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Abstract. In this paper, we present a deep learning architecture which
addresses the problem of 3D semantic segmentation of unstructured point
clouds (Fig. 1). Compared to previous work, we introduce grouping tech-
niques which define point neighborhoods in the initial world space and
the learned feature space. Neighborhoods are important as they allow to
compute local or global point features depending on the spatial extend
of the neighborhood. Additionally, we incorporate dedicated loss func-
tions to further structure the learned point feature space: the pairwise
distance loss and the centroid loss. We show how to apply these mecha-
nisms to the task of 3D semantic segmentation of point clouds and report
state-of-the-art performance on indoor and outdoor datasets.

Outdoor Scene

Indoor Scene

Input: 3D Point Cloud Output: Semantic Segmentation

Fig. 1. We present a deep learning framework that predicts a semantic label for each
point in a given 3D point cloud. The main components of our approach are point
neighborhoods in different feature spaces and dedicated loss functions which help to
refine the learned feature spaces. Left: point clouds from indoor and outdoor scenes.
Right: semantic segmentation results produced by the presented method.
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1 Introduction

In the field of 3D scene understanding, semantic segmentation of 3D point clouds
becomes increasingly relevant. Point cloud analysis has found its application in
indoor scene understanding and more recently has become an essential compo-
nent of outdoor applications [8]. This is due to the increasing availability and
affordability of 3D sensors such as LIDAR or the Matterport scanner.

In the 2D image domain, for many tasks (including semantic segmentation)
convolutional neural networks dominate the field. 2D convolutions allow process-
ing large datasets with high resolution images by taking advantage of the local-
ity of the convolutional operator. They reduce the number of model parameters
allowing for deeper and more complex models while being efficient [3,17,19,30].

However point clouds have no inherent order, such as pixel neighborhoods.
They are generally sparse in 3D space and the density varies with the distance
to the sensor. Moreover, the number of points in a cloud can easily exceed the
number of pixels in a high resolution image by multiple orders of magnitude. All
these properties make it difficult to process point clouds directly with traditional
convolutional neural networks.

Recently, a lot of effort has been put into bridging the success from 2D scene
understanding into the 3D world [7,16,20-25,27]. In this work, we aim to further
narrow down the gap between 2D and 3D semantic scene understanding. The
straightforward approach of applying CNNs in the 3D space is implemented by
preprocessing the point cloud into a voxel representation first in order to apply
3D convolutions on that new representation [21]. However 3D convolutions have
drawbacks. Memory and computational time grows cubicly on the number of
voxels, restricting approaches to use coarse voxels grids. However, by doing so,
one then introduces discretization artifacts (especially for thin structures) and
loose geometric information such as point density. Methods directly operating
on the point cloud representation (e.g. [20,22]) produce promising results. How-
ever, in these methods, the point neighborhoods over which point features are
aggregated are either global [20] or defined in a static coarse-to-fine approach
[22]. Either way, the inherent way of convolutions to capture the local structure
has only been transferred in a limited fashion.

In this work, we propose to define neighborhoods in an adaptive manner that
is primarily sensitive to the local geometry by using K-means clustering on the
input point cloud features in the world space and secondly defining dynamic
neighborhoods in the learned feature space using k nearest neighbors (kNN).
Next comes the observation that a well structured feature space is essential
for learning on point clouds. Thus, we add dedicated loss functions which help
shaping the feature space at multiple locations in the network.

We showcase the effectiveness of our approach on the task of semantic seg-
mentation of 3D point clouds. We present a comprehensive ablation study eval-
uating all introduced mechanisms. We apply our method in different scenarios:
indoor data from the Stanford 3D Indoor Scene dataset [14] and ScanNet dataset
[5] as well as outdoor data from the Virtual KITTI 3D dataset [7,9].
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2 Related Work

Before the introduction of deep learning methods, there have been numerous
traditional approaches [10,15,18,32] applied to the task of semantically labelling
3D point clouds. Since then, methods relying on deep learning can be roughly
split into two groups: methods that impose structure on the unstructured 3D
point cloud (by voxelization or projection) followed by standard convolutions,
and methods that operate directly on the 3D point clouds:

Voxelized Methods. Up until recently, the standard method to perform
semantic segmentation of 3D data involved vozelization. Voxelization approaches
transform the unstructured 3D point clouds into regular volumetric 3D grids
(vozels). By doing so, 3D convolutions can be directly applied to the voxels
[6,29]. Alternatively, projection approaches map the 3D points into 2D images
as seen by virtual cameras. Then, 2D convolutions are applied on the projec-
tions [2,21]. These methods suffer from major disadvantages: the mapping from
a sparse representation to a dense one leads to an increased memory footprint.
Moreover, the fixed grid resolution results in discretization artifacts and loss of
information.

