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Abstract. We present 9 deep learning classifiers to predict Fashion
attributes in 4 different categories: apparel (dresses and tops), shoes,
watches and luggages. Our prediction system hosts several classifiers
working at scale to populate a catalogue of millions of products. We
provide details of our models as well as the challenges involved in pre-
dicting Fashion attributes in a relatively homogeneous problem space.
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1 Introduction

Automatic tagging of products is relevant for online retail applications when
dealing with extremely large repositories of products. Given a product image,
for instance a dress or a shoe, deep learning models can be generated to predict
whether it is a cocktail dress, a black shirt or an stiletto heel. By extracting these
tags or attributes from fashion images, queries to the product’s catalogue can be
generated looking for similar or complementary products, produce recommenda-
tions for the user, fill missing metadata, and overall provide an improved search
experience, all based exclusively on the product image.

In addition, if a product repository is large enough, it becomes impossible to
manually audit or populate missing or mislabeled data. Incorrect labeling makes
search results not to match what customers are looking for and sales opportu-
nities are lost when products are labeled incorrectly or are undiscoverable. In
such cases, the use of machine learning to scale product classification and data
quality becomes a strong alternative to manual processes. Using product images
as a source of predictions is extremely powerful as images contain a great detail
of information about the product, often larger than the description itself.

In this paper, we present deep learning models to detect fashion attributes
and populate a catalogue of millions of products. Our system extracts prod-
uct information from images, automatically and at scale, doing work equivalent
to thousands of manual auditors. We have produced 9 classifiers that predict
attributes in 4 different categories: apparel, shoes, watches and luggage over 9
different attributes (sleeve type, boot style, heel type, skirt length, sandal style,
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neck style, watches display type, luggage shell type and number of wheels). As
a result, we have predicted and tagged 18 million images which are available for
search and discoverability in our retail platform. In this paper, we present the
details of our models, their accuracy, as well as the challenges involved in pre-
dicting attributes in the fashion problem space, which is relatively homogeneous
with respect to a given product type.

2 CNN for Fashion Attribute Classification

Convolutional Neural Networks (CNNs) have become the leading technique for
many image classification tasks [4,7,15]. We trained CNN classifiers using both
Resnet [4] and GoogleNet [15] architectures. Resnet gives the flexibility to param-
eterize the number of layers and thus select the size of the network in correspon-
dence to the size of the training set. GoogleNet, on the other hand, facilitates the
use of batch normalization and we performed transfer learning using pre-trained
models in this architecture.

Table 1 shows the accuracy of our models and the number of tags predicted
and used to update our catalogue in Production. Each model predicts an attribute.
Details of each model, their labels, and visual examples are shown in the Appendix
(Table 5). Labels were extracted from our fashion catalogue and curated by human
auditors. We trained most models using a Resnet-50 or Resnet-101 architecture
during 100 epochs. Prior to training, we padded the images with white background
to make them square with 500 × 500 pixels. Then, we resized them to 224 × 224
pixels for training [6]. We used the raw RGB pixel values as input for the con-
volutional layers and we trained them end-to-end, using random flipping (with
0.5 probability) to augment the training set. We used a learning rate of 0.01 and a
stochastic gradient descent optimizer. We tuned the batch size parameter to max-
imize the number of images per batch without causing memory overflow. We split
the training set, using 70%–80% of images for training and the remaining images
for validation. We used transfer learning in 3 of our models (sleeve type, neck style
and display type). With transfer learning, we improved accuracies by 1%, 2% and
2% respectively. We applied early stopping when the training accuracy started
to deviate strongly from the validation accuracy to reduce the overfitting of the
models. The base models used to initialize the weights are in-house GoogleNet
classifiers (not public) detecting similar fashion tags but not quite tailored to our
labels or product domain. In the case of display type, we used as base model a
GoogleNet network pre-trained on Imagenet [5].

3 Robustness

Even though CNNs have achieved state-of-the-art performance and even human-
level performance, they are still subject to anomalies which affect their robustness.
Recent studies [8,10,11,14,16] have shown that a correctly classified image can
be changed by introducing small perturbations -sometimes even imperceptible to
the human eye- and yet causing the CNN to misclassify the image into a totally



Deep Learning for Automated Tagging of Fashion Images 5

Table 1. Softlines attributes CNN classifiers

Attribute Category Dataset
size

Number of
classes

Accuracy Number of
tags updated

sleeve type Apparel 61,702 4 92.90% 8,070,507

boot style Shoes 19,009 8 89.40 % 8,337,490

display type Watches 22,288 4 92.62% 782,765

heel type Shoes 14,127 7 87.93% 584,711

shell type Luggage 69,535 2 93.77% 347,424

sandal style Shoes 16,128 7 86.89% –

skirt length Apparel 28,109 4 90.78% –

neck style Apparel 30,231 12 90.60% –

number of wheels Luggage 107,958 3 93.56% –

different class. Other studies have shown that it is possible to produce synthetic
images which are unrecognizable to humans but that state-of-the-art CNNs believe
them to be recognizable objects with a 99% confidence [12]. Such images which are
visually far from the labeled classes can be considered outliers to the training set.

