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Abstract. In this paper, we investigate the use of an unsupervised
label clustering technique and demonstrate that it enables substantial
improvements in visual relationship prediction accuracy on the Person
in Context (PIC) dataset. We propose to group object labels with similar
patterns of relationship distribution in the dataset into fewer categories.
Label clustering not only mitigates both the large classification space and
class imbalance issues, but also potentially increases data samples for
each clustered category. We further propose to incorporate depth infor-
mation as an additional feature into the instance segmentation model.
The additional depth prediction path supplements the relationship pre-
diction model in a way that bounding boxes or segmentation masks are
unable to deliver. We have rigorously evaluated the proposed techniques
and performed various ablation analysis to validate the benefits of them.
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1 Introduction

This paper describes an effective methodology to perform relationship predic-
tion for the Person in Context (PIC) dataset [7]. In this dataset, the primary
objective is to estimate human-centric relations, such as human-to-human and
human-to-object relations (e.g., relative positions and activities). Different from
the previous datasets (e.g., the Visual Genome dataset [5] and the Open Images
dataset [6]) which only concern the relations between different bounding boxes
in an image, PIC focuses on the relations between different instance segmenta-
tion. This is especially challenging for complex scenes containing various sizes of
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overlapped objects, as they require a series of procedures in order to accurately
predict the instance segmentation masks as well as evaluate their relations.

There have been a number of research works proposed in recent years aim-
ing at solving the visual relationship prediction tasks [8–10]. The authors in [8]
introduced a sequential architecture called MotifNet for capturing the contextual
information between the bounding boxes of the objects in an image. The contex-
tual information is then used to construct a graph for representing the relation-
ships of the objects in the image. Relation network [9] embraces a lightweight
object relation module for modeling the relations between the objects in an
image via the use of their appearance and geometric features. A deep structured
model is proposed in [10] for predicting visual relationships at both the feature
and label levels. While the above techniques have shown significant promise in
predicting relations between the bounding boxes in an image [8–10], several key
issues remain unsolved and can be summarized in three aspects. First, the size
of the classification space of the possible relations in a dataset is typically large.
As relationship prediction is essentially a classification problem [8,9], the large
classification space usually leads to insufficient samples for each class and thus
difficulties in training a classification model. Second, significant class imbalance
exists in most of the datasets [5–7]. The uneven distribution of data samples fur-
ther exacerbates the above issue of insufficient training data, resulting in a seri-
ous drop in prediction accuracy for certain infrequent classes. Third, to the best
of our knowledge, the visual relationship prediction task based on instance seg-
mentations has yet been well explored. As instance segmentation has attracted
considerable attention in the past few years [4,16], this special relationship pre-
diction task calls for an approach toward tackling the above issues.

In order to address the first two issues mentioned above, we investigate the
use of an unsupervised label clustering technique and demonstrate that it enables
substantial improvements in both accuracy and training efficiency. We observe
that in human-centric datasets such as PIC, a number of human-object pairs
share similar patterns of relationship distribution, leaving significant opportu-
nities for label clustering and data augmentation. For example, small objects
such as ‘bottle’, ‘cellphone’, and ‘plate’ are extremely likely to have a ‘hold’
relation with human beings. Motivated by this observation, we investigate the
use of k-means clustering technique to group object labels with similar patterns
of relationship distribution in the dataset into fewer categories. Label cluster-
ing not only mitigates both the large classification space and class imbalance
issues, but also potentially increases data samples for each clustered category.
This provides the relationship prediction model more opportunities to improve
its accuracy.

