
ShuffleDet: Real-Time Vehicle Detection
Network in On-Board Embedded UAV

Imagery

Seyed Majid Azimi1,2(B)

1 German Aerospace Center (DLR), Remote Sensing Technology Institute,
Weßling, Germany

seyedmajid.azimi@dlr.de
2 Chair of Remote Sensing, Technical University of Munich, Munich, Germany

seyedmajid.azimi@tum.de

Abstract. On-board real-time vehicle detection is of great significance
for UAVs and other embedded mobile platforms. We propose a compu-
tationally inexpensive detection network for vehicle detection in UAV
imagery which we call ShuffleDet. In order to enhance the speed-wise
performance, we construct our method primarily using channel shuffling
and grouped convolutions. We apply inception modules and deformable
modules to consider the size and geometric shape of the vehicles. Shuf-
fleDet is evaluated on CARPK and PUCPR+ datasets and compared
against the state-of-the-art real-time object detection networks. Shuf-
fleDet achieves 3.8 GFLOPs while it provides competitive performance
on test sets of both datasets. We show that our algorithm achieves real-
time performance by running at the speed of 14 frames per second on
NVIDIA Jetson TX2 showing high potential for this method for real-time
processing in UAVs.

Keywords: UAV imagery · Real-time vehicle detection ·
On-board embedded processing · Convolutional neural networks ·
Traffic monitoring

1 Introduction

On-board real-time processing of data through embedded systems plays a crucial
role in applying the images acquired from the portable platforms (e.g., unmanned
aerial vehicless (UAVs)) to the applications requiring instant responses such as
search and rescue missions, urban management, traffic monitoring, and parking
lot utilization.

Methods based on convolutional neural networks (CNNs), for exam-
ple, FPN [1], FasterRCNN [19], R-FCN [3], multi-box single shot detectors
(SSDs) [14], and Yolov2 [18], have shown promising results in many object
detection tasks. Despite their high detection precision, these methods are com-
putationally demanding and their models are usually bulky due to the deep
c© Springer Nature Switzerland AG 2019
L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11130, pp. 88–99, 2019.
https://doi.org/10.1007/978-3-030-11012-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11012-3_7&domain=pdf
http://orcid.org/0000-0002-6084-2272
https://doi.org/10.1007/978-3-030-11012-3_7


ShuffleDet 89

backbone networks being used. Employing CNNs for the on-board real-time
applications requires developing time and computation efficient methods due to
the limited processing resources available on-board. A number of networks have
been developed recently such as GoogleNet [20], Xception [2], ResNeXt [25],
MobileNet [7], PeleeNet [23], SqueezeNet [10], and ShuffleNet [26] which have
less complex structures as compared to the other CNNs while providing com-
parable or even superior results. For the real-time object detection applications
(e.g., vehicle detection), there are a few recent works proposing the methods
such as MobileNet [7] with SSD [9], PVANET [11], and Tiny-Yolo [18]. They
have shown computational efficiency to be deployed in mobile platforms.

Zhang et al. [26] employed ShuffleNet as the backbone network, which uses
point-wise grouped convolutions and channel shuffle to greatly reduce the com-
putations while maintaining the accuracy. The authors reported a better perfor-
mance compared with MobileNet using Faster-RCNN detection approach. Kim
et al. [11] developed PVANET by concatenating 3 × 3 conv layer with its nega-
tion as a building block for the initial feature extraction stage. Recently, Wang
et al. [23] proposed PeleeNet that uses a combination of parallel multi-size kernel
convolutions as a 2-way dense layer and a similar module to the Squeeze mod-
ule. They additionally applied a residual block after feature extraction stage to
improve the accuracy using the SSD [14] approach. The authors reported more
accurate results compared to MobileNet and ShuffleNet on the Pascal VOC
dataset despite the smaller model size and computation cost of PeleeNet. Red-
mon and Farhadi [18] proposed Yolov2, a fast object detection method, but
yet with high accuracy. However, their method is still computationally heavy
for real-time processing on an embedded platform. Tiny Yolov2 as the smaller
version of Yolov2, although it is faster, but it lacks high-level extraction capa-
bility which results in poor performance. In the work of Huang et al. [9], they
showed the SSD detection approach together with SqueezeNet and MobileNet
as the backbone networks. Although SSD with SqueezeNet backbone results in
a smaller model than MobileNet, its results are less accurate and its compu-
tation is slightly more expensive. In general, replacing the backbone network
with SqueezeNet, MobileNet, or any other efficient network - though enhancing
computational efficiency - can degrade the accuracy if no further modification is
performed.

