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Abstract. Classification and segmentation of 3D point clouds are
important tasks in computer vision. Because of the irregular nature of
point clouds, most of the existing methods convert point clouds into reg-
ular 3D voxel grids before they are used as input for ConvNets. Unfor-
tunately, voxel representations are highly insensitive to the geometrical
nature of 3D data. More recent methods encode point clouds to higher
dimensional features to cover the global 3D space. However, these models
are not able to sufficiently capture the local structures of point clouds.

Therefore, in this paper, we propose a method that exploits both
local and global contextual cues imposed by the k-d tree. The method
is designed to learn representation vectors progressively along the tree
structure. Experiments on challenging benchmarks show that the pro-
posed model provides discriminative point set features. For the task of 3D
scene semantic segmentation, our method significantly outperforms the
state-of-the-art on the Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS).

Keywords: Point clouds · K-d tree structure · Contextual cues ·
Hierarchical learning

1 Introduction

Over the past few years, ConvNets have achieved excellent performance in differ-
ent computer vision tasks such as image classification [16,17,27], object detec-
tion [10,11,25] and semantic segmentation [3,11,18,21].

3D imaging technology has also experienced a major progress. In parallel,
a number of annotated large-scale 3D datasets have become publicly available,
which are crucial for supervised 3D deep learning models. For example, Model-
Net [32] and ShapeNet [7] provide object-level man-made 3D models, whereas
Stanford Large-Scale 3D Indoor Spaces Dataset [2] and ScanNet [8] are available
as real 3D scene datasets.

Most of the traditional work convert the irregular 3D data (point clouds) to
regular formats like 2D projection images [23,29,30] or 3D voxel grids [20,23,32]
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as a pre-processing step. Methods that employ 2D image projections of 3D mod-
els as their input, such as [29,30], are well suited as inputs to 2D ConvNet archi-
tectures. However, the intrinsic 3D geometrical information is distorted by the
3D-to-2D projection. Hence, this type of methods are limited by the exploitation
of 3D spatial connections between regions. While it might seem straightforward
to extend 2D CNNs to process 3D data by utilizing 3D convolutional kernels,
data sparsity and computational complexity are the restrictive factors of this
type of approaches [5,20,28,32].

Fig. 1. Example of the implicit 3D space partition of a k-d tree. Colors of different
local parts indicate different corresponding nodes in the k-d tree structure (Color figure
online)

To fully exploit the 3D nature of point clouds, in this paper, the goal is to
use the k-d tree structure [4] as the 3D data representation model, see Fig. 1.
Our method consists of two parts: feature learning and aggregation. The model
exploits both local and global contextual information and aggregates point fea-
tures to obtain discriminative 3D signatures in a hierarchical manner. In the
feature learning stage, local patterns are identified by the use of an adaptive
feature recalibration procedure, and global patterns are calculated as non-local
responses of different regions at the same level. Then, in the feature aggregation
stage, point features are merged hierarchically corresponding to the associated
k-d tree structure in bottom-up fashion.

Our main contributions are as follows: (1) a novel 3D context-aware neural
network is proposed for 3D point cloud feature learning by exploiting the implicit
partition space of the k-d tree structure, (2) a novel method is presented to
incorporate both local and global contextual information for point cloud feature
learning, (3) for semantic segmentation, our method significantly outperforms
the state-of-the-art on the challenging Stanford Large-Scale 3D Indoor Spaces
Dataset(S3DIS) [2].

2 Related Work

Previous work on ConvNets and volumetric models use different rasterization
strategies. Wu et al. propose 3DShapeNets [32] using 3D binary voxel grids as



316 W. Zeng and T. Gevers

Fig. 2. Comparison to related work for the classification task. Our model is based on
hierarchical feature learning and aggregation using the k-d tree structure

input of a Convolutional Deep Belief Network. This is the first work to use
deep ConvNets for 3D data processing. VoxNet [20] proposes a 3D ConvNet
architecture to integrate the 3D volumetric occupancy grid. ORION [28] exploits
the 3D orientation to improve the results of voxel nets for 3D object recognition.
Based on the ResNet [12] architecture, Voxception-ResNet (VRN) [5] proposes
a very deep architecture. OctNet [26] exploits the sparsity in the input data by
using a set of unbalanced octrees where each leaf node stores a pooled feature
representation. However, most of the volumetric models are limited by their
resolution, data sparsity, and computational cost of 3D convolutions.

