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Abstract. The analysis of crowded scenes is one of the most challenging
scenarios in visual surveillance, and a variety of factors need to be taken
into account, such as the structure of the environments, and the presence
of mutual occlusions and obstacles. Traditional prediction methods (such
as RNN, LSTM, VAE, etc.) focus on anticipating individual’s future path
based on the precise motion history of a pedestrian. However, since track-
ing algorithms are generally not reliable in highly dense scenes, these
methods are not easily applicable in real environments. Nevertheless, it
is very common that people (friends, couples, family members, etc.) tend
to exhibit coherent motion patterns. Motivated by this phenomenon, we
propose a novel approach to predict future trajectories in crowded scenes,
at the group level. First, by exploiting the motion coherency, we clus-
ter trajectories that have similar motion trends. In this way, pedestrians
within the same group can be well segmented. Then, an improved social-
LSTM is adopted for future path prediction. We evaluate our approach
on standard crowd benchmarks (the UCY dataset and the ETH dataset),
demonstrating its efficacy and applicability.

Keywords: Group prediction · Crowd analysis ·
Trajectory clustering · Social-LSTM

1 Introduction

Crowd analysis is a hot topic in computer vision, covering a wide range of appli-
cations in visual surveillance. The main challenges in crowd analysis include:
crowd dynamics modeling [5,43]; crowd segmentation [4]; crowd activity classi-
fication [33]; abnormal behavior detection [16,25]; density estimation [30]; and
crowd behavior anticipation [2].

Among them, crowd behavior anticipation is an emerging task, which has
drawn a fair amount of attentions, due to the rapid development in machine
learning, and particularly the deep learning techniques applied to time series
analysis (such as RNN [34], GRU [9], LSTM [18], and VAE [22]).

Different from crowd behavior recognition, the prediction task has its dis-
tinguished characteristics, which is generally addressed by observing the motion
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histories of the subjects moving in the scene. In some specific applications (i.e.,
early warning, abnormal event detection, collision avoidance), prediction plays
a more relevant role comparing to activity recognition, as dangerous behaviors
should be warned in advance. Traditional methods can merely make one-step
forecasting (e.g., Kalman filter, particle filter, Markov chains); thanks to deep
learning, long term prediction is becoming applicable gradually.

At the beginning, researchers merely focused on anticipating individual’s
future path. The corresponding models highly rely on the precise motion history
of a pedestrian, thus being generally intractable in very dense environments, due
to the instability of object tracking algorithms in presence of frequent mutual
occlusions.

However, continuous and precise frame-based tracking might not be essential.
In fact, in most cases, people pay more attention on the whole dynamics of the
scene. People gathering and behaving together will generate and exhibit macro-
scopic salient features, which are instead worth being observed. Such coarse-level
information usually maps densely and sparsely populated areas, including direc-
tion and flow characteristics, as well as the final destinations. Therefore, in such
scenarios, it makes more sense to focus on group activities instead of individuals.
It is well known that people moving in the crowds usually tend to follow a series
of implicit social rules [28]. For instance, individuals tend to speed up or slow
down their paces in order to avoid collisions when a vehicle or another group of
people is approaching; people prefer to preserve personal space, thus keeping a
certain distance from their neighbors; pedestrians tend to follow people in their
front especially in presence of crowded situations, to prevent collisions.

Focusing on grouping, it is very common that friends/couples/families tend
to move in accordance with a coherent motion pattern. Based on this assumption,
we propose a novel approach to predict future trajectories at the group level, in
order to further analyze crowded scenes from a holistic point of view. Firstly, by
exploiting the motion coherency, we cluster trajectories that have similar motion
trends. In this way, pedestrians within the same group can be highlighted and
segmented. Finally, an improved social-LSTM is proposed to estimate the future
path prediction.

The main contributions of this work are summarized as follows:

– we propose a novel framework for group behavior prediction;
– we exploit an improved coherent filtering to enhance the trajectory clustering

performance;
– we propose a strategy for long term prediction of pedestrians, which leverages

on group dynamics.