Point Cloud Methods. A new set of methods started with the work of Point-
Net [20]. PointNet operates directly on 3D points. The key idea is the extraction
of point features through a sequence of MLPs processing the points individually
(point features) followed by a max-pooling operation that describes the points
globally (global features). Point- and global-representations are fused (concate-
nation + MLP) before making the final label predictions. Many methods followed
the PointNet paradigm to operate directly on point clouds. Where PointNet par-
titions the space into cuboidal blocks of fixed arbitrary size, others use octrees
[26] or kd-trees [24] to partition the space in a more meaningful way. Further-
more, PointNet does not take into consideration the local geometry and surface
information. Clustering has been used in many classical approaches as a way
of imposing structure, mostly as a prepossessing step [31,32]. So [22,24] were
introduced trying to apply hierarchical grouping of the points and incorporate
local structure information. The former used farthest point sampling and the
latter kd-trees. The authors of [25] generalize the convolution operator on a spa-
tial neighborhood. Taking it further from local neighborhoods, [16] organizes
the points into superpoints of homogeneous elements and defines relationships
between them with the use of graph neural networks on their so-called super-
point graph. In [7] also cuboidal blocks are used, which act as superpoints and
update their respective global features based on the surrounding blocks in space
or scale using GRUs.

We now compare our method to the recent PointNet++ [22] which is an hier-
archical extension of the original PointNet [22]. PointNet (PN) globally aggre-
gates point features using max-pooling. PN++ forms local groups (or neighbor-
hoods) based on the metric world space and collapses each group onto a single
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Fig. 2. The first component of our model is a feature network, depicted above. It learns
high-dimensional features using a series of feature blocks. The details of a feature block
are shown for feature block 2, the others are equal. Further details and a motivation
for the architecture are given in Sect. 3.1. Our complete model is shown in Fig. 5.

representative point. This technique is repeated to increase the receptive field in
each iteration. In our work, we follow a similar approach by iteratively apply-
ing feature-space neighborhoods (Ng-modules, introduced later): In every Ng
iteration, each point is updated with the aggregated feature information from
its kNNs. Repeating this procedure allows the information to flow over many
points, one hop per iteration. Unlike [22], we build the neighborhood based on
the feature space, this allows the network to learn the grouping. In PN++,
neighborhoods are statically defined by a metric distance.

Feature Networks. As a first step on our network, we learn strong features
using a dedicated feature network. The idea of extracting initial strong features
is prominent in the field: In [23], features are learned in 2D image space using
CNN for the task of 2.5 semantic segmentation. For the task of object detection,
VoxelNet [33] uses a cascade of PointNet like architectures named Vozel Feature
Encoding to obtain a more meaningful feature representation.

3 Our Approach

In the following, we describe the main components of our network. Starting from
the initial point features (e.g. position and color), we learn more powerful feature
representations using a new Feature Network as described in Sect. 3.1. Next, we
define two kinds of neighborhoods (Sect. 3.2) within the point cloud, one defined
on the learned feature space and one on the input world space. Based on these
groupings, we learn regional descriptors which we use to inform the feature points
about their neighborhood. Finally, we further enforce structure on the learned
feature space by defining two dedicated loss functions (Sect. 3.3).

3.1 Feature Network

In this section, we describe our simple yet powerful architecture to learn point
features. The goal of this component is to transform input features - such as
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position and color - into stronger learned features. It can be seen as the distila-
tion of important elements from previous works, in particular PointNet [20] and
ConsolidationUnits [7]. A schematic visualization is shown in Fig. 2.