Other methods rely on 2D projection images to represent the original 3D
data and then apply 2D ConvNets to classify them. MVCNN [30] uses 2D
rendered images of 3D shapes to learn representations of multiple views of a
3D model and then combines them to compute a compact descriptor. Deep-
Pano [29] converts each 3D shape to a panoramic view and uses 2D ConvNets to
build classifiers directly from these panoramas. With well-designed ConvNets,
this type of methods (2D projections from 3D) performs successfully in different
shape classification and retrieval tasks. However, due to the 3D-to-2D projection,
these methods are limited in exploring the full 3D nature of the data. In addi-
tion, [6,19] exploits ConvNets to process non-Euclidean geometries. Moreover,
Geodesic Convolutional Neural Networks (GCNN) [19] apply linear and non-
linear transformations to polar coordinates in a local geodesic system. However,
these methods are limited to manifold meshes.

Only recently, a number of methods are proposed that apply deep learn-
ing directly to the raw 3D data (point clouds). PointNet [22] is the pioneering
work that directly processes 3D point sets in a deep learning setting. Nonethe-
less, since every point is treated equally, this approach fails in retaining the full
3D information. The modified version of PointNet, PointNet++ [24], abstracts
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local patterns by sampling representative points and recursively applies Point-
Net [22] as a learning component to obtain the final representation. However,
it directly discards the unselected points after each layer, and needs to sample
points recursively at different scales which may yield relatively slow inference
speed. Another recent work, Kd-Network [15] uses a 3D indexing structure to
perform the computation. The method employs parameter sharing and calcu-
lates representations from the leaf nodes to the roots. However, this method
needs to sample the point clouds and to construct k-d trees for every iteration.
Further, the method employs multiple k-d trees to represent a single object. It
is split-direction-dependent and is negatively influenced by a change in rotation
(3D object classification) and viewpoint (3D scene semantic segmentation).

In contrast to previous methods, our model is based on a hierarchical fea-
ture learning and aggregation pipeline. Our neural network structure exploits
the local and global contextual cues which are inferred by the implicit space
partition of the k-d tree. In this way, our model learn features, and calculates
the representation vectors progressively using the associated k-d tree. Figure 2
shows a comparison of related methods to our work for the classification task.

3 Method

In this section, we describe our architecture, 3DContextNet, see Fig. 3. First, the
choice of the tree structure is motivated to subdivide the 3D space. Then, the
feature learning stage is discussed that uses both local and global contextual cues
to encode the point features. Finally, the feature aggregation stage is described
that computes representation vectors progressively along the k-d trees.

3.1 K-d Tree Structure: Implicit 3D Space Partition

Our method is designed to capture both the local and global context by learn-
ing and aggregating point features progressively and hierarchically. Therefore, a
representation model is required to partition 3D point clouds to encapsulate the
latent relations between regions. To this end, the k-d tree structure [4] is chosen.

A k-d tree is a space partitioning structure which is constructed by recursively
computing axis-aligned hyperplanes to divide point sets. In this paper, we choose
the standard k-d tree construction to obtain balanced k-d trees from the 3D input
point clouds/sets. The latent region subdivisions of the constructed k-d tree are
used to capture the local and global contextual information of point sets. Each
node, at a certain level, represents a local region at the same scale, whereas nodes
at different levels represent subdivisions at corresponding scales. In contrast to
the k-d network of [15], splitting directions and positions are not used for the tree
construction. In this way, our method is more robust to jittering and rotation
than [15] which trains different affine transformations depending on the splitting
directions of the nodes.

The k-d tree structure can be used to search for k-nearest neighbors for
each point to determine the local point adjacency and neighbor connectivity.
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Our approach uses the implicit local partitioning obtained by the k-d tree struc-
ture to determine the point adjacency and neighbor connectivity.