The rest of the paper is organized as follows: Sect. 2 briefly reviews the related
work in the field of crowd analysis. The proposed framework, called Group LSTM
for conciseness, is described in Sect. 3, including the steps of trajectory clustering
and group path prediction. The experimental results are provided in Sect. 4.
Conclusions and future work are summarized in Sect. 5.
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2 Related Work

A detailed literature on the recent works in crowd analysis, especially regard-
ing the topics of crowd dynamic modeling, social activity forecasting, and group
segmentation, can be found in some recent surveys [13,20,24]. In the next para-
graphs, we will concentrate on two specific sub-topics, namely, group analysis
and forecasting.

2.1 Group Analysis in Crowds

In the early approaches, trajectories were adopted to represent low level motion
features in the crowd. By clustering trajectories with similar motion trends,
pedestrians can be gathered into different groups. In [42], the traditional k-
means algorithm was exploited to learn different motion modalities in the scene.
In [21], support vector clustering was exploited to group pedestrians. In [44],
coherent filtering was presented to detect coherent motion patterns in a crowded
environment [40].

As far as the representation of collective activities is concerned, Ge et al. [12]
worked on the automatic detection of small individual groups who are traveling
together. Ryoo et al. [31] introduced a probabilistic representation of group activ-
ities, for the purpose of recognizing different types of high-level group behaviors.
Yi et al. [41] investigated the interactions between stationary crowd groups and
pedestrians to analyze pedestrian’s behaviors, including walking path prediction,
destination prediction, personality classification, and abnormal event detection.
Shao et al. [32] proposed a series of scene-independent descriptors to quanti-
tatively describe group properties, such as collectiveness, stability, uniformity,
and conflict. Bagautdinov et al. [7] presented a unified end-to-end framework for
multi-person action localization and collective activity recognition using deep
recurrent networks.

2.2 Social Activity Forecasting

Forecasting social activities has lately gained a relevant amount of attentions,
especially as far as crowd analysis is concerned. This research domain is rather
diversified and it involves trajectory prediction, interaction modeling, and con-
textual modeling. Among the pioneering research in social activity analysis,
Helbing et al. [17] introduced the well known Social Force Model (SFM), which
is able to describe social interactions between humans [23,27]. Other models,
such as the continuum crowds model [36] and the Reciprocal Collision Avoid-
ance [37], are capable to reproduce human interactions using priors. In [3], the
Social Affinity Maps (SAM) features and the Origin and Destination (OD) priors
were proposed to forecast pedestrians’ destinations using multi-view surveillance
cameras. Robicquet et al. [29] introduced a large scale dataset that contains var-
ious types of targets (pedestrians, bikers, skateboarders, cars, buses, and golf
carts) using aerial cameras, in order to evaluate trajectory forecasting perfor-
mance in real outdoor environments. In [1,26], contextual information is taken
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into account as well, to model the static configuration and the dynamic evolution
of the scene.

More recently, neural networks have been employed to predict events in
crowded videos. In particular, with the emerging of deep generative models
(such as RNN, LSTM, VAE), the sequence-to-sequence generation problem can
be solved properly, making it possible to handle the long-term prediction task
directly. Alahi et al. [2] proposed the so-called social-LSTM to model the inter-
actions among people in a neighborhood by adding a new social pooling layer;
In [22], Lee et al. presented a deep stochastic IOC RNN encoder-decoder frame-
work to predict the future paths of multiple interacting agents in dynamic scenes.
Ballan et al. [8] considered both the dynamics of moving agents and the scene
semantics to predict scene-specific motion patterns.

Social activities are often ruled not only by the motion dynamics, but are
also driven by human factors. Jain et al. [19] adopted a structural RNN that
combines spatio-temporal graphs and recurrent neural networks to model motion
and interactions in the scene. Fernando et al. [38] applied both the soft attention
and the hard-wired attention on the social LSTM, and significantly promote the
trajectory prediction performance. Varshneya et al. [6] presented a soft attention
mechanism to forecast individual’s path, which exploits the spatially aware deep
attention model. Vemula et al. [39] proposed a novel social attention model that
can capture the relative importance of each person when navigating in the scene.