In this paper, we propose ShuffleDet, a real-time vehicle detection approach
to be used on-board by mobile platforms such as UAVs. ShuffleDet network is
composed of ShuffleNet and a modified variant of SSD based on channel shuf-
fling and grouped convolution. We design a unit to appropriately transfer the
pretrained parameters of the pretrained model on terrestrial imagery to aerial
imagery domain. We call this unit domain adapter block (DAB) which includes
deformable convolutions [4] and Inception-ResNetv2 units [21]. To the best of our
knowledge, group convolution and channel shuffling have not been used before in
real-time vehicle detection based on UAV imagery. ShuffleDet runs at 14 frames
per second (FPS) on NVIDIA Jetson TX2 while having the computational com-
plexity of 3.8 giga oating point operations (GFLOPs). Experimental results on



90 S. M. Azimi

the CARPK and PUCPR+ datasets [8] demonstrates that ShuffleDet achieves
a good trade-off between accuracy and speed for mobile platforms while it is
comparably computation and time efficient.

2 Method

In this section, a detailed description of the network architecture is presented. We
use ShuffleNet [26] which is designed for object recognition to extract high-level
features as our backend network.

Fig. 1. Illustration of ShuffleDet architecture. The backbone network is ShuffleNet.
Modified inception layers are applied as extra layers. C stands for channel. DAB unit
is deployed to adapt to the new domain of UAV imagery using a residual block contain-
ing deformable convolution layers (UAV photo is from https://www.quantum-systems.
com/tron.).

ShuffleNet [26] shows that by utilizing grouped or depth-wise separable con-
volutions, one can reduce the computational demand, while still boosting the
performance through a decent representation ability. A major bottleneck can
arise by replacing 1 × 1 convolution layers with stacked grouped convolutions
which can degrade the accuracy of the network. This is due to the fact that a
limited portion of input channels are utilized by the output channels. In order
to solve this issue channel shuffling was proposed in [26] which we also use inside
ShuffleDet architecture. Figure 1 illustrates the network architecture of Shuf-
fleDet. In stage 1, a 3× 3 convolutional layer is applied to the input image with
a stride of 2 which downsamples the input by a factor of 2. This layer is followed
by a maxpooling layer with a stride of 2 and kernel of 3 × 3. This maxpooling
operation destroys half of the input information. This is critical as vehicles in

https://www.quantum-systems.com/tron
https://www.quantum-systems.com/tron


ShuffleDet 91

our case are small objects [5,12,17,22]. Having said that without this opera-
tion, computation cost will be multiplied. Therefore, we keep the maxpooling
layer and we try to enhance the performance especially via DABs units which
will be discussed later. After the maxpooling three stages containing multiple
units from ShuffleNet are performed. Stage 2 and 4 contain 3 ShuffleNet units
while stage 3 in the middle is composed of 7 units. The whole stage 1 to 4 leads
to 32x down-sampling factor. ShuffleUnit illustrated in Fig. 1 acts as residual
bottleneck unit. Using stride 2 in ShuffleUnit, an average pooling is applied to
the primary branch parallel with depthwise convolution with a stride 2 in the
residual branch. To ensure that all of the input channels are connected to the
output channels, channel shuffling is performed before the depthwise convolu-
tion. 1 × 1 grouped convolutions are applied before the channel shuffling as a
bottleneck in order to reduce the number of feature maps in the output for the
efficient computation. It has been shown [24,26] that the group convolutions
also improve the accuracy. The second grouped convolution brings back the
number of feature maps or channel to the number of input channels for a more
accurate representation capability. Using a stride of 2, the features of average
pooling and second grouped convolution is concatenated while having a stride
of 1, maxpooling is omitted and depth-wise convolution is performed. Moreover,
the outputs are summed up instead of using concatenation. Figure 1 shows the
detailed structure of ShuffleNet units with and without stride of 2.

