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Abstract. In recent years, there is a shift from modeling the tracking
problem based on Bayesian formulation towards using deep neural net-
works. Towards this end, in this paper the effectiveness of various deep
neural networks for predicting future pedestrian paths are evaluated. The
analyzed deep networks solely rely, like in the traditional approaches, on
observed tracklets without human-human interaction information. The
evaluation is done on the publicly available TrajNet benchmark dataset
[39], which builds up a repository of considerable and popular datasets for
trajectory prediction. We show how a Recurrent-Encoder with a Dense
layer stacked on top, referred to as RED-predictor, is able to achieve top-
rank at the TrajNet 2018 challenge compared to elaborated models. Fur-
ther, we investigate failure cases and give explanations for observed phe-
nomena, and give some recommendations for overcoming demonstrated
shortcomings.

Keywords: Trajectory forecasting · Path prediction ·
Trajectory-based activity forecasting

1 Introduction

The prediction of possible future paths is a central building block for an auto-
mated risk assessment. The applications cover a wide range from mobile robot
navigation, including autonomous driving, smart video surveillance to object
tracking. Dividing the many variants of forecasting approaches can be roughly
done by asking how the problem is addressed or what kind of information is pro-
vided. Firstly, addressing this problem reaches from traditional approaches such
as the Kalman filter [25], linear [34] or Gaussian regression models [42], auto-
regressive models [2], time-series analysis [37] to optimal control theory [27], deep
learning combined with game theory [32], or the application of deep convolutional
networks [21] and recurrent neural networks (RNNs) as a sequence generation
problem [3,4,23]. Secondly, the grouping can be done by using the provided
information. On the one hand, the approaches can solely rely on observations of
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consecutive positions extracted by visual tracking or on the other hand, by using
richer context information. This can be for example human-human interactions
or human-space interactions or general additional visual extracted information
such as pedestrian head orientation [28] or head poses [17]. For some represen-
tative approaches which model human-human interactions, one should mention
the works of Helbing and Molnár [19] and Coscia et al. [10] or approaches in
combination with RNNs such as the works of Alahi et al. [3,4]. The spatial
context of motion can in principle be learned by training a model on observed
positions of a particular scene, but it is not guaranteed that the model success-
fully captures spatial points of interest and does not only implicitly keep spatial
information by performing path integration in order to predict new positions.
Nevertheless, here we distinguish such approaches from approaches where scene
context is provided as further cue for example by semantic labeling [6] or scene
encoding [44]. The challenges of Trajectory Forecasting Benchmarking (TrajNet
2018) [39] are designed to cover some inherent properties of human motion in
crowded scenes. The World H-H TrajNet challenge in particular looks at pre-
dicting motions in world plane coordinates of human-human interactions. The
aim of this paper is to find an effective baseline predictor only based on the par-
tial history and find the maximum potential achievable prediction accuracy for
this challenge. Achieving this objective involves an evaluation of different deep
neural networks for trajectory prediction and analysis of the datasets properties.
Further, we propose small changes and pre-processing steps to modify a standard
RNN prediction model to result in a simple but effective RNN architecture that
obtains comparable performance to more elaborated models, which additionally
captures the interpersonal aspect of human-human interaction.

The paper is structured as follows. Firstly, the properties of the TrajNet
benchmark dataset are analyzed in Sect. 2. Then, some basic deep neural net-
works are shortly described and evaluated (Sect. 3). Further, the modifications
in order to increase the prediction performance are presented in Sect. 4. The
achieved results and an additional failure analysis are discussed in Sect. 5.
Finally, a conclusion is given in Sect. 6.

2 TrajNet Benchmark Dataset Analysis

The trajectory forecasting challenges TrajNet [39] provide the community with
a defined and repeatable way of comparing path prediction approaches as well as
a common platform for discussions in the field. In this section some properties of
the current repository for the World H-H TrajNet challenge of popular datasets
for trajectory-based activity forecasting are analyzed and thereby design choices
for the proposed predictor are deduced.

