization [20]. We use 128 filters of size 3 × 3 in the first convolutional
layer and 128 filters of size 1 × 1 in the second layer. We limit the number of
pooling layers to one in order not to lose the spatial structure in the images.

Location Aware Pooling. As discussed in Sect. 1, the F-matrix is highly
dependent on the relative location of corresponding points in the images. How-
ever, down-sampling layers such as Max Pooling discard the location information.
In order to retain this information, we keep all the indices of where the activa-
tions come from in the max-pooling layers. At the end of the network, we append
the position of final features with respect to the full-size image. Each location is
indexed with an integer in [1, h × w × c] normalized to be within the range
[0, 1], in which h, w and c are the height, width and channel dimensions of the
image respectively. In this way, each feature has a position index indicating from
where it comes from. This helps the network to retain the location information
and to provide more accurate estimates of the F-matrix.
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Fig. 1. Single-Stream Architecture. Stereo images are concatenated and passed to a
convolutional neural network. Position features can be used to indicate where the final
activations come from with respect to the full-size image.

The second architecture is shown in Fig. 2. We first process each of the input
images in a separate stream using an architecture similar to the Universal Cor-
respondence Network (UCN) [4]. Unlike the UCN architecture, we do not use
Spatial Transformers [21] in these streams since they can remove part of the
information needed for estimating relative camera rotation and translation. The
resulting features from these streams are then concatenated, and passed to a
single-stream network similar to Fig. 1. We can use position features in the single-
stream network as discussed previously. These features capture the position of
final features the with respect to the concatenated features at the end of the
two streams. We refer to this architecture as ‘Siamese’. As we show in Sect. 3,
this network outperforms the Single-Stream one. We also consider using only the
UCN without the single-stream network. The results, however, are not compet-
itive with the Siamese architecture.

2.2 Regression

A simple approach for computing the fundamental matrix from the features is
to pass them to fully-connected layers, and directly regress the nine entries of
the F-Matrix. We can then normalize the result to achieve scale-invariance. This
approach is shown in Fig. 3(left). The main issue with this approach is that the
predicted matrix might not satisfy all the mathematical properties required for
a fundamental matrix as a rank-2 matrix with seven degrees of freedom. In order
to address this issue, we introduce Reconstruction and Normalization layers in
the following.
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Fig. 2. Siamese Architecture. Images are first passed to two streams with shared
weights. The resulting features are concatenated and passed to the single-stream net-
work as in Fig. 1. Position features can be used with respect to the concatenated
features.

F-Matrix Reconstruction Layer. We consider Eq. 1 to reconstruct the fun-
damental matrix:

F̂ = K2
−T [t]×RK1

−1 (11)

we need to determine eight parameters (f1, f2, tx, ty, tz, rx, ry, rz) as shown in
Eqs. (2–4). Note that the predicted F̂ is differentiable with respect to these
parameters. Hence, we can construct a layer that takes these parameters as
input, and outputs a fundamental matrix F̂. This approach guarantees that the
reconstructed matrix has rank two. Figure 3(right) illustrates the Reconstruction
layer.

Normalization Layer. Considering that the F-matrix is scale-invariant, we
also use a Normalization layer to remove another degree of freedom for scaling.
In this way, the estimated F-matrix will have seven degrees of freedom and rank
two as desired. The common practice for normalization is to divide the F-matrix
by its last entry. We call this method ETR-Norm. However, since the last entry
of the F-matrix could be close to zero, this can result in large entries, and train-
ing can become unstable. Therefore, we propose two alternative normalization
methods.

FBN-Norm: We divide all entries of the F-matrix by its Frobenius norm, so
that all the matrices live on a 9-sphere of unit norm. Let ‖F‖F denote the
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Fig. 3. Different regression methods for predicting F-matrix entries from the features.
The architecture to directly regress the entries of the F-matrix is shown on the left.
The network with the reconstruction and normalization layers is shown on the right,
and is able to estimate homogeneous F-matrices with rank two and seven degrees of
freedom.

Frobenius norm of matrix F. Then the normalized fundamental matrix is:

NFBN (F) = ‖F‖−1
F F (12)

ABS-Norm: We divide all entries of the F-matrix by its maximum absolute
value, so that all entries are restricted within [−1, 1] range:

NABS(F) = (max
i,j

|Fi,j |)−1F (13)

During training, the normalized F-matrices are compared with the ground-
truth using both L1 and L2 losses. We provide empirical results to study how
each of these normalization methods influences performance and stability of
training in Sect. 3.