In general, conventional ConvNets learn and merge nearby features at the
same time enlarging the receptive fields of the network. Because of the non-
overlapping partitioning of the k-d tree structure, in our method, learning and
merging at the same time would decrease the size of the remaining points too
fast. This may lead to a lack of fine geometrical cues which are factored out
during the early merging stages. To this end, our approach divides the network
architecture into two parts: feature learning and aggregation.

Fig. 3. 3DContextNet architecture. 3D object point clouds are used to illustrate that
our method is suitable for both 3D classification and segmentation tasks. The corre-
sponding nodes of the k-d tree determine the receptive fields at different levels. For
feature learning, both local and global contextual information is encoded for each level.
The associated k-d tree forms the computational graph to compute the representation
vectors progressively for feature aggregation

3.2 Feature Learning Stage

Given as input is a 3D point set with the corresponding k-d tree. The tree leaves
contain the individual (raw) 3D points with their representation vectors, denoted
by X = {x1, . . . , xn} ⊆ RF . For example, F = 3 denotes the initial vectors
containing the 3D point coordinates. Features are directly learned from the raw
point clouds without any pre-processing step. According to [36], a function S(X)
is permutation invariant to the elements in X, if and only if it can be decomposed
in the form of ρ(

∑
x∈X ϕ(x)), for a suitable transformation of ρ and ϕ. We follow

PointNet [22], where a point set is mapped to a discriminative vector as follows:

f({x1, . . . , xn}) ≈ g(h(x1), . . . , h(xn)), (1)



3DContextNet 319

where f : 2R
N → R, h : RN → R

K and g : RK × . . . × R
K

︸ ︷︷ ︸
n

→ R is a symmetric

function.
In the feature learning stage, point features are computed at different levels

hierarchically. For a certain level, we first process each point using shared multi-
layer perceptron networks (MLP) as function h in Eq. (1). Then, different local
region representations are computed by a symmetric function, max pooling in
our work, for the subdivision regions at the same level, as function g in Eq. (1).
Then, local and global contextual cues are calculated in parallel based on the
local region representations. Note that both the local and global features are
concatenated with the corresponding points to retain the number of points.

Local Contextual Cues: Adaptive Feature Recalibration. To model the
inter-dependencies between point features in the same region, we use the local
region representations obtained from the symmetric function to perform adap-
tive feature recalibration [13]. All operations are adaptive to each local region,
represented by a certain node in the k-d tree. The local region representation
obtained by the symmetric function can be interpreted as a feature descriptor
for the corresponding local region. A gating function is used with a sigmoid
activation to capture the feature-wise dependencies. Point features in this local
region are then rescaled by the activations to obtain the adaptive recalibrated
output:

ỹi = σ(g(Y )) · yi, i = 1, ...,m (2)

where σ denotes the sigmoid activation and g is the symmetric function to obtain
the local region representation. Y = {y1, . . . , ym} is the point feature set of the
local region and m is the number of points in that region. In this way, feature
dependencies are consolidated for each local region by enhancing informative
features. As a result, we can obtain more discriminative local patterns. Note that
the activations act as feature weights and adaptively recalibrate point features
for different local regions.

Global Contextual Cues: Non-local Responses. Global contextual cues
are based on the non-local responses to capture a greater range of dependencies.
Intuitively, a non-local operation computes the response for one position as a
weighted sum over the features for all positions in the input feature maps. A
generic non-local operation [31] in deep neural networks is calculated by:

zi =
1

C(x)

∑

∀j

G(xi, xj)H(xj), (3)

where i is the index of the output position and j is the index that enumerates all
possible positions. In our case, i represents a local region at a certain level and j
enumerates the number of local regions at the same level. Function G denotes the
relationships between i and j. Further, function H computes a representation of
the input signal at position j. Then, the response is normalized by a factor C(x).
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The k-d tree divides the input point set into different local regions. These
are represented by different nodes of the tree. Larger range dependencies for
different local regions at the same level are computed as non-local responses of
the corresponding nodes of the tree. We consider H as an MLP, and the pairwise
function G as an embedded Gaussian function:

G(xi, xj) = eθ(xi)
T φ(xj), (4)

where θ(xi) and φ(xj) are two MLPs representing two embeddings. In this paper,
the relationships between different nodes at the same level should be undirected,
and hence G(xi, xj) = G(xj , xi). Therefore, the two embeddings are the same
i.e. θ = φ. The normalization factor is calculated by C(x) =

∑
∀j G(xi, xj).