The network is built from a sequence of feature blocks. Each feature block
performs the following tasks: Starting from a set of IV points, each with feature
dimension F', it produces refined point features by passing the incoming features
F through a multi layer perceptron (MLP). Then, a global representation is
computed by aggregating all point features using max-pooling. This global feature
is again passed through an MLP. Finally, after vertically stacking the global
feature N times, it is concatenated with the point features. Thus, a single feature
block corresponds to a simplified PointNet. An important distinction is that
feature blocks can be stacked to arbitrary depth.

In addition to the feature blocks, we introduce pathway connections which
allow the individual feature blocks to consult features from previous layers. We
distinguish between the point features (local point pathway) and global features
(global pathway). Inspired by DenseNet [12] and ResNet [11], these features can
be combined either by concatenation or summation. Our findings are that con-
catenation gives slightly inferior results over addition with the cost of a higher
memory footprint. At the same time, increasing the number of feature blocks in
the network is even more important. Thus, in the interest of scalability, in our
final feature network we prefer addition over concatenation and use 17 feature
blocks. Our experiments on different number of feature blocks and aggregation
functions are summarized in Table 6. As a result, the feature network provides
us with strong features required for the subsequent components.

3.2 Neighborhoods

We employ two different grouping mechanism to define neighborhoods over the
point cloud: The feature space neighborhood N is obtained by computing the
k nearest neighbors (kNN) for each point in the learned feature space, and the
world space neighborhood Ny is obtained by clustering points using K-means in
the world space. In this context, the world space corresponds to the features of
the input point cloud, such as position and color. In the following, we explain
the two neighborhoods in more detail and show how they are used to update
each point feature.

Feature Space Neighborhood N (See Fig.3). From the set of N input
features of dimensionality F', we compute an N x N similarity matrix based
on the pairwise Lj-distance between the feature points x. We concatenate the
features of each point with the features of its k£ nearest neighbors to construct
a kNN tensor. Each slice in the tensor corresponds to an A p-neighborhood of a
feature point x;. Next, we learn a representation of this neighborhood using an
MLP and we generate the updated feature point by applying max-pooling. This
procedure is equivalent for each input feature and can be efficiently implemented
using convolutions. We will refer to this architecture as an Nr-module.

As such, an Np-module updates the local feature of a point based on its
neighborhood in the feature space. By concatenating multiple A/p-modules, we
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Fig. 3. The feature space neighborhood NF(x) of a point x € RF in a F-dimensional
feature space is defined as the k nearest neighbors (kNN) in the feature space. Left:
Example for k£ = 3. The point features x (blue) are updated based on the point features
in the N neighborhood. Right: Details of a ANp-module for learning point features.
(Color figure online)

can increase the receptive field of the operation, one hop at a time, which is
comparable to applying multiple convolutions in the image space.

World Space Neighborhood N . Unlike kNN, K-means assigns a variable
number of points to a neighborhood. K-means clustering is an iterative method,
it alternatively assigns points to the nearest mean which represents the clus-
ter center. Then it recomputes the means based on the assigned points. When
applied to the world space, K-means can be seen as a pooling operation which
reduces the input space and increases the receptive field by capturing long-range
dependencies. Additionally, we are offered a feature point representative per
cluster by averaging over all cluster members in the feature space.

We use this functionality in the Aj-module: we perform K-means clustering
in the world space, and represent each cluster by the average over all feature
points in the cluster. Next, we concatenate this average to all the feature points
within the same cluster. We then again apply max-pooling which produces a
regional descriptor for this cluster. A visualization is shown in Fig. 5.