3 Group LSTM

The motion of pedestrians in crowded scenes is highly influenced by the behavior
of other people in the surroundings and their mutual relationships. Stationary
groups, groups of pedestrians walking together, people coming from opposite
directions, will exert different effects on the action that one pedestrian takes.
Thus, it becomes necessary to take people in the neighborhood into account
when forecasting the behavior of an individual in the crowd.

To achieve this goal, we propose a framework, which is able to consider
whether the subject of interest is walking coherently with the pedestrians in
his surroundings or not. By exploiting the coherent filtering approach [44], we
first detect people moving coherently in a crowd, and then adopt the Social
LSTM to predict future trajectories. In this way, we are able to improve the
prediction performance, accounting for the interactions between socially related
and unrelated pedestrians in the scene.

3.1 Pedestrian Trajectory Clustering

Coherent motion describes the collective movements of particles in a crowd.
The coherent filtering studies a prior meant to describe the coherent neighbor
invariance, which is the local spatio-temporal relation between particles moving
coherently. The algorithm is based on two steps. First, it detects the coherent
motion of pedestrians in the scene. Then, points moving coherently are associated
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to the same cluster. Point clusters will continue to evolve, and new clusters will
emerge over time. Finally, each pedestrian i is assigned to a cluster si. The
outputs of the coherent filtering are consist of the sets si (i = 1, 2, · · · , n) of
people moving in a coherent manner. If a pedestrian is not moving or it does
not belong to any coherent group, it is considered as belonging to its own set.

The coherent filtering originally relies on the KLT tracker [35], aiming at
detecting candidate points for tracking and generating trajectories, which will
then be used as the input of the algorithm. The KLT tracker may detect many
key points for each pedestrian, thus there is no clear correspondence between
the number of key points and the number of pedestrians. Our objective is to
cluster pedestrians into groups, where each individual in a group is represented
using a single point, as shown in Fig. 1. For this purpose, and without loss of
generality, we apply the coherent filtering algorithm directly on the ground truth
of pedestrian trajectories.

Fig. 1. Each pedestrian is represented by a single keypoint. Pedestrians walking in the
same direction are clustered into one group si. In this example, two sets of pedestrians
going in opposite directions are identified.

3.2 Group Trajectory Prediction

We extend the work of Alahi et al. [2], which models the relationships of pedes-
trians in the neighborhood by introducing a so-called social pooling layer. In
the Social LSTM model, the pedestrian is modeled using an LSTM network as
displayed in Fig. 2. Furthermore, each pedestrian is associated with other people
in his neighborhood via a social pooling layer. The social pooling layer allows
pedestrians to share their hidden states, thus enabling each network to predict



218 N. Bisagno et al.

the future positions of an individual based on his own hidden state and the
hidden states in the neighborhood.

The ith pedestrian at time instance t in the scene is represented by the hidden
state hi

t in an LSTM network. We set the hidden-state dimension to D and the
neighborhood size to N0, respectively. The neighborhood of the ith agent pedi is
described using a tensor Hi

t as in Eq. 1, with dimensions of N0 × N0 × D:

Hi
t(m,n, :) =

∑

j∈N

1mn[xj
t − xi

t, y
j
t − yi

t]1ij [si �= sj ]h
j
t−1 (1)

where 1mn[x, y] is an indicator function to select pedestrians in the neighbor-
hood. It is defined as in Eq. 2:

1mn[x, y] =

{
0 if [x, y] /∈ cell mn
1 if [x, y] ∈ cell mn

(2)

If two pedestrians i and j belong to the same coherent set si, they will not
be taken into account when computing the social pooling layer for each of them.
The function 1ij [i ∈ si, j ∈ si] is an indicator function defined as in Eq. 3:

1ij [si �= sj ] =

{
0 if i ∈ si, j ∈ si

1 if i ∈ si, j /∈ si
(3)

Doing so, the social pooling layer of each pedestrian contains information
only about pedestrians, which are not moving coherently with him.

Once computed, the social hidden-state tensor is embedded into a vector ai
t.

The output coordinates are embedded in the vector eit. Following the recurrence
defined in [2], we can predict our trajectories gradually.