In most datasets, the scene is observed from a bird’s eye view, but there
are also scenarios where the scene is observed under a higher depression angle.
The selected surveillance datasets cover real world scenarios with a varying
crowd densities and varying complexity of trajectory patterns. Details of the
datasets are summarized in Table 1 (adapted from TrajNet website). The selec-
tion includes the following datasets. The BIWI Walking Pedestrians Dataset [36]
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Table 1. Training (green) and test (cyan) dataset of the world plane human-human
dataset challenge (adapted from the TrajNet website [39]).

Name Resolution #Pedestrian Framerate Reference
BIWI Hotel 720 × 576 389 2.5 [36]
Crowds Zara 720 × 576 204 2.5 [30]

Crowds Students 720 × 576 415 2.5 [30]
Crowds Arxiepiskopi 720 × 576 24 2.5 [30]

PETS 2009 768 × 576 19 2.5 [14]
Stanford Drone Dataset (SDD) 595 × 326 3295 2.5 [38]

BIWI ETH 640 × 480 360 2.5 [36]
Crowds Zara 720 × 576 148 2.5 [30]

Crowds Uni Examples 720 × 576 118 2.5 [30]
Stanford Drone Dataset (SDD) 595 × 326 3297 2.5 [38]

also sometimes referenced as ETH Walking Pedestrians (EWAP), which is split
into two sets (ETH and Hotel). The Crowds dataset also called UCY “Crowds-
by-Example” dataset [30] contains three scenes from an oblique view, where the
first (Zara) shows a part of a shopping street, the second (Students/Uni Exam-
ples) captures a part of the uni campus and the third scene (Arxiepiskopi) cap-
tures a different part of the campus. Then, the Stanford Drone Dataset (SDD)
[38] consists of multiple aerial images capturing different locations around the
Stanford campus. And finally the PETS 2009 dataset [14], where different out-
door crowds activities are observed by multiple static cameras. Sample images
with full trajectories and tracklets are shown in Fig. 1.

Fig. 1. Example trajectories from the BIWI ETH dataset and example tracklets from
the sequence Hyang 07 from the Stanford Drone Dataset (SDD).
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It is common and good practice to apply cross-validation. For the TajNet
challenge, it is done by omitting complete datasets for testing. Because the
behavior of humans in crowds is scene-independent and for measuring the gen-
eralization capabilities of various approaches across datasets this is very reason-
able, in particular for providing a benchmark for human-human interactions.
Nevertheless, by combining all training sets the spatial context of scene specific
motion and the reference systems are lost. When only relying on observed motion
trajectories positional information is crucial in order to learn spatio-temporal
variation. For example, the sidewalks in the Hyang sequences (see Fig. 1) lead
to a spatially depending change in the curvature of a trajectory. Since our focus
is on deep neural networks including RNNs, the shift from position informa-
tion to higher order motion helps to overcome some drawbacks. Before RNNs
were successfully applied for tracking pedestrians in a surveillance scenario, they
gained attention due to their success in tasks such as speech recognition [9,15]
and caption generation [11,43]. Since these domain are particularly different to
trajectory prediction in certain aspects, their position-dependent movement is
not important. Accordingly, RNNs can benefit from conditioning on previous
offsets for scene independent motion prediction. This insight is not new, yet
utilizing offsets really helps not only stabilizing the learning process but also
improves the prediction performance for the evaluated networks. This shift to
offsets or rather velocities has been also successfully applied for example for the
prediction of human poses based on RNNs [33]. In the context of deep networks
the same effect can also be achieved by adding residual connections, which have
been shown to improve performance on deep convolutional networks [18]. Pre-
sumably due to the limitation of the input and output spaces, for applying on
the TrajNet challenge instead of prediction of the next position (where will the
person be next) predicting the following offsets (where will the person go next)
[23,24] also contributed to increased prediction accuracy. This becomes imme-
diately apparent by looking at the complete tracklets of the training and test
set (see Fig. 2). Firstly, it takes a considerably higher modeling effort to rep-
resent all possible positions instead of modeling particular velocities. Further,
input data outside the training range can lead to undefined states in the deep
network, which result in an unreasonably random output. Some of the initial-
ization tracklets clearly lie outside the training input space. Also, approaches
with profit from human-human interaction such as [3,4,16,17] in combination
with deep networks lack here information about surrounding persons to interact,
so that the decoding of relative distances is not possible because of a reduced
person density.