Stage 1, 2, 3 and stage 4 are employed to enhance the heat map resolution
as input intermediate layers. In the detection module, we primarily inspire from
SSD approach. In order to enrich the extracted features from the intermediate
layers, we perform extra feature layers in stage 5. In our case, the output from
stage 4 is passed through stage 5 as illustrated in Fig. 1 This is compatible with
using multi-box strategy explained in the SSD method. In total, we extract 7
feature maps of different sizes from the backbone network.

To enhance the performance, instead of employing a conventional convolution
layer similar to SSD method for each extra layer, we use a modified module of
Reduction-B from Inception-ResNet-v2 [21] in stage 5. Unlike ResNet and VGG,
inception modules have not been explored enough in object detection task due to
their higher computation cost. We stack 4 modified inception modules as stage 5
for feature map extraction at different levels. Unlike original Inception-ResNet-
v2 work, we add 1 × 1 conv layers after maxpooling and concatenation layer.
The maxpooling layer reduces spatial-resolution and dimension as a bottleneck.
1×1 convolution in return expands the dimension to insert further non-linearity
to the network resulting in a better performance. The same philosophy was
used in the latter 1 × 1 conv layer. Applying the inception module adds more
computational cost to the network. To compensate its load, we replace 3 × 3
convolution layers with 3 × 3 depthwise convolutions. Depth-wise convolution

improves the performance slightly, yet it has
1
N

+
1
k2

times less computation
cost compared with regular conv layers. N is the number of output channels and
k is the kernel size. Furthermore, we divide the input channels equally among
the branches. The output number of channels for each layer is an equally-divided



92 S. M. Azimi

concatenation of output channels from each branch. These modifications keep
the model size as well as computational complexity small. We observe using this
modified inception modules enhances the performance. We conjecture unlike the
original SSD which uses 1 × 1 and 3 × 3 conv layers in series as extra layers,
multi-size kernels parallel in inception modules capture features in different sizes
simultaneously e.g. 1 × 1 kernels to detect small vehicles and 3 × 3 kernels for
bigger ones which could be the reason for this enhancement. This shows by
widening the network and augmenting the cardinality, we can achieve better
results. This comes only with a marginal increase in computational complexity.
Moreover, by using multi-size kernels, one does not need to worry which kernel
size is more appropriate.

In order to regress bounding boxes and predict object classes from extra
layers as illustrated in Fig. 1, the base-line SSD processes each feature map by
only a single 3 × 3 convolution layer followed by permute and flatten layers
in multi-box detection layer. This includes feature maps only from one of the
high-resolution layers. This leads to a weak performance in detecting small-scale
vehicles. The feature maps from higher-resolution layers e.g. in our case stage 2
and 3 are responsible to detect small-scale vehicles. Stage 1 is ignored due to its
high computational complexity. Those corresponding feature maps are semanti-
cally weak and not deep enough to be capable of detecting small-scale vehicles.
ResNet and VGG19 works denote that employing deeper features enhances the
object recognition accuracy. However, those backbone networks are computation-
ally heavy to be deployed on on-board processors in UAVs which work under
strict power constraints. As an alternative, we propose using a residual module
which we call DAB as shown in Fig. 1. Combination of 1×1 convention and 3×3
deformable convolution operations enrich the features further, but still introduc-
ing low computation burden. We choose a portion of input channels to keep the
computation cost low. 1/8, 1/8, 1/8, 1/4, 1/2, 1/2, 1 are used as the portion of
input channels of output layers from stage 2 to the last extra layer and inside
DAB unit we assign 1/5, 4/5, 4/5 portion of input channels to each branch as
illustrated in Fig. 1. The output channels remain similar to the original SSD.
The only difference is the introduced extra multi-box feature map from stage 2.
SSD calculates the number of default boxes per class by W ×H×B in which W
and H are input width and height and B is from the set of 4, 6, 6, 4, 4 for each
feature map. We choose B = 4 for the stage 2 leading to 28642 boxes per class.