Note that this operation is different from a fully-connected layer. The non-local
responses are based on the connections between different local regions, whereas
fully-connected layers use learned weights.

Due to our input format and architecture, the receptive fields of the con-
volutional kernels are always 1 × 1 in the feature learning stage. Following
DenseNet [14], to strengthen the information flow between layers, layers at the
same level are connected (in the feature learning stage) with each other by con-
catenating all corresponding point features together. Such connections also lead
to an implicit deep supervision which makes the network easier to train. The
output of the feature learning stage has the same number of points as the input
point set.

3.3 Feature Aggregation Stage

In the feature aggregation stage, the associated k-d tree structure is used to
form the computational graph to progressively abstract over larger regions. For
the classification task, the global signature is computed for the entire 3D model.
For the semantic segmentation task, the outputs are the point labels. Instead of
aggregating the information once over all points, the more discriminative features
are computed in a bottom-up manner. The representation vector of a non-leaf
node at a certain level is computed from its children nodes by MLPs and the
symmetric function. To that end, max pooling is used as the symmetric function.

For classification, by using this bottom-up and hierarchical approach, more
discriminative global signatures are obtained. This procedure corresponds to a
ConvNet in which the representation of a certain location is computed from the
representations of nearby locations at the previous layers by a series of convolu-
tions and pooling operations. Our architecture is able to progressively capture
features at increasingly larger scales. Features at lower levels have smaller recep-
tive fields, whereas features at higher levels have larger receptive fields. That is
due to the data-dependent partition of the k-d tree structure. Additionally, our
model is invariant to the input order of the point sets, because the aggregating
direction is along the k-d tree structure, which is invariant to input permutations.

For the semantic segmentation task, the k-d tree structure is used to represent
an encoder-decoder architecture with skip connections to link the related layers.
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The input of the feature aggregation stage is the point feature set in which
the representation of each point encapsulates both local and global contextual
information at different scales. The output is a semantic label for each point.

In conclusion, our architecture fully utilizes the local and global contextual
cues in the feature learning stage. It calculates the representation vectors hierar-
chically in the feature aggregation stage. Hence, with k-d tree guided hierarchical
learning, our 3DContextNet can obtain discriminative features for point clouds.

3.4 Discussion

Our method is related to PointNet [22] which encodes the coordinates of each
point to higher dimensional features. However, by its design, this method is
not able to sufficiently capture the local patterns in 3D space. More recently,
PointNet++ [24] is proposed which abstracts local patterns by selecting repre-
sentative points in a metric space and recursively applies PointNet as a local
feature learner to obtain features of the whole point set. In fact, the method
handles the non-uniform point sampling problem. However, the set of abstrac-
tion layers need to sample the point sets multiple times at different scales which
leads to a relative slow inference speed. Further, only the selected points are
preserved. Others are directly discarded after each layer which causes the loss
of fine geometric details. Another recent work, K-d network [15] performs linear
and non-linear transformations and share the transformation parameters corre-
sponding to the splitting directions of each node in the k-d tree. The input of
this method is the constructed k-d trees. It needs to calculate the representation
vectors for all the nodes of the associated tree structure. For each node at a cer-
tain level, the input is the representation vectors of the two previous nodes. The
method heavily depends on the splitting direction of each node to train different
multiplicative transformations at each level. Hence, the method is not invariant
to rotation. Furthermore, point cloud sampling and k-d tree fitting during every
iteration lead to slow training and inference speed.

3.5 Implementation Details

Our 3DContextNet model deals with point clouds of a fixed size N = 2D where D
is the depth of the corresponding balanced k-d tree. Point clouds of different sizes
can be converted to the same size using sub- or oversampling. In our experiments,
not all the levels of the k-d tree are used. For simplicity and efficiency reasons,
this number is L = 3 for both the feature learning and aggregation stage. The
receptive fields (number of points) for each level in the feature learning stage are
32 - 64 - 128 for the classification tasks and 32 - 128 - 512 for the segmentation
tasks.