Epipolar Parametrization. Given that the F-matrix has a rank of two, an
alternative parametrization is specifying the first two columns f1 and f2 and the
coefficients α and β such that f3 = αf1 + βf2. Normalization layer can still be
used to achieve scale-invariance. The coordinates of the epipole occur explicitly
in this parametrization: (α, β, 1)T is the right epipole for the F-matrix [16]. The
corresponding regression architecture is similar to Fig. 3, but we interpret the
final eight values differently: the first six elements represent the first two columns
and the last two represent the coefficient for combining the columns. The main
disadvantage of this method is that it does not work when the first two columns
of F are linearly dependent. In this case, it is not possible to write the third
column in terms of the first two columns.

3 Experiments

To evaluate whether our models can successfully learn F-matrices, we train mod-
els with various configurations and compare their performance based on the met-
rics defined in Sect. 3.1. The baseline model (Base) uses neither position features
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nor the reconstruction module. The POS model utilizes the position features on
top of the Base model. Epipolar parametrization (Sect. 2.2) is used for the EPI
model. EPI+POS uses the position features with epipolar parametrization. The
REC model is the same as Base but uses the reconstruction module. Finally,
the REC+POS model uses both the position features and the reconstruction
module.

We use the KITTI dataset for training our models. The dataset has been
recorded from a moving platform while driving in and around Karlsruhe, Ger-
many. We use 2000 images from the raw stereo data in the ‘City’ category, and
split them into 1600 train, 200 validation and 200 test images. Ground truth
F-matrices are obtained using the ground-truth camera parameters. The same
normalization methods are used for both the estimated and the ground truth
F-matrices. The feature extractor and the regression network are trained jointly
in an end-to-end manner.

3.1 Evaluation Metrics

We use the following metrics to measure how well the F-matrix satisfies the
epipolar constraint (Eq. 5) according to the held out correspondences:

EPI-ABS (Epipolar Constraint with Absolute Value):

MEPI−ABS(F, p, q) =
∑
i

|qTi Fpi| (14)

EPI-SQR (Epipolar Constraint with Squared Value):

MEPI−SQR(F, p, q) =
∑
i

(qTi Fpi)2 (15)

The first metric is equivalent to the Algebraic Distance mentioned in [9].
We evaluate the metrics based on high-confidence key-point correspondences:
we select the key-points for which the Symmetric Epipolar Distance based on
the ground-truth F-matrix is less than 2 [16]. This ensures that the point is no
more than one pixel away from the corresponding epipolar line.

4 Results and Discussion

Results are shown in Table 1. We compare our method with 8-point, LeMedS
and RANSAC algorithms [46]. On average, 60 pairs of keypoints are used per
image. As we can observe, the reconstruction module is highly effective, and
without it the network is unable to recover accurate fundamental matrices. The
position features are also helpful in decreasing the error. The Siamese network
outperforms the Single-Stream architecture, and can achieve errors comparable
to the ground truth. This shows that the two streams used to process each of the
input images are indeed useful. Note that the networks are trained end-to-end
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Table 1. Results for Siamese and Single-stream networks on the KITTI dataset. Tra-
ditional methods such as 8-point, LeMedS and RANSAC are compared with different
variants of our proposed model. Various normalization methods and evaluation metrics
are considered.

without the need for extracting point correspondences between the images, yet
they are able to achieve competitive results with classic algorithms. The epipolar
parametrization generally outperforms the other methods. During the inference
time, we just need to pass the images to the feature extraction and regression
networks to estimate the fundamental matrices.
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5 Conclusion and Future Work

We present novel deep neural networks for estimating fundamental matrices from
a pair of stereo images. Our networks can be trained end-to-end without the need
for extracting point correspondences. We consider two different network archi-
tectures for computing features from the images, and show that the best result is
obtained when we first process images in two streams, and then concatenate the
features and pass the result to a single-stream network. We show that the sim-
ple approach of directly regressing the nine entries of the fundamental matrix
does not yield good results. Therefore, a reconstruction module is introduced
as a differentiable layer to estimate the parameters of the fundamental matrix.
Two different parametrizations of the F-matrix are considered: one based on the
camera parameters, and the other based on the epipolar parametrization. We
also demonstrate that position features can be used to further improve the esti-
mation. This is due to the sensitivity of fundamental matrices to the location of
points in the input images. In the future, we plan to extend the results to other
datasets, and explore other parametrizations of the fundamental matrix.

References
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