In aerial imagery, vehicles appear to be very small and almost always in
rectangle geometric shape. On the other hand, the pre-trained ShuffleNet has
been trained on ground imagery while our images are in another domain of aerial
imagery. Therefore pre-trained weights should be adapted to the new domain.
We use deformable convolution as introduced in [4] to take into account the new
domain and the geometric properties of the vehicles. Deformable convolution
adds an offset to the conventional conv layer in order to learn from the geometric
shape of the objects. They are not limited to a fix kernel size and offset is
learned during training by adding only an inexpensive conv layer to compute
the offset field. Deformable conv layer shows considerable improvement in case
of using images acquired from low-flying UAVs. However, the impact is less



ShuffleDet 93

by using images from high-altitude platforms such as helicopter or airplanes.
According to [4] the computation cost of deformable convolutions is negligible.
Finally, we apply ReLU layer to element-wise added features in the DAB to add
more non-linearity. In general, naive implementation of ShuffleNet with SSD
has 2.94 GFLOPs while ShuffleDet has 3.8 GFLOPs. Despite an increase in
the computation cost, ShuffleDet has considerable higher accuracy. As vehicles
appear to be small objects in UAV images, we choose default prior boxes with
smaller scales similar to [5]. Eventually, non-maximum suppression (NMS) is
employed to suppress irrelevant detection boxes. It is worth mentioning that
during training hard negative mining is employed with the ratio of 3:1 between
negative and positive samples. This leads to more stable and faster training.
We also apply batch normalization after each module in DAB as well as extra
feature layers.

3 Experiments and Discussion

In this section, we provide ablation evaluation of our proposed approach and
compare it to the state-of-the-art CNN-based vehicle detection methods. The
experiments were conducted on the CARPK and PUCPR+ datasets [8], which
contain 1573 and 125 images of 1280×720 pixels, respectively. The vehicles in the
images are annotated by horizontal bounding boxes. To have a fair comparison
with different baseline methods, we follow the same strategy as theirs for split-
ting the datasets into training and testing sets. Moreover, we train ShuffleNet as
the backbone network on the ImageNet-2012 [6] dataset achieving similar per-
formance compared to the original ShuffleNet work. The results are compared to
the benchmark using MAE and RMSE, similar to the baseline [8]. In addition,
we use data augmentation in a similar way to the original work on SSD.

3.1 Experimental Setup

We use Caffe to implement our proposed algorithm. It is trained using Nvidia
Titan XP GPU and evaluated on NVIDIA Jetson TX2 as an embedded edge
device. For the optimization, we use stochastic gradient descent with the base
learning rate of 0.001, gamma 0.1, momentum 0.9 to train the network for 120k
iterations. The learning rate is reduced after 80k and 100k by a factor of 10.
Moreover, the images are resized to 512×512 pixels along with their annotations.
Additionally, we initialize the first four layers with our pre-trained ShuffleNet
weights and the rest with Gaussian noise. For the grouped convolutions, we set
the number of groups to 3 throughout the experiments. Furthermore, NMS of
0.3 and confidence score threshold of 0.5 are considered.