Fig. 2. The figure represents the chain structure of the LSTM network between two
consecutive time steps, t and t+ 1. At each time step, the inputs of the LSTM cell are
the previous position (xi

t−1, y
i
t−1) and the Social pooling tensor Hi

t . The output of the
LSTM cell is the current position (xi

t, y
i
t).
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Fig. 3. Representation of the Social hidden-state tensor Hi
t . The black dot represents

the pedestrian of interest pedi. Other pedestrians pedj (∀j �= i) are shown in different
color codes, namely green for pedestrians belonging to the same set, and red for pedes-
trians belonging to a different set. The neighborhood of pedi is described by N0 × N0

cells, which preserves the spatial information by pooling spatially adjacent neighbors.
Pedestrians belonging to the same set are not used for the final computation of the
pooling layer Hi

t .

4 Results

4.1 Implementation Details

In the first place, we need to configure the coherent filtering to cluster pedestri-
ans. To this aim, we use K = 10, d = 1 and λ = 0.2 according to the original
implementation.

For our LSTM network, we adopt the following configuration. The embed-
ding dimension for the spatial coordinates is set to 64. The spatial pooling size,
which corresponds to an area of 4 × 4m2, is set to 32. The pooling operation is
performed using a sum pooling window of size 8×8 with no overlaps. The hidden
state dimension is 128. The learning rate is set to 0.003, and RMS-prop [11] is
used as the optimizer. The model is trained on a single GPU using a PyTorch1

implementation.

4.2 Quantitative Results

Our experiments are carried out on two publicly available datasets, commonly
used as the standard benchmarks for crowded scenarios, namely, the UCY
dataset [23] and the ETH dataset [27].

The two datasets present a rather large set of real-world trajectories covering
a variety of complex crowd behaviors that are particularly interesting for our
research.

In the same way as other works [2,27], we evaluate our results with the
following two metrics:

– Average Displacement Error (ADE), namely the average displacement error
(in meters) between each point of the predicted path with respect to the
ground truth path.

1 http://pytorch.org.

http://pytorch.org
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– Final Displacement Error (FDE), namely the distance (in meters) between
the final point of the predicted trajectory and the final point of the ground
truth trajectory.

In our experiments, we follow the same evaluation procedure as adopted in
[2]. The model is trained and validated using the leave-one-out strategy. We train
on 4 videos and test on the remaining one to obtain the prediction results. For
both training and validation, we observe and predict trajectories using a time
interval of 0.4 s. We observe trajectories for 8 time steps and predict for the next
12 time steps, meaning that we observe trajectories for tobs = 3.2 s and predict
for the next tpred = 4.8 s. In the training phase, only trajectories that remain in
the scene for at least 8 s are considered.

We compare our method with the Social LSTM model [2] and its most recent
variant [14]. We also compare our model with a linear model, which uses the
Kalman filter to predict future trajectories under the assumption of linear accel-
eration, as also reported in [2]. The numerical results are shown in Table 1.

Our method performs on average better or equal than other methods, espe-
cially on the UCY dataset. This is due to the characteristics of crowd flows in
the scene, which usually consist of easily identifiable groups walking in opposite
directions. However, for the ETH dataset, the motion patterns are more varied
and chaotic.

Our results show that the prediction performance can be improved when con-
sidering pedestrians that are not moving coherently. We argue that the change

Table 1. Quantitative results using our Group-LSTM and the mentioned baseline
approaches on the UCY and ETH datasets, respectively. Two error metrics, namely,
the Average Displacement Error (ADE) and the Final Displacement Error (FDE) are
reported (in meters) for an observation interval tobs = 3.2 s and a prediction of sub-
sequent tpred = 4.8 s. Our model outperforms other approaches, especially in terms of
average error.