In the feature learning stage, the sizes of the shared MLPs are (64, 64, 128,
128) - (64, 64, 256, 256) - (64, 64, 512, 512) for the three levels, respectively. The
size of MLPs for θ and H are 64 - 128 - 256 and 128 - 256 - 512, respectively.
Dense connections are applied within each level before the max-pooling layer.
In the feature aggregation stage, the MLPs and pooling operations are used
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Table 1. 3D semantic segmentation results on the Stanford Large-Scale 3D Indoor
Spaces Dataset (S3DIS). Our method outperforms previous state-of-the-art methods
by a large margin

Mean IoU Overall accuracy Avg. class accuracy

Baseline [22] 20.1 53.2 -

PointNet [22] 47.6 78.5 66.2

MS + CU(2) [9] 47.8 79.2 59.7

G + RCU [9] 49.7 81.1 66.4

PointNet++ [24] 53.2 83.0 70.5

Ours 55.6 84.9 74.5

recursively to progressively abstract the discriminative representations. For the
classification task, the sizes of the MLPs are (1024) - (512) - (256), respectively.
For the segmentation task, like the hourglass shape, the sizes of the MLPs are
(1024) - (512) - (256) - (256) - (512) - (1024), respectively. The output is then
processed by two fully-connected layers with size 256. Dropout is applied after
each fully-connected layer with a ratio of 0.5.

4 Experiments

In this section, we evaluate our 3DContextNet on different 3D point cloud
datasets. First, it is shown that our model significantly outperforms state-of-
the-art methods for the task of semantic segmentation on the Stanford Large-
Scale 3D Indoor Spaces Dataset [2]. Then, it is shown that our model provides
competitive results for the task of 3D object classification on the ModelNet40
dataset [32] and the task of 3D object part segmentation on the ShapeNet part
dataset [7].

4.1 3D Semantic Segmentation of Scenes

Our network is evaluated on the Stanford Large-Scale 3D Indoor Spaces (S3DIS)
dataset [1,2] for 3D semantic segmentation task. The dataset contains 6 large
scale indoor areas and each point is labeled with one of the 13 semantic cate-
gories, including 5 types of furniture (board, bookcase, chair, sofa and table) and
7 building elements (ceiling, beam, door, wall, window, column and floor) plus
clutter. We follow the same setting as in [22] and use a 6-fold cross validation
over all the areas.

Our method is compared with the baseline by PointNet [22] and the
recently introduced MS+CU and G+RCU models [9]. We also produce the
results of PointNet++ [24] for this dataset. During training, we use the same
pre-processing as in [22]. We first split rooms into blocks of 1 m×1 m and repre-
sent each point by a 9-dimensional vector containing coordinates (x, y, z), the
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Table 2. IoU per semantic class for the S3DIS dataset with XY Z −RGB as input. It
can be derived that our method obtains the state-of-the-art results in mean IoU and
for most of the individual classes

Mean

IoU

CeilingFloorWallBeamColumnWindowDoorTableChairSofa BookcaseBoardClutter

PointNet [22] 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

MS + CU(2) [9] 47.8 88.6 95.8 67.3 36.9 24.9 48.6 52.3 51.9 45.1 10.6 36.8 24.7 37.5

G + RCU [9] 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 6.9 39.0 30.0 41.9

PointNet++ [24]53.2 90.2 91.7 73.1 42.7 21.2 49.7 42.3 62.7 59.0 19.6 45.8 48.2 45.6

Ours 55.6 92.6 93.1 73.952.9 35.0 55.8 57.5 62.9 49.0 22.042.8 39.8 45.8

Table 3. IoU per semantic class for the S3DIS dataset using only XY Z input features
(no color/appearance). It is shown that our method provides comparable results in
mean IoU and for all individual classes even without color/appearance information

Mean

IoU

CeilingFloorWallBeamColumnWindowDoorTableChairSofa BookcaseBoardClutter

PointNet [22] 40.0 84.0 87.2 57.9 37.0 19.6 29.3 35.3 51.6 42.4 11.6 26.4 12.5 25.5

MS + CU(2) [9] 43.0 86.5 94.9 58.8 37.7 25.6 28.8 36.7 47.2 46.1 18.7 30.0 16.8 31.2

PointNet++ [24]47.0 88.0 92.4 64.737.7 16.8 31.0 41.1 59.6 52.0 29.442.2 19.2 36.9