Another factor for improving the prediction performance is becoming appar-
ent when contemplating the offset distribution of the data. Figure 3 shows the
offsets histograms for x and y separately. Due to the loss of the reference system,
it is impossible to assume a reasonable location distribution a-priori. In contrast,
the offset and magnitude distribution clearly reflects the preferred walking speeds
in the data. The histograms also show that a large amount of persons is stand-
ing. In the recent work of Hasan et al. [17], it was emphasized that forecasting
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Fig. 2. (Left) Visualization of all tracklets of the training set from the TrajNet dataset
collection. (Right) Visualization of all initialization tracklets of the test set.

errors are in general higher when the speed of persons is lower and argued that
when persons are walking slowly their behavior becomes less predictable, due to
physical reasons (less inertia). During our testing we discovered the same phe-
nomenon. In particular RNN based networks tend to overestimate slow veloc-
ities and do sometimes not accurately identify the standing behavior. Despite
this problem, the range of offsets is very limited compared to the location dis-
tribution and shows a clear tendency towards expected a-priori values. Common
techniques for sequence prediction problems are normalization and standardiza-
tion of the input data. Whereby normalization has a similar role on the position
data, applying standardization on position input data shows no benefit. In our
experiments, standardization worked slightly better than normalization or an
embedding layer for input encoding. Although the effect on the performance is
quite low for the TrajNet challenge, our best result is achieved using standard-
ized offsets as input. It is rarely strictly necessary to standardize the inputs,
but there are practical reasons such as accelerating the training or reducing the
chances of getting stuck in local optima [7]. Predicting offsets also guarantees
that the output directly conforms better with the range of common activation
functions.

Fig. 3. (Left, Middle) Offset histograms of the training set. (Right) Magnitude his-
togram of the offsets.
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Without discretization artifacts, the dynamic of humans is smooth and per-
sistent. The trajectory data from the TrajNet dataset includes varying discretiza-
tion artifacts or noise levels resulting from different methods with which ground
truth data was generated. Part of the ground truth trajectories are generated
by a visual tracker or manually annotated.

For approximating the amount of noise in the datasets, the distance between
a smoothed spline fit through the complete tracklets is compared to the provided
ground truth tracklet points. The spline fitting is done with a polynom of degree
k = 4 independent for the x and y values. If the smoothing is too strong, it
can drift too far away from the actual data. Nevertheless, the achieved fitted
trajectories form a smooth and natural path and are used as rough assessment
for the noise levels in the ground truth trajectory data. The results for the
training set are summarized in Table 2.

Fig. 4. Coefficient of determination R2 for x and y for all training tracklets of the
World H-H TrajNet challenge.

The approximated noise levels clearly show the variation in the ground truth
data. In order to outperform a linear baseline predictor the learned model must
be able to successfully model different velocity profiles and capture curved paths
out of input data with different noise levels. Due to the varying noise levels,
initial experiments to solely train on smoothed fitted trajectories with synthetic
noise performed worse. Nevertheless, for the prediction of the future steps the
best performing predictor is trained to forecast smoothed paths. Before the dif-
ferent evaluated models are introduced, the last data analysis of the training set
is intended to assess the complexity in terms of the non-linearity of the trajec-
tories. Therefore, the coefficient of determination R2 for a linear interpolation
is calculated separately for the x and y values. This linear interpolation serves
as baseline predictor for the TrajNet challenge. The histograms of R2 for the
training set are shown in Fig. 4. R2 is the percentage of the variation that is
explained by the model and is used to determine the suitability of the regres-
sion fit as a linearity measure [12]. The average R2 values are summarized in
Table 2. It can be seen that for most tracklets a linear interpolation works very



144 S. Becker et al.

Table 2. Standard deviation of the distance between a smoothed spline fit and the
ground truth trajectory data. The average R2 score for all tracklets in the subsets.