To further enhance the relationship prediction model based on instance
semantic segmentation, we additionally explore the use of depth information
in relationship prediction. We propose to incorporate depth information as an
additional feature into the instance segmentation model. We observe that depth
information is crucial in determining the spatial relations between objects such
as ‘in-front-of’, ‘next-to’, ‘behind’, and so on. As a result, we integrate into our
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backbone instance segmentation model [13] with an auxiliary depth prediction
path [12]. The additional depth prediction path supplements the relationship
prediction model in a way that bounding boxes [8–10] or segmentation masks
are unable to deliver. This is due to the fact that they lack the three-dimensional
information required for determining the spatial relations between objects. We
have rigorously evaluated the proposed techniques and performed various abla-
tion analysis to demonstrate the benefits of them.

The contributions of this paper include the following:

– A demonstration of visual relationship prediction based on semantic informa-
tion extracted by an instance semantic segmentation model.

– A method considering both the model architecture and data distribution.
– A simple approach for dealing with the large classification space and class

imbalance issues by clustering labels with similar relationship distribution.
– An investigation into a novel concept of applying depth information into the

relationship prediction task so as to provide additional spatial information.

The rest of this paper is organized as follows. Section 2 introduces background
material. Section 3 walks through the proposed methodology, its implementation
details, and the training procedure. Section 4 presents the experimental results
and an ablation study of the proposed method. Section 5 concludes this paper.

2 Background

In this section, we introduce the knowledge background regarding relation pre-
diction. We first provide an overview of instance segmentation. Then, we briefly
review related works that focus on visual relation prediction. Finally, we intro-
duce depth prediction which is applied in our method.

2.1 Instance Segmentation

Inspired by R-CNN [14] and Faster R-CNN [11], many approaches to instance
segmentation are based on segment proposals. DeepMask [15] learns to produce
segment candidates and then do classification. Dai et al. [16] presented a multi-
stage cascade that predicts segment proposals based on bounding-box. In those
methods, segmentation followed by recognition, which is slow and less accurate.
Recently, FCIS [4] combines segment proposal and object detection for fully con-
volutional instance segmentation. They predict different position-based output
channels which are respectively for object class, bounding-box, and segmenta-
tion in fully convolutional way. In contrast to segmentation-first strategy, Mask
R-CNN [13] is an instance-first one. Based on Faster R-CNN, Mask R-CNN
adds a new branch for object segmentation. They adopt two-stage process, with
a Region Proposal Network (RPN) at first, followed by a sub-network which
predicts object class and segmentation. In our proposed method, we apply Mask
R-CNN, which is also a state-of-the-art network, as our instance segmentation
network.
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2.2 Visual Relation

Visual relation not only extracts objects’ ground region but also describes their
interactions. Yao et al. [3] first considers relation as hidden variables. Nowadays,
there are several explicit relation extraction methods which can be divided into
two categories: joint and separate. Joint methods [1,2] usually consider relation
triplet as an unique class and generate class and relation information together.
However, joint methods are faced with class imbalance problem and easily dom-
inated by major class-relation triplet, which causes low accurate for minor ones.
Conversely, separate models [17,18] first detect objects, and extract their rela-
tions individually.

Liang et al. [19] presented a separate way for extracting visual relation. They
applied Faster R-CNN for object detection and then feed object visual features
into following CNN blocks to extract relation for each pair of object. Further-
more, Neural-Motifs [8] adopted two-stage bidirectional LSTM to model both
global context and pair-wise object relation. The first stage of the network is for
object recognition and the second stage is for relation extraction. In our baseline
approach, we feed in visual features from Mask R-CNN and apply the second
stage of Neural-Motifs as our relation extraction model.

2.3 Depth Prediction

Depth estimation from images has a long history in computer vision. In PIC
challenge, we do not have scene geometry or other information for an image, so we
only consider monocular depth estimation methods. Make3D [20] over-segments
input image into patches and then estimates the 3D location and orientation
of local planes to explain each patch. Based on Make3D, Liu et al. [21] use a
CNN model to learn the global context and help generate more realistic output.
Karsch et al. [22] further produces more consistent prediction via copying parts
of depth images from training set.