We have observed issues in the confidence value of our models in alignment
with what is discussed above. One of the issues that affected our models per-
formance were small perturbations in the pixels images and the other one was
recognizing outliers, as described next.

3.1 Perturbations in Pixel Values

While testing with different libraries to resize the images, we observed that we
obtained significative variations in the classifier’s predictions when small per-
turbations to the pixels were performed to the same image. For instance, Fig. 1
shows such effect on a single image, resized with a Python library (Fig. 1(a)) and
a Java library (Fig. 1(b)). The resulting compressed images are the same to the
human eye, and yet they present small perturbations in their pixels (Fig. 1(c)).
When predicting with a Resnet-50 dress classifier trained from scratch, we
observe drastic changes in prediction values (dress or not a dress), as shown
in Fig. 1 and Table 2.

To improve the robustness of our models, we introduced augmentation
parameters to change the brightness, contrast, saturation, hue, pca noise or
convert to grayscale the image during training. The goal was to induce certain
kinds of variability or noise to the training images. After training with this aug-
mentation parameters, using a pre-trained ImageNet network as base model, and
testing different network architectures on a 3971 dress dataset, we were able to
make the network more robust, as shown in the experimental results of Table 2,
tested on a dress classifier. We can see that by training with a smaller archi-
tecture (Alexnet) or regularizing a deeper network (GoogleNet) we were able
to increase the accuracy from 83% to 98%. The reason the accuracy suffers no
degradation with the Python compression is because this was the resizing library
that was used to train.
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(a) Resized with
Python library. Pre-
diction: dress

(b) Resized with Java li-
brary. Prediction: not
a dress

(c) Pixel comparison
of both images

Fig. 1. Performance issues related to pixel value perturbations.

Table 2. Accuracy of different models on images resized with different libraries.

Architecture Accuracy on dataset
compressed with Java

Accuracy on dataset
compressed with
Python

Resnet-18 83% 98%

GoogleNet 93% 99%

Alexnet 98% 98%

GoogleNet with
augmentation and base
model

98% 98%

3.2 Outliers

We also noticed that images which are incorrectly assigned to the wrong category
(e.g. a dress incorrectly stored as a watch) represent outliers for attribute clas-
sifiers. If one outlier is presented to the network (e.g. a dress image is presented
to a shoe attribute’s classifier such as heel type), the desirable output would be
one where all labels have relatively low confidence values. In this way, we could
reject unknown cases by simple thresholding. However, the studies mentioned
above and our own empirical results show that thresholding over the confidence
value is not enough to identify what is unknown. In fact, as shown in Fig. 2,
for each attribute classifier we can always find an outlier image in our product
catalogue which is visually far from the training set and yet it produces a high
confidence prediction.

One possible explanation for these anomalies related to outliers is the one
described in [12]. Classification models create decision boundaries that partition
the data into classification regions. Those classification regions can be much
larger than the area occupied by the training set. Outliers far from the decision
boundary and deep into the classification region may produce high confidence
predictions even when they are far from the training set images. This perspective
is further investigated in [2]. The effect of uncalibrated networks producing very
high confidence predictions is also studied in [3].



Deep Learning for Automated Tagging of Fashion Images 7

Fig. 2. High confidence misclassifications.

To mitigate this risk, we trained Product Type (PT) classifiers as a pre-
filtering step prior to attribute prediction (Table 3). Product type classifiers are
binary models that predicts whether an image belongs to a given product type
or not. Product types have a hierarchical structure and they represent different
categories, such as: shoes, boots, tops, shirts, dresses, watches, bracelets, etc.
These models act as a pre-validator for our attributes classifiers.

Table 3. Product type CNN classifiers.