Name σx,spline [m] σy,spline [m] R̄2
x R̄2

y

Overall 0.067 0.069 0.889 0.811
BIWI Hotel 0.042 0.031 0.637 0.876

Crowds Zara 02 0.029 0.035 0.952 0.758
Crowds Zara 03 0.026 0.031 0.935 0.716

Crowds Students 01 0.033 0.029 0.868 0.852
Crowds Students 03 0.039 0.040 0.915 0.76

Crowds Arxiepiskopi 01 0.050 0.027 0.959 0.677
PETS 2009 S2L1 0.037 0.026 0.781 0.877
SSD Bookstore 00 0.060 0.063 0.889 0.844
SSD Bookstore 01 0.054 0.053 0.879 0.878
SSD Bookstore 02 0.068 0.073 0.861 0.921
SSD Bookstore 03 0.069 0.061 0.951 0.830
SSD Coupa 03 0.057 0.043 0.954 0.937

SSD Deathcircle 00 0.072 0.079 0.893 0.808
SSD Deathcircle 01 0.086 0.103 0.850 0.818
SSD Deathcircle 02 0.151 0.158 0.772 0.591
SSD Deathcircle 03 0.116 0.134 0.816 0.770
SSD Deathcircle 04 0.215 0.160 0.738 0.713

SSD Gates 00 0.054 0.073 0.980 0.735
SSD Gates 01 0.064 0.084 0.859 0.890
SSD Gates 03 0.086 0.106 0.847 0.860
SSD Gates 04 0.071 0.155 0.820 0.906
SSD Gates 05 0.069 0.067 0.858 0.904
SSD Gates 06 0.077 0.072 0.840 0.905
SSD Gates 07 0.084 0.126 0.908 0.817
SSD Gates 08 0.076 0.088 0.922 0.820
SSD Hyang 04 0.048 0.050 0.829 0.842
SSD Hyang 05 0.059 0.081 0.872 0.740
SSD Hyang 06 0.070 0.066 0.875 0.811
SSD Hyang 07 0.040 0.079 0.879 0.894
SSD Hyang 09 0.036 0.088 0.998 0.652
SSD Nexus 00 0.076 0.082 0.886 0.742
SSD Nexus 01 0.067 0.095 0.929 0.771
SSD Nexus 02 0.069 0.074 0.934 0.726
SSD Nexus 03 0.188 0.113 0.786 0.572
SSD Nexus 04 0.097 0.073 0.847 0.724
SSD Nexus 07 0.053 0.069 0.935 0.764
SSD Nexus 08 0.067 0.070 0.926 0.681
SSD Nexus 09 0.052 0.094 0.913 0.816
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well. In order to outperform the linear interpolation baseline, it is crucial to not
only cover a variety of complex observed motions, but to also produce robust
results in simpler situations. As mentioned above, the person velocity has to be
effectively captured by the model.

3 Models and Evaluation

The goal of this work is by using a sort of coarse to fine searching strategy to
reach the maximum achievable prediction accuracy without further cues such as
human-human interaction or human-space interaction based on basic networks.
Towards this end, we started with a set of networks with a limited set of hyper-
parameters to narrow it down to one network, in order to then extend the hyper-
parameter set for a more exhaustive tuning. The multi-modal aspect of trajectory
prediction is hardly considerable when there is no fixed reference system. Thus,
the performance is compared in accordance to the community with the two
error metrics of the average displacement error (ADE) and the final displacement
error (FDE) (see for example [3,16,17,36,41,44]). The average of both combined
values are then used as overall average to rank the approaches. The ADE is
defined as the average L2 distance between ground truth and the prediction over
all predicted time steps and the FDE is defined as the L2 distance between the
predicted final position and the true final position. For the World H-H TrajNet
challenge the unit of the error metrics is meter. For all experiments, 8 (3.2 s)
consecutive positions are observed, before predicting the next 12 (4.8 s) positions.