3.2 Ablation Evaluation

In this section, we present an ablation study on the effect of the submodules
in our approach. Table 1 shows the impact of the modified inception module
compared to the original baseline. According to the results, introducing the first



94 S. M. Azimi

modified inception module (small scales) decreases RMSE by about 4 points
indicating the importance of wider networks in first layers as the critical layers
of the network for small object detection. Replacing the baseline’s extra layers
with more modified inception models further improves the performance. This
highlights the role of higher-resolution layers in the vehicle detection tasks.

Table 1. Evaluation of modified inception module (mincep) in the stage 5 on the
CARPK dataset. The DAB units are in place. Smaller the RMSE, better the perfor-
mance.

Method RMSE Small scales mincep-1 mincep-2 mincep-3 mincep-4

ShuffleNet-SSD-512 63.57 - - - -

ShuffleDet 52.75 - - - -

ShuffleDet 45.26 � - - -

ShuffleDet 41.89 � � - - -

ShuffleDet 40.47 � � � - -

ShuffleDet 39.67 � � � � -

ShuffleDet 38.46 � � � � �

Table 2 represents the evaluation of DAB unit in which we observe a signifi-
cant reduction in RMSE (almost 5 points) even by the first DAB unit on stage
2. This further indicates the significance of including higher-resolution layer.
Furthermore, the results show that adding DAB modules to the extra layer can
additionally enhance the performance to a lesser degree. This performance indi-
cates that applying the DAB unit in the high-resolution layers can lead to a
significant improvement in detecting small vehicles allowing a better utilization
of the deformable convolution to adapt to the vehicle geometries.

Table 2. Evaluation of using DAB unit on the CARPK dataset. We refer to modified
inception layers as mincep. The modified inception modules and small scales are in
place.

Method RMSE DAB-stage2 DAB-stage3 DAB-stage4 DAB-mincep-1 DAB-mincep-2 DAB-mincep-3

ShuffleNet-

SSD-512

63.57 - - - - - -

ShuffleDet 49.26 - - - - - -

ShuffleDet 44.17 � - - - - -

ShuffleDet 42.02 � � - - - -

ShuffleDet 40.75 � � � - - -

ShuffleDet 39.81 � � � � - -

ShuffleDet 39.14 � � � � � -

ShuffleDet 38.46 � � � � � �

We choose smin = 0.05 and smax = 0.4 as minimum and maximum vehicle
scales with ratio of 2, 3, 1/2, 1/3 as hyper-parameters in the original SSD. This



ShuffleDet 95

improves the performance significantly according to Table 1 by almost 7 RMSE
points. It is worth noting that ShuffleNet-SSD-512 has 2.94 GFLOPs as com-
plexity cost while ShuffleDet has 3.8 GFLOPs. This shows ShuffleDet adds only
a marginal computation cost while achieving a significant boost in the accu-
racy. Figure 2 shows sample results of ShuffleDet on the CARPK and PUCPR+
datasets.

Fig. 2. Sample vehicle detection results using ShuffleDet on the CARPK (a) dataset
and the PUCPR+ dataset (b).

3.3 Comparison with the Benchmark

In this part, compare our method with the benchmark. Tables 3 and 4 show that
our method can achieve competitive performance while having significantly less
computation cost compared with the state of the art. In comparison with the orig-
inal implementation of Faster-RCNN [19] and Yolo [16], our method achieves sig-
nificantly better results. ShuffleDet achieves comparative result with the state of
the art with only about less 2 RMSE points in the CARPK dataset. The reason for
the big gap between SSD-512, MobileNet-SSD-512 and shuffleDet is mostly due

Table 3. Evaluation of ShuffleDet with the benchmark on the PUCPR+ dataset. The
less is better.