Ours 48.6 90.5 92.8 63.6 49.4 31.2 44.2 37.8 59.6 50.6 17.7 38.7 17.3 37.9

color information RGB and the normalized position (x′, y′, z′). The baseline
extracts the same 9-dim local features and three additional ones: local point
density, local curvature and normals. The standard MLP is used as the classi-
fier. PointNet [22] computes the global point cloud signature and feeds it back to
per point features. In this way, each point representation incorporates both local
and global information. Recent work by [9] proposes two models that enlarge
the receptive field over the 3D scene. The motivation is to incorporate both the
input-level context and the output-level context. MS+CU represents the multi-
scale input block with a consolidation unit model, while G+RCU stands for the
grid-blocks in combination with a recurrent consolidation block model. Point-
Net++ [24] exploits metric space distances to build a hierarchical grouping of
points and abstracts the features progressively. Results are shown in Table 1.
A significance test is conducted between our results and the state-of-the-art
results obtained by PointNet++ [24]. The p-value equals to 0.0122 in favor of
our method.

We also compare the mean IoU for each semantic class with XY Z − RGB
and only with XY Z as input, see Tables 2 and 3 respectively. We obtain state-
of-the-art results in mean IoU and for most of the individual classes for both
XY Z −RGB and XY Z input. The reason of obtaining comparable results with
PointNet++ [24] for furnitures is that the k-d tree structure is computed along
the axes. Therefore, it may be inefficient for precise prediction near the splitting
boundaries, especially for relatively small objects. Note that our model using
only geometry information (i.e. XY Z) achieves better results than the original
PointNet method using both geometry and color/appearance information.
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Fig. 4. Qualitative results for 3D indoor semantic segmentation. Results for the S3DIS
dataset with XY Z−RGB as input. From left to right: the input point cloud, the results
of PointNet, our results, and the ground truth semantic labels. Our model obtains more
consistent and less noisy predictions (Color figure online)

A number of qualitative results are presented in Fig. 4 for the 3D indoor
semantic segmentation task. It can be derived that our method provides more
precise predictions for local structures. It shows that our model exploits both
local and global contextual cues to learn discriminative features to achieve proper
semantic segmentation. Moreover, our model size is less than 160 MB and average
inference time is less than 70 ms per block, which makes our method suitable
for large scale point cloud analysis.

Ablation Study. In this section, experiments are conducted to validate the
effects of the different components of our proposed architecture for 3D seman-
tic segmentation task. The baseline is the model corresponding to the vanilla
PointNet, but utilizing the k-d tree partitioning to guide the feature learning
stage. For a certain level, max-pooling is used to obtain different local region
representations which are concatenated with the corresponding point features.
We also trained models with different sets of components to test the effective-
ness of our approach. We use the sixth fold setting of [24] for S3DIS as our
experiment setting (i.e. we test on Area 6 and train on the rest). Results are
reported in Table 4. Experimental results show that: (1) with k-d tree guided
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Table 4. Effectiveness of different components of our architecture. We use the sixth
fold setting of [24] for S3DIS as our training/testing split

Mean IoU Overall accuracy

PointNet 63.9 86.0

PointNet++ 69.1 90.1

Baseline with k-d tree guided 68.1 89.2

Only progressively aggregation 68.3 88.9

Only global cues 68.7 88.9

Only local cues 69.9 89.8

Global cues and progressively aggregation 69.8 89.9

Local cues and progressively aggregation 71.2 90.4

Local and global cues 71.5 90.1

All 72.0 90.6

hierarchical feature learning, the baseline obtains better results than PointNet.
Hence, local structures do help, (2) local contextual cues boost the performance
the most, indicating that local neighborhoods of points contain fine-grained
structure information, (3) any single combination of two components increases
the performance and combining all of them provides state-of-the-art 3D semantic
segmentation results.

4.2 3D Object Classification and Part Segmentation

We evaluate our method on the ModelNet40 shape classification benchmark [32].
The dataset contains a collection of 3D CAD models of 40 categories. We use
the official split consisting of 9843 examples for training and 2468 for testing.
Using the same experimental settings of [22], we convert the CAD models to
point sets by uniformly sampling (1024 points in our case) over the mesh faces.
Then, these points are normalized to have zero mean and unit sphere. We also
randomly rotate the point sets along the z-axis and jitter the coordinates of each
point by Gaussian noise for data augmentation during training.