Besides the provided approaches of the World H-H TrajNet challenge, the
following basic neural networks for a coarse evaluation are selected:

Multi-Layer-Perceptron (MLP): The MLP is tested with different linear
and non-linear activation functions. One variation concatenates all inputs and
predicts 24 outputs directly. Further, cascaded architectures with a step-wise pre-
diction are examined. We vary between different coordinate system of Euclidean
and polar coordinates. As mentioned in Sect. 2, positions and offsets (also orien-
tation normalized) are considered as inputs and outputs.

RNN-MLP: RNNs extend feed-forward networks or rather the MLP model due
to their recurrent connections between hidden units. Vanilla RNNs produce an
output at each time step. For the evaluation of the RNN-MLP, we vary only the
MLP layer which is used for the decoding of the positions and offsets.

RNN-Encoder-MLP: In contrast to the RNN-MLP network, the complete
initialization tracklet is used to generate the internal representation before a
prediction is done. The RNN-Encoder-MLP is varied by alternating activa-
tion functions for the MLP and by alternatively predicting the complete future
path/offsets instead of only next steps. As a further alternative, the full path is
predicted as offsets to one reference point instead of applying path integration
in order to predict the final position.

RNN-Encoder-Decoder-Model (Seq2Seq): In addition to RNN-Encoder-
MLPs, Seq2Seqs include a second network. This second decoder network takes
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the internal representation of the encoder and then starts predicting the next
steps. The different settings for the evaluation of this model where due to alter-
nating activation functions for the MLP on top of the decoder RNN.

Temporal Convolutional Networks (TCN): As an alternative to RNNs
and based on WaveNets [35], Bai et al. [5] introduced a general convolution
architecture for sequence prediction. We tested their standard and extended
architecture with a gating mechanism (GTCN). For a more detailed description,
we refer to the original papers.

All networks were trained with varying number of layers (1 to 5) and hidden
units (4 to 64) using stochastic gradient descent with a fixed learning rate of
0.005. The models are trained for 100 epochs using ADAM optimizer [26] and
have been implemented in Tensorflow [1]. Firstly, only standard RNN cells are
used for the experiments. Later, we also tested with RNNs variants Long Short-
Term Memory [20] (LSTM) and Gated Recurrent Unit [8] (GRU). As loss the
mean squared error between the predicted and the ground truth position or
offsets over all time steps is used.

In order to emphasize trends a part from the result of the first experiments
are summarized in Table 3 (highlighted in gray). The best results were achieved
with the RNN-Encoder-MLP. However, in most cases the different architectures
perform very similar. These initial result also show that the best performing
networks lie close to the result achieved with linear interpolation. Outlier weak
performances are due some strong overestimation of slow person velocities and
some undefined random predictions when using positions. Hasan et al. reduced
this effect by integrating head pose information. We can only remark for the
tested networks that this effect can also differ for different runs. Naturally it is
important that during training the networks see enough samples from standing of
slow moving situations. Excluding such samples through heuristic or probabilistic
filtering only helps during application.

There is no network that is clearly performing best, thus the gap between
a MLP predictor and a Seq2Seq model is very narrow in the test scenarios.
However, besides the factors derived from the data analysis, a prediction of the
full path instead of step-wise prediction helps to overcome an accumulation of
errors that are fed back into the networks. For the TrajNet challenge with a
fixed prediction horizon, we thus prefer the RNN-Encoder-MLP over a Seq2Seq
model. In the domain of human pose prediction based on RNNs, Li et al. [31]
reduced this problem with an Auto-Conditioned RNN Network and Martinez
et al. [33] propose using a Seq2Seq model along with a sampling-based loss. The
TCNs perform here similar to RNNs. Since RNNs are more common, also as
part of architectures which model interactions (see [3,4,17,44]) to represent sin-
gle motion, we keep the RNN-Encoder-MLP as our favored model.
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Table 3. Results for the world plane human-human dataset challenge (World H-H
TrajNet challenge).