Product type Dataset size Number of classes Accuracy

Luggage 185,036 2 99.48%

Watch 45,880 2 97.30%

Shoe 300,000 2 99.24%

Dress 189,975 2 98.38%

Top 119,567 2 98.56%

Notice that product type classifiers achieve a higher accuracy than attribute
classifiers. The problem space of product type classification seems to be easier
for a CNN than attribute classification. In other words, it is easier to create a
model that is able to distinguish a watch from any other product, than it is to
create a model that distinguishes between analogue watches and digital watches.
In the latter case, the features that the classifier needs to learn are much more
specific and there is more overlap between irrelevant features that are shared
across classes. Figure 3 shows a representation of images classified by the watch
product type model and images classified by the display type attribute model for
watches. The images correspond to the training set of each model visualized using
the t-SNE [9] algorithm. We can observe that the boundary is better defined and
the amount of noise is smaller in the watches PT training set than in the display
type attribute classifier training set.

Therefore, when performing predictions we first check if the image belongs to
the correct product type (e.g. is this image a watch?) and then predict the corre-
sponding attribute (e.g. what type of display type does this watch contains?). We
have observed that, in addition to product type pre-validation, regularizing the
network is effective for ruling out outliers. This is shown in Table 4, which depicts
experiments performed on 777 watches images containing outliers. We can see how
the number of misclassification decreases as the network is regularized (increasing
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(a) Product type classifier for
watches

(b) display type classifier for
watches

Fig. 3. Visual representation of the training sets.

weigh decay and reducing the number of layers). During training, the model was
able to fit the training data perfectly and no major accuracy changes were observed
by adding regularization. However, when facing an outlier image, the regularized
network is able to rule out unknown cases more effectively.

Table 4. Effect of regularizing a network compared to perform PT pre-validation on
a noisy set containing outliers. The first column shows the mean confidence value of
the predictions. The last three columns show, thresholding by the mean confidence,
the percentage of misclassifications, the percentage of misclassifications due to outliers
and the overall coverage.

Model Mean confidence Errors Outlier’s errors Coverage

Resnet-50 0.99 47 (7.3%) 22 (3.4%) 82%

Resnet-18, weight decay 0.3 0.93 37 (5.9%) 19 (3.0%) 79.3%

Resnet-18, weight decay 0.5 0.70 31 (5.5%) 9 (1.6%) 71.9%

Resnet-18, weight decay 1 0.40 23 (5.3%) 2 (0.4%) 55.2%

Resnet-50, with PTD validator 0.99 21 (3.5%) 1 (0.1%) 75.5%

4 Conclusions

From our research, we found that product images can be a valuable source of
information to derive fashion attributes to help the customers find the product
they are looking for. We showed that CNN based classifiers can reach accuracies
around 90 percent extracting attribute’s information out of product images.
We observed that attribute models have a somewhat reduced training domain
which is enclosed to a given category (e.g. shoes, tops, watches, luggages) and
provide unreliable predictions when facing an image outside their training scope
(outliers). To mitigate such risks, we developed product type classifiers that are
able to identify outliers and rule them out. We observed that regularization also
provides robustness in these edge cases and in cases where pixel perturbations
are introduced in the images as result of pre-processing modifications. As future
work, we want to investigate alternatives to the softmax function to obtain more
effective uncertainty estimates. Some recent studies have proposed approaches
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in that direction, such as [1,3,13,14]. Overall, we have predicted and tagged 18
million attributes in our fashion catalogue with the values extracted from our
most confident predictions, increasing their discoverability.

A Appendix

Table 5. Details of the attributes our classifiers predict.

Attribute Category Classes Examples

sleeve type

Shirts,
Blouses,
T-Shirts,
Dresses

– Long sleeve
– Short sleeve
– 3/4 sleeve
– S leeveless

boot style Shoes

– Biker boots
– Chelsea boots
– Chukka boots
– Classic boots
– Combat boots
– Desert boots
– Snow boots
– Wellington boots

display type Watches

– Analogue
– Analogue-Digital
– Chronograph
– Digital

heel type Shoes

– Wedge
– Stiletto
– Kitten Heel
– Cone Heel
– Western Heel
– Block Heel
– Louis Heel
– Flat

shell type Luggage – Hard
– Soft

(Continued)
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Table 5. (Continued)

Attribute Category Classes Examples

skirt length
Dresses,
Skirts

– Mini
– Knee-Long
– Midi
– Maxi

sandal style Shoes

– Ankle-Strap
– Espadrille
– Flatform
– Gladiator
– Platform
– Slingback
– T-Bar

neck style Dresses

– Asymmetric
– Collared
– Boat Neck
– Round Neck
– Turtleneck
– V-Neck
– Halterneck
– One-Shoulder
– Sweetheart
– Square
– High Neck
– Off the Shoulder

number of
wheels

Luggage
– 0
– 2
– 4
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