It can be derived from Table 5, that our model outperforms PointNet [22].
Our model has competitive performance compared to PointNet++. However,
our method is much faster in inference time. Table 6 summarizes the compar-
ison of time and space computations between PointNet, PointNet++ and our
proposed method. We measure forward pass time with a batch size of 8 using
TensorFlow 1.1. PointNet has the best time efficiency, but our model is faster
than PointNet++ while keeping a comparable classification performance.

We also evaluate our method on the ShapeNet part dataset [7]. The dataset
contains 16881 CAD models of 16 categories. Each category is annotated with
2 to 6 parts. There are 50 different parts annotated in total. We use the official
split for training and testing. In this dataset, both the number of shapes and
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Table 5. 3D object classification results on ModelNet40. The result of our model
outperforms PointNet and is comparable to PointNet++

Method Input Accuracy (%)

DeepPano [29] Image 77.6

MVCNN [30] Image 90.1

MVCNN-MultiRes [23] Image 91.4

3DShapeNets [32] Voxel 77

VoxNet [20] Voxel 83

Subvolume [23] Voxel 89.2

PointNet (vanilla) [22] Point cloud 87.2

PointNet [22] Point cloud 89.2

K-d network [15] Point cloud 90.6

PointNet++ [24] Point cloud 90.7

PointNet++ (with normal) [24] Point cloud 91.9

Ours Point cloud 90.2

Ours (with normal) Point cloud 91.1

Table 6. Comparison of the model sizes and the inference time for the classification
task. Our model is faster than PointNet++ while keeping comparable classification
performance

PointNet [22] PointNet++

(SSG) [24]

PointNet++

(MSG) [24]

PointNet++

(MRG) [24]

3DContextNet

Model size (MB) 40 8.7 12 24 56.8

Forward time (ms) 25.3 82.4 163.2 87.0 45.9

the parts within categories are highly imbalanced. Therefore, many previous
methods train their network on every category separately. Our network is trained
across categories.

We compare our model with two traditional learning based techniques
Wu [33] and Yi [34], the volumetric deep learning baseline (3DCNN) in Point-
Net [22], as well as state-of-the-art approaches of SSCNN [35] and Point-
Net++ [24], see Table 7. The point intersection over union for each category
as well as the mean IoU are reported. In comparison to PointNet, our approach
performs better on most of the categories, which proves the importance of local
and global contextual information. See Fig. 5 for a number of qualitative results
for the 3D object part segmentation task.
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Table 7. 3D object part segmentation results on ShapeNet part dataset

mean airplane bag cap car chair earphone guitar knife lamp laptop motor mug pistol rocket skateboard table
#shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
Wu [33] - 63.2 - - - 73.5 - - - 74.4 - - - - - - 74.8
K-d Networks [15] 77.2 79.9 71.2 80.9 68.8 88.0 72.4 88.9 86.4 79.8 94.9 55.8 86.5 79.3 50.4 71.1 80.2
3DCNN [22] 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1
Yi [34] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3
PointNet [22] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
SSCNN [35] 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1
PointNet++ [24] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
Ours 84.3 83.3 78.0 84.2 77.2 90.1 73.1 91.6 85.9 81.4 95.4 69.1 92.3 81.7 60.8 71.8 81.4

Fig. 5. Qualitative results for the 3D object part segmentation task. For each group
from left to right: the prediction and the ground truth
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5 Conclusion

In this paper, we proposed a deep learning architecture that exploits the local
and global contextual cues imposed by the implicit space partition of the k-d tree
for feature learning, and calculate the representation vectors progressively along
the associated k-d tree for feature aggregation. Large scale experiments showed
that our model outperformed existing state-of-the-art methods for semantic seg-
mentation task. Further, the model obtained comparable results for 3D object
classification and 3D part segmentation.

In the future, other hierarchical 3D space partition structures can be studied
as the underlying structure for the deep net computation and the non-uniform
point sampling issue needs to be taken into consideration.
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