Approach Overall Average ↓ FDE [m] ↓ ADE [m] ↓ Reference
RED 0.797 1.229 0.364 Ours

Social Forces (EWAP) 0.819 1.266 0.371 [19]
Predictor SUL 0.887 1.374 0.399

Social Forces (ATTR) 0.904 1.395 0.412 [19]
OSG 1.385 2.106 0.664

Social LSTM 1.387 2.098 0.675 [3]
Vanilla LSTM 2.107 3.114 1.100

Occupancy LSTM 2.111 3.12 1.101
Interactive Gaussian Processes 1.642 1.038 2.245 [13]

Linear Interpolation 0.894 1.359 0.429
Linear MLP (Pos) 1.041 1.592 0.491
Linear MLP (Off) 0.896 1.384 0.407

Non-Linear MLP (Off) 2.103 3.181 1.024
Linear RNN 0.951 1.482 0.420

Non-Linear RNN 0.841 1.300 0.381
Linear RNN-Encoder-MLP 0.892 1.381 0.404

Non-Linear RNN-Encoder-MLP 0.827 1.276 0.377
Linear Seq2Seq 0.923 1.429 0.418

Non-Linear Seq2Seq 0.860 1.331 0.390
TCN 0.841 1.301 0.381 [5]

Gated TCN 0.947 1.468 0.426 [5]
Results highlighted in blue are taken from the TrajNet website [39]

(http://trajnet.stanford.edu/, accessed 22.06.2018)

4 RNN-Encoder-MLP: RED-predictor

According to the training set analysis and the comparison of architectures the
selected model for the TrajNet challenge modeling only single human motion
is a RNN-Encoder-MLP. In this section, the final design choices, which lead
to the submitted predictor which achieved top-rank at the World H-H TrajNet
challenge, are summarized. The RNN-Encoder as favored model can generalize
to deal with varying noisy inputs and is thus able to better capture the per-
son motion compared to the linear interpolation baseline. The main insight is
that motion continuity is easier to express in offsets or velocities, because it
takes considerably more modeling effort to represent all possible conditioning
positions. Especially for the World H-H TrajNet challenge, with the different
range for positions in the training and test set, this has significant influence on
whether a good performance can be obtained. Instead of using the given input
sequence X T = {(xt, yt) ∈ R

2|t = 1, . . . , tobs} of tobs consecutive pedestrian posi-
tions along a trajectory, here the offsets are used for conditioning the network
X T = {(δtx, δty) ∈ R

2|t = 2, . . . , tobs}. Apart from the smaller modeling effort
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to represent conditioned offsets and the prevention of undefined states due to a
suitable data range this domain shift makes data-preprocessing such as the used
standardization more reasonable. Since the offset or rather velocity distribution
follows a normal distribution around the expected walking speeds of pedestrians
compared to the position distribution. In order to deal with the varying dis-
cretization artefacts of the ground truth trajectories and make further training
easier, smoothed trajectories are used as desired output. Since the prediction
length is fixed, the effect of error accumulation during a step-wise prediction is
reduced by not feeding back RNN output and applying a full path prediction.
Full path integration worked similarly well, but here offsets to the reference
positions (last observed position) are predicted. In order to increase the amount
of training data, data augmentation is done by reverting all training tracklets.
With the combination of all listed factors the proposed simple but effective base-
line predictor for the TrajNet challenge is ready. In its core the architecture is a
Recurrent-Encoder with a dense MLP layer stacked on top. Hence, the predictor
is referred to as RED-predictor and can be defined by:

ht
encoder = RNN(ht−1

encoder, δ
t
(x,y);Wencoder)

YT = {(δt+k
x , δt+k

y ) + (xt, yt) ∈ R
2|k = 1, . . . , tpred} = MLP(ht

encoder;WMLP )

Here, RNN(·) is the recurrent network, hencoder the hidden state of the
RNN-Encoder with corresponding weight and biases Wencoder, which is used to
generate the full, smoothed path. The multilayer perceptron MLP (·) includ-
ing the conforming weights and biases WMLP maps the vector hencoder to the
coordinate space. The overall architecture is visualized in Fig. 5.

The best achieved result is highlighted in red in Table 3. After a fine search
for this network, the shown result is produced with a LSTM cell (state size
of 32) and one recurrent layer. The proposed predictor was able to produce
sophisticated results compared to elaborated models which additionally rely on
interaction information such as the model from Helbing and Molnár [19] and

Fig. 5. Visualization of the RED architecture. The conditioning is done for the full
initialization sequence X T = {(δtx, δty) ∈ R

2|t = 2, . . . , t8}. The internal representation
is then used to predict the desired path at once (all 12 positions) using the last observed
position (x8, y8) as reference for localization.