3.3 Loss Functions

In this section, we define the loss function £ that is minimized during the train-
ing of our network. The classification loss Lgss at the end of our network
is realized as the cross entropy between predicted per-class probabilities and
one-hot encoded ground truth semantic labels. Beside the classification loss, we
introduce two additional losses £,qir and Lcen+ which further help to shape the
feature space. The final loss is computed as the sum: £ = Ljgs5 + Lpair + Leent-

Pairwise Similarity Loss L. So far, we assumed that points from the same
semantic class are likely to be nearby in the feature space. The pairwise similarity
loss, described in this section, explicitly enforces this assumption. Similar to [4],
we notice that semantic similarity can be measured directly as a distance in
the feature space. By minimizing pairwise distances, we can learn an embedding
where two points sampled from the same object produce nearby points in the
feature space. Equivalently, two points originating from different objects have a
large pairwise distance in the feature space. This goal is illustrated with a 2D
embedding in Fig. 4.
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Fig. 4. Left: The pairwise distance loss Lpqir minimizes the distance in the feature
space between points of the same semantic class while it increases the distance between
points of different classes. Right: The centroid loss Lcen+ minimizes the distance between
features and their corresponding centroids, shown as crosses. The feature space is
sketched as a 2D embedding. The point colors in the feature space represent train-
ing labels. To demonstrate the quality of our embedding, we further show clustering
results (dashed lines) and their projection into world space (middle). See Sect. 3.3 for
details. (Color figure online)

All we need is a pairwise distance matrix, which we already compute in the
Np-module (Sect. 3.2). Hence, the distance loss is a natural extension of our
network and comes at almost no additional memory cost. For a pair of points
(4,7) with features x; and x;, the loss is defined as follows:

0 - max(||x; — X;|| = Tear, 0) if C; = C; (1)
e maX(Tfar - ||Xz - Xj”a 0) if Cl 7é Cj

where Tyear and 7r,, are threshold values and C; is the semantic class of point 3.
Finally, the loss L4, is computed as the sum over all pairwise losses /; ;.

Centroid Loss L. This loss reduces the within-class distance by minimizing
the distance between point features x; and a corresponding representative feature
X; (centroid). It makes the features in the feature space more compact. During
training, the representative feature can be computed as the mean feature over
all points from the same semantic class. An illustration is shown in Fig.4. We
define the centroid loss as the sum over all (x;, X;) pairs:

Ecent = Z ||Xz - ii” (2)

i€[1..N]
where N is the total number of points. As distance measure || - ||, we found the

cosine distance to be more effective than the L or L, distance measures.

4 Implementation Details

In this section, we describe the integration of the aforementioned components
into a deep learning architecture. The complete model is depicted in Fig. 5. We
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Fig. 5. Our complete network architecture. It consists of a Feature Network (Sect. 3.1),
followed by three ANp-modules and one Fy-module (Sect. 3.2). Point features are rep-
resented by blue rectangles, losses are shown in red (Sect. 3.3). Green blocks represent
features computed over clusters in the world space. (Color figure online)

NxD

start by learning strong features using our Feature Network (Sect. 3.1) produc-
ing F-dimensional features. See Table 6 for an evaluation and discussion on the
architecture. We then feed these features into three stacked Np-modules. The
subsequent ANy -module computes a regional descriptors for each cluster (based
on world space with descriptors form the feature space). We concatenate the
regional descriptors to its corresponding feature points of the second and third
Np-module. The concatenated features are passed through another MLP after
which we compute the centroid loss. Finally, we reduce the feature points to
13 dimensions corresponding to the number of semantic classes in our datasets.
The pairwise distance loss is computed in the beginning in the network. This
informs the networks as early as possible which points should have similar fea-
tures. This provides early layers a stronger signal of what should be learned and
simplifies gradient propagation as the gradient is passed through fewer layers
[1]. Although the distance loss could be appended at each point where a sim-
ilarity matrix is computed, we found it most effective to add it to the second
Npg-module. An ablation study is provided in Table 1 and shows the contribution
of each component in the performance.

Table 1. Ablation study highlighting the contribution of the individual components
of our pipeline. The reported numbers refer to our validation set

Components oAcc | mAcc | mloU
Feature Network (FN) (Sect. 3.1) 82.43 | 56.96 | 47.25
NF*3 (Sect. 3.2) 81.70 | 55.14 | 47.37
Ne*3 + Lpair (Sect. 3.3) 82.51 | 58.20 | 49.41
FN + N#*3 + Lpair 83.84 | 58.29 | 50.56
FN + Nr*3 + Nw + Lpair (Sect. 3.2) 84.3159.18 | 50.95
FN + Nr*3 + Nw + Lpair + Leent (Sect. 3.3) | 84.19 | 60.59 | 51.56
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Table 2. Stanford Large-Scale 3D Indoor Spaces. 6-fold cross validation results.
We can present state-of-the-art results in the more difficult CV and slightly inferior
results on Area 5.