Method Backbone GFLOPs MAE RMSE

YOLO [16] Custom 26.49 156.00 200.42

Faster-RCNN [19] VGG16 118.61 111.40 149.35

Faster R-CNN (RPN-small) [19] VGG16 118.61 39.88 47.67

One-look regression [15] - - 21.88 36.73

Hsieh et al. [8] VGG16 - 22.76 34.46

SSD-512 [14] VGG16 88.16 123.75 168.24

MobileNet-SSD-512 [9] MobileNet 3.2 175.26 225.12

Our ShuffleDet ShuffleNet 3.8 41.58 49.68



96 S. M. Azimi

Table 4. Evaluation of ShuffleDet with the benchmark on the CARPK dataset. The
less is better.

Method Backbone GFLOPs MAE RMSE

YOLO [16] Custom 26.49 48.89 57.55

Faster-RCNN [19] VGG16 118.61 47.45 57.39

Faster R-CNN (RPN-small) [19] VGG16 118.61 24.32 37.62

One-look regression [15] - - 59.46 66.84

Hsieh et al. [8] VGG16 - 23.80 36.79

SSD-512 [14] VGG16 88.16 48.02 57.42

MobileNet-SSD-512 [9] MobileNet 3.2 57.34 65.24

Our ShuffleDet ShuffleNet 3.8 26.75 38.46

to our tuned scales and aspect ratios. This effect can also be observed between the
original implementation of Faster-RCNN with and without small RPNs.

Moreover, ShufflDet achieves its superiority to Faster-RCNN and Yolo while
it is significantly more computation efficient, 3.8 GFLOPs compared to 118 and
26.49 GFLOPs. While Faster-RCNN runs at Jetson TX2 with 1 FPS, tiny Yolov2
at 8 and Yolov2 at 4 FPS, and original SSD with 88.16 GFLOPs at 5 FPS, our
ShuffleDet network runs at 14 FPS showing a great potential to be deployed in
the real-time on-board processing in UAV imagery. In addition, our approach
achieves almost 70% and 50% better performance than MobileNet-SSD-512 and
the naive implementation of ShuffleNet-SSD on the CARPK dataset, relatively.

4 Generalization Ability

To evaluate the generalization ability of our method, we train it on the 3K-DLR-
Munich dataset [13]. This dataset contains aerial images of 5616 × 3744 pixels
over the Munich city. Due to the large size of each image similar to [5], we chop
the images into the patches of 512 × 512 pixels which have 100 pixels overlap.
To prepare the final results, for each image, we merge the detections results of
the patches and then apply none-maximum suppression. Figure 3 illustrates a
detection result of our algorithm for the 3K-DLR-Munich dataset.

Table 5 compares the performance of ShuffleDet and two implementations
of Faster-RCNN on the 3K-DLR-Munich dataset. According to the table, Shuf-
fleDet not only outperforms the Faster-RCNN methods but also its inference is
much more time efficient. The consistent behavior of our proposed approach on
the 3K-DLR-Munich dataset indicates that it could be generally applied to differ-
ent datasets. ShuffleDet is capable of 2 FPS processing of high-resolution aerial
images in Jetson TX2 platform while Faster-RCNN with VGG16 and ResNet-50
takes a couple of seconds.



ShuffleDet 97

Fig. 3. Vehicle detection result using ShuffleDet on the 3K-DLR-Munich dataset.

Table 5. Evaluation of ShuffleDet on 3K-DLR-Munich dataset. Inference time is com-
puted in Jetson TX2 as an edge device.