RED: A Simple but Effective Baseline Predictor for the TrajNet Benchmark 149

the Social-LSTM [3]. Compared to all submitted approaches of the World H-H
TrajNet 2018 challenge, the RED predictor achieved the best result. All results
highlighted in blue were either also officially submitted or provided by the orga-
nizers. Nevertheless, the Social-LSTM is one of the first proposed RNN-based
architectures which includes human-human interaction and laid the basis for
architectures such as presented in the work of Hasan et al. [17] or Xue et al. [44].
Single motion is modeled with an LSTM network. By applying some of the pro-
posed factors to the model, it is expected that the model and equity accordingly
model extensions are able to outperform the proposed single motion predictor.

5 Discussion and Failure Cases

After emphasizing the factors needed in order to achieve sophisticated results
based on standard neural networks in the above sections, in this section we
discuss some failure cases.

Without exploiting scene-specific knowledge for trajectory prediction, some
particular changing behavior in the human motion is not predictable. For exam-
ple, in the shown tracklet from SSD Hyang (see Fig. 6), there is no cue for a
turning maneuver in the initialization tracklet. In order to correct the prediction,
new observations are required. All methods tend to predict in such a situation a
relatively straight line, resulting in a high prediction error. A scene-independent
motion representation is pursuant to better generalize, but for overcoming some
limitation in the achievable prediction accuracy, the spatial context is required.
The sample tracklet also illustrates the multi-modal nature of the prediction
problem. While the person is making a left turn, it is also possible to make
a right turn. By using a single maximum-likelihood path the multi-modality
of a motion and the uncertainty in the prediction is not covered. The predic-
tion uncertainty can be considered by using the normalized estimation error
square (nees) [22], also known as Mahalanobis distance, which corresponds to a
weighted Euclidean distance of the errors. But most methods are designed as a
regression model, thus for a unified evaluation system the Mahalanobis distance
is not applicable. As mentioned, there are a few approaches which include the
multi-modal aspect of the problem [24,27,29]. Without additional cues of the
current scene, these approaches are limited to a fixed scene.

Independent of the question how to include all aspects of a problem in a unified
benchmarking, they strongly influence the possible achievable results. The results
presented in Sect. 3 show that independent from the model complexity approaches
restricted to observing only information from one trajectory are in range to their
reachable performance limit on the current dataset repository. Of course due to
the fast development in the field of deep neural networks there is still space for
improvement, but the current benchmark cannot be completely solved. However,
theTrajNet challenges also provides human-human and human-space information
and recent work such as the approaches of Gupta et al. [16] (human-human) or Xua
et al. [44] and Sadeghian et al. [40] (human-human, human-space) show possibili-
ties of how to further improve the performance accuracy.
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Fig. 6. Example where the scene context strongly influences the person trajectory. The
initialization tracklet (solid line) delivers no evidence for a turning maneuver at the
intersection. This also shows the multi-modal nature of the prediction problem.

6 Conclusion

In this paper, we presented an evaluation of deep learning approaches for tra-
jectory prediction on TrajNet benchmark dataset. The initial results showed
that without further cues such as human-human interaction or human-space
interaction most basic networks achieve similar results in small range close to a
maximum achievable prediction accuracy. By modifying a standard RNN predic-
tion model, we were able to provide a simple but effective RNN architecture that
achieves a performance comparable to more elaborated models and achieved the
top-rank on the World H-H TrajNet 2018 challenge.

Acknowledgements. The authors thank the organizers of the TrajNet challenge for
providing a framework towards a more meaningful, standardized trajectory prediction
benchmarking.
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23. Hug, R., Becker, S., Hübner, W., Arens, M.: On the reliability of LSTM-MDL
models for predicting pedestrian trajectories. In: Representations, Analysis and
Recognition of Shape and Motion from Imaging Data (RFMI), Savoie, France
(2017)
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