S3DIS [14]: 6-fold CV | oAcc | mAcc | mloU
PointNet [20] 78.62 |- 47.71
G+RCU [7] 81.1 664  49.7
SPG [16] 82.90 | 64.45 54.06
DGCNN [28] 84.1 - 56.1
PointNet++ [22] 81.03 | 67.05 54.49
RSN [13] ) 66.45 | 56.47
Ours 83.95 |67.77 |58.27

5 Evaluation

In this section, we evaluate the performance of our approach on the task of 3D
semantic segmentation. We show qualitative and quantitative results and com-
pare them to previous methods. We evaluate our method on multiple datasets:
two indoor and one outdoor dataset showing the versatility of our approach. For
each dataset, we report the overall accuracy (oAcc), the mean class accuracy
(mAcc) and the mean class intersection-over-union (mloU).

5.1 Indoor Datasets

We evaluate our model on the Stanford Large-Scale 8D Indoor Spaces (S3DIS)
dataset [14] and the ScanNet dataset [5]. Both datasets have recently become
popular to evaluate 3D semantic segmentation methods. The S3DIS dataset
consists of 6 different indoor areas, totaling to 272 rooms. Each point is labeled
as one of 13 semantic classes as shown in Fig.6. The ScanNet dataset contains
1523 RGB-D scans labeled with 20 different semantic classes.

5.2 Outdoor Dataset

We apply our approach to the vKITTI3D dataset, a large-scale outdoor data set
in an autonomous driving setting. Introduced in [7], this dataset is an adaptation
of the synthetic Virtual KITTI dataset [9] for the task of semantic segmentation
of 3D point clouds. It is split in 6 different sequences containing 13 semantic
classes listed in Fig. 7.

5.3 Training Details

For the experiments on the S3DIS dataset, we follow a similar training procedure
as [20] i.e. we split the rooms in blocks of 1 m? on the ground plane. From each
block we randomly sample 4096 points. During evaluation, we predict class labels
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Table 3. Stanford Large-Scale 3D Indoor Spaces. Results on Area 5

S3DIS [14]: Area 5| oAcc | mAcc | mloU
PointNet [20] - 48.98 | 41.09
MS + CU@2)[7] - 52.11 | 43.02
G + RCU[7] ) 54.06 | 45.14
SEGCloud [27] |- 57.35 | 48.92
SPG [16] 85.14 1 61.75 |54.67
Ours 84.15 | 59.10 52.17

Table 4. loU per semantic class on the S3DIS dataset. We compare our model against
the original PointNet and other recent methods. On average our method outperforms
the current state-of-the-art by a large margin, specifically on ’bookcase’ and ’board’
while being slightly worse on 'beam’ and ’sofa’

Method mloU|Ceiling Floor/Wall Beam|Column|Window|Door|Table|Chair/Sofa |Bookcase/Board|Clutter
PointNet [20] [47.6 |88.0 88.7 169.3 42.4 |23.1 47.5 51.6 |54.1 |42.0 | 9.6 |38.2 29.4 |35.2
MS+CU(2) [7]|47.8 |88.6 95.8 |67.3/36.9 [24.9 48.6 52.3 [51.9 |45.1 |10.6 |36.8 24.7 |37.5
SegCloud [27] 48.9 [90.1 96.1 |69.9| 0.0 |18.4 38.4 23.1 |75.9 |70.4 |58.4/40.9 13.0 |42.0
G+RCU [7] 49.7 190.3 92.1 |67.9 |44.7 (24.2 52.3 51.2 |58.1 |47.4 | 6.9 39.0 30.0 |41.9
SPG [16] 54.1 [92.2 [95.0 |72.033.5 |15.0 46.5 60.9 |65.1 |69.5 |56.8 |38.2 6.9 |51.3
Ours 58.3 [92.1 90.4 |78.5(37.8 [35.7 51.2 65.4/64.0 [61.6 |25.6|51.6 49.9 |53.7