Method Backend GFLOPs mAP Inference time

Faster-RCNN [19] VGG-16 118.61 67.45% 7.78 s

Faster-RCNN [19] ResNet-50 22.06 69.23% 7.34 s

Our ShuffleDet ShuffleNet 3.8 62.89 524ms

5 Conclusions

In this paper, we presented ShuffleDet, a real-time vehicle detection algorithm
appropriate for on-board embedded UAV imagery. ShuffleDet is based on channel
shuffling and grouped convolution in its feature extraction stage. To evaluate the
effect of different modules of ShuffleDet, an ablation study is performed to discuss
its accuracy and time-efficiency. Joint channel shuffling and grouped convolution
significantly boost the inference time. Inception modules with depthwise convo-
lutions enhance the accuracy while introducing a marginal computation burden.
Moreover, we show residual modules with deformable convolutions are effec-
tive modules for semantic representation enhancement in the small number of
layers as well as domain adaptation. Experimental results on the CARPK and
PUCPR+ datasets indicate that ShuffleDet outperforms the state-of-the-arts
methods while it is much more time and computation efficient. Additionally, the
consistent behavior of ShuffleDet on the 3K-DLR-Munich dataset demonstrate
its generalization ability. Furthermore, the implementation of ShuffleDet on Jet-
son TX2, which runs at 14 FPS, showing a great potential of our approach to
be used in UAVs for on-board real-time vehicle detection.



98 S. M. Azimi

References

1. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature
pyramid networks for object detection. In: CVPR (2017)

2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv
preprint arXiv:1610.02357 (2017)

3. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully
convolutional networks. In: NIPS (2016)

4. Dai, J., et al.: Deformable convolutional networks. In: ICCV (2017)
5. Azimi, S.M., Vig, E., Bahmanyar, R., Körner, M., Reinartz, P.: Towards multi-class

object detection in unconstrained remote sensing imagery. In: ACCV (2018)
6. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale

hierarchical image database. In: CVPR (2009)
7. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:1704.04861 (2017)
8. Hsieh, M., Lin, Y., Hsu, W.H.: Drone-based object counting by spatially regularized

regional proposal network. In: ICCV (2017)
9. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detec-

tors. In: CVPR (2017)
10. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 mb model
size. arXiv preprint arXiv:1602.07360 (2016)

11. Kim, K.H., Hong, S., Roh, B., Cheon, Y., Park, M.: PVANET: deep but lightweight
neural networks for real-time object detection. arXiv preprint arXiv:1608.08021
(2016)

12. Azimi, S.M., Vig, E., Kurz, F., Reinartz, P.: Segment-and-count: vehicle counting
in aerial imagery using atrous convolutional neural networks. In: ISPRS (2018)

13. Liu, K., Mattyus, G.: Fast multiclass vehicle detection on aerial images. IEEE
GRSL Lett. 12, 1938–1942 (2015)

14. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

15. Mundhenk, T.N., Konjevod, G., Sakla, W.A., Boakye, K.: A large contextual
dataset for classification, detection and counting of cars with deep learning. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp.
785–800. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9 48

16. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified,
real-time object detection. In: CVPR (2016)

17. Azimi, S.M., Fischer, P., Körner, M., Reinartz, P.: Aerial LaneNet: lane mark-
ing semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive
symmetric fully convolutional neural networks. arXiv preprint arXiv:1803.06904
(2018)

18. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2017)
19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. In: NIPS (2015)
20. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
21. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet

and the impact of residual connections on learning. In: ICLR (2016)
22. Azimi, S.M., Britz, D., Engstler, M., Fritz, M., Mücklich, F.: Advanced steel

microstructural classification by deep learning methods. Sci. Rep. - Nat. 8, 2128
(2018)

http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1608.08021
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46487-9_48
http://arxiv.org/abs/1803.06904


ShuffleDet 99

23. Wang, R.J., Li, X., Ao, S., Ling, C.X.: Pelee: a real-time object detection system
on mobile devices. arXiv preprint arXiv:1804.06882 (2018)

24. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: CVPR (2016)

25. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: CVPR (2017)

26. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017)

http://arxiv.org/abs/1804.06882
http://arxiv.org/abs/1707.01083

	ShuffleDet: Real-Time Vehicle Detection Network in On-Board Embedded UAV Imagery
	1 Introduction
	2 Method
	3 Experiments and Discussion
	3.1 Experimental Setup
	3.2 Ablation Evaluation
	3.3 Comparison with the Benchmark

	4 Generalization Ability
	5 Conclusions
	References