Metric Dataset Lin.[2] Social-LSTM[14] Social-GAN[14] Group-LSTM

ADE ETH [27] 1.33 1.09 0.81 0.28

HOTEL [27] 0.39 0.86 0.72 0.28

ZARA1 [23] 0.62 0.41 0.34 0.23

ZARA2 [23] 0.77 0.52 0.42 0.34

UCY [23] 0.82 0.61 0.60 0.56

AVERAGE 0.79 0.70 0.58 0.34

FDE ETH [27] 2.94 2.41 1.52 1.12

HOTEL [27] 0.72 1.91 1.61 0.89

ZARA1 [23] 1.21 1.11 0.84 0.91

ZARA2 [23] 1.48 1.31 1.26 1.49

UCY [23] 1.59 0.88 0.69 1.48

AVERAGE 1.59 1.52 1.18 1.18
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of motion and the evolution of trajectories are mainly influenced by pedestrians
which move in different directions with respect to the pedestrian of interest.
People walking together, instead, loosely influence each other, as they behave as
in a group.

4.3 Qualitative Results

In Sect. 4.2 we have shown that considering only pedestrians not moving coher-
ently can improve the prediction precision. In this section we will further evaluate
the consistency of the predicted trajectories.

As a general rule, the LSTM-based approaches for trajectory prediction fol-
low a data-driven approach. Furthermore, the future planning of pedestrians in
a crowd are highly influenced by their goals, their surroundings, and their past
motion histories. Pooling the correct data in the social layer can promote the
prediction performance in a significant way.

In order to guarantee a reliable prediction, we not only need to account
for spatio-temporal relationships, but also need to preserve the social nature of
behaviors. According to the studies in interpersonal distances [10,15], socially
correlated people tend to stay closer in their personal space and walk together in
crowded environments as compared to pacing with unknown pedestrians. Pooling
only unrelated pedestrians will focus more on macroscopic inter-group interac-
tions rather than intra-group dynamics, thus allowing the LSTM network to
improve the trajectory prediction performance. Collision avoidance influences
the future motion of pedestrians in a similar manner if two pedestrians are
walking together as in a group.

In Tables 2, 3 and Fig. 4, we display some demos of predicted trajectories
which highlight how our Group-LSTM is able to predict pedestrian trajectories
with better precision, showing how the prediction is improved when we pool in
the social tensor of each pedestrian only pedestrians not belonging to his group.

In Table 2, we show how the prediction of two pedestrians walking together
in the crowd improves when they are not pooled in each other’s pooling layer.
When the two pedestrians are pooled together, the network applies on them the
typical repulsion force to avoid colliding with each other. Since they are in the
same group, they allow the other pedestrian to stay closer in they personal space.

Table 2. ETH dataset: the prediction is improved when pooling in the social tensor of
each pedestrian only pedestrians not belonging to his group. The green dots represent
the ground truth trajectories; the blue crosses represent the predicted paths.

Name Scene Our Group-LSTM Social-LSTM

ETH
Univ
Frame
2425
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In Fig. 4 we display the sequences of two groups walking toward each other. In
Table 3, we show how the prediction for the two groups is improved with respect
to the Social LSTM. While both prediction are not very accurate, our Group
LSTM perform better because it is able to forecast how pedestrian belonging to
the same group will stay together when navigating the environment.

Fig. 4. Sequences taken from the UCY dataset. It displays an interaction example
between two groups, which will be further analyzed in Table 3.

Table 3. We display how the prediction is improved for two groups walking in opposite
directions. The green dots represent the ground truth trajectories, while the blue crosses
represent the predicted paths.

Name Scene Our Group-LSTM Social-LSTM

UCY
Univ
Frame
1025

5 Conclusion

In this work, we tackle the problem of pedestrian trajectory prediction in
crowded scenes. We propose a novel approach, which combines the coherent
filtering algorithm with the LSTM networks. The coherent filtering is used to
identify pedestrians walking together in a crowd, while the LSTM network is
used to predict the future trajectories by exploiting inter and intra group dynam-
ics. Experimental results show that the proposed Group LSTM outperforms the
Social LSTM in the prediction task on two public benchmarks (the UCY and
ETH datasets). For the future work, we plan to further investigate social relation-
ships and how fixed obstacles will influence the behaviors of other pedestrians.

Acknowledgement. This work is partly supported by the National Natural Science
Foundation of China (Grant No. 61702073), and the Fundamental Research Funds for
the Central Universities (Grant No. 3132018190).
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