for all points. Additionally, we add translation augmentation to the block posi-
tions. Each point is represented by a 9D feature vector [z,vy,z,7,g,b, 2,y /]
counsisting of the position [z,y, 2], color [r,g,b] and normalized coordinates
[#',y', 2'] as in [20]. The hyperparameters of our method are set as follows: for the
kNN-clustering, we set £ = 30 and use the L;-distance measure. For K-means
we dynamically set K = [N/52| where N is the number of points per block. We
report scores on a 6-fold cross validation across all areas in Table 2 along with
the detailed scores of per class IoU in Table4. Additionally, we provide scores
for Area 5 in Table 3 to compare ourself to [16,27].

On the ScanNet dataset [5], we use the reference implementation of Point-
Net++ to train and evaluate our model. This approach allows us to focus on
the comparison of the models while abstracting from the training procedures.
All hyperparameters remain the same. The results are shown in Table 5.

Table 5. ScanNet. Overall point accuracy (oAcc), mean semantic class accuracy
(mAcc), mean Intersection-over-Union (mloU). ScanNet dataset using the official train-
ing and test split from [5], scores are shown on a per-point basis as computed by the
PN++ reference implementation. To train on our hardware, we set the batch size to
32 and number of points to 1024

ScanNet [5] oAcc |mAcc
PointNet+-+ [22] | 71.40 | 24.51
Our method 75.53 | 25.39
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Table 6. Study on the feature network. We evaluate the number of layers and compare
feature fusion using concatenation or addition. Deeper networks perform better, in
general feature addition is slightly stronger while being more memory efficient than
concatenation

# Layers | Fusion | mloU
3 additive | 42.15
12 additive | 44.46
17 additive | 45.15
17 concat | 44.23
12 concat | 43.35
3 concat | 41.73

Pointnet Ours Ground Truth RGB

Fig. 6. Qualitative results on S3DIS dataset. We show three exemplary rooms. Our
method provides segmentations of objects with minimal noise and clear boundaries. As
pointed out in the qualitative results, our method performs quite well in challenging
objects like ‘board’ and ‘bookcase’. (Color figure online)
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On the VKITTI3D dataset, we follow again the same training procedure as
on the S3DIS dataset. The scenes are split into blocks of 9 m? on the ground
plane. Since the dataset is much sparser, we set the number of points sampled
per block to N =256. Training on a 6-fold cross validation is performed as in
[7]. We use the same input features as in the indoor dataset and additionally,
we analyze how well our method performs if we take into consideration only
geometric features (xyz-position) while leaving out color information. This is an
interesting experiment, as color is not always imminently available e.g. point
clouds from laser scanners. We show quantitative results in Table 7. Qualitative
results are shown in Fig. 7.

7 ] i
5

ol T =

Ours (No Color) Ours (Color) Ground Truth RGB

Fig. 7. Qualitative results on VKITTI3D dataset. In general, color is an important
attribute to distinguish between shapes that have similar structure e.g. ‘terrain’ and
‘road’. The last row shows a failure case, during training our model was not able to
differentiate between ‘Van’ and ‘Truck’, and between ‘Terrain’ and ‘Road’.

Table 7. Virtual KITTI 3D. The upper part of the tables shows results trained on
position only. In the lower part, we additionally trained with color. Geometric features
alone are quite powerful. Adding color helps to differ between geometric similar classes

VKITTI3D [7]: 6-fold CV | 0oAcc |mAcc | mIoU
PointNet [20] from [7] 63.3 (299 179
MS+CU(2) [7] 732 409 264
Ours 78.19 | 56.43 | 33.36
Ours (4 color) 79.69 | 57.59 | 35.59
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6 Conclusion

We have presented a deep learning framework for 3D semantic segmentation
of point clouds. Its main components are Nz- and ANy -modules. They allow to
incorporate neighborhood information from the feature space and from the world
space. We have also introduced the pairwise distance loss L4, and the centroid
loss Lcent in the context of 3D semantic segmentation. The presented method
produces state-of-the-art results on current indoor and outdoor datasets.

Acknowledgement. This project was funded by the ERC Consolidator Grant Dee-
ViSe (ERC-2017-CoG-773161).
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