Different from supervised-based monocular depth prediction, MonoDepth
[23] presents a unsupervised method. The author of MonoDepth train an FCN
end-end to predict the pixel-level correspondence between pairs of stereo images
and can perform single image depth estimation during testing. In our paper, we
use the depth estimation from MonoDepth which is trained on Cityscapes [24]
dataset as the auxiliary information for visual relation extraction.

3 Methodology

3.1 Architecture Overview

Figure 1 illustrates the proposed architecture. It consists of three components:
an instance segmentation network (blue part), a depth prediction network (red
part), and a gradient boosting classifier (purple part). The instance segmentation
network is based on the implementation of Mask R-CNN [13], which includes



Relationship Prediction via Clustering and Depth Information 575

ConvolutionConvolution

< Mask >

85 x (1+4)
< Index, Mask, Box >

Monodepth
< Depth >

Synchronization

FC
< Class, Box >

< Masked Depth >
Averaged

Masked Depth<                            >

Mask R-CNN

Depth Prediction

Gradient Boosting 
Classifier

Predicted
Relation

Feature
Extraction RoI-Alignment

Fig. 1. The proposed framework for relationship prediction. (Color figure online)

feature extraction layers, a region of interest (RoI) alignment layer, two convolu-
tional layers for mask prediction, and a fully-connected (FC) layer for predicting
class labels and bounding boxes for the objects contained in the figure. A special
synchronization procedure is used to align the indices of the bounding box and
mask for each object in the figure. Please note that the class labels here stand for
clustered labels, which is explained in detail in Sect. 3.4. The depth prediction
network is based on the implementation of Monodepth [12], which evaluates a
depth map for the input image. The depth map is then averaged within the mask
region predicted by the instance segmentation network to generate an averaged
masked depth map for the corresponding object instance. Finally, the bounding
boxes, masks, and the averaged masked depth maps are all fed into the gradient
boosting classifier to predict relations between the objects in the input image.

3.2 Instance Segmentation Network

We use Mask R-CNN [13] as our instance segmentation network. Mask R-CNN
employs a two-stage structure, which includes a region proposal network (RPN)
followed by a network consisting of a classification branch and a mask branch. As
plotted in Fig. 1, the classification branch is used to predict classification scores
and bounding boxes for the objects contained in the image. On the other hand,
the mask branch predicts an instance segmentation masks for each object. As
the indices of the objects from the two branches are different, a synchronization
procedure is necessary so as to match the bounding boxes and masks.

3.3 Depth Prediction Network

We use Monodepth [12] to implement the depth prediction network. The network
serves as an auxiliary path to the instance segmentation network and evaluates a
depth map for each input image. As illustrated in Fig. 1 and discussed in Sect. 3.1,
the output of the depth prediction network is an averaged masked depth map.
This averaged masked depth map is generated from a portion of the pixels within
the masked region contained in the raw masked depth map. As the raw depth
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map generated by the depth prediction network is not sufficiently accurate for
all the pixels within the region of the mask, the depth value obtained by directly
averaging these pixels is not representative of the masked object. As a result,
we filter out the first and fourth quartiles of the depth values within the masked
region. The depth values of the remaining pixels are then averaged to generated
the averaged masked depth map.

3.4 Clustering

We reduce the 85 human-object categories by implementing unsupervised clus-
tering on 85 human-object categories based on their relation’s frequency dis-
tribution. The unsupervised clustering approach is based on the thought that
“multiple objects might share the same frequency distribution of relations”. The
clustering in advance helps model to reduce the computation space when out-
putting relation label as classification and augment categories with less data by
clustering them with other categories to accumulate data at the same time.

We choose K-means clustering as our clustering algorithm. K-means pro-
vides a simple strategy to cluster vectors quickly in a neat way. Our frequency
distribution of 85 human-object categories will be normalized before sent into
K-means. Moreover, we evaluate our unsupervised clustering with custom con-
straints. Because K-means require specific number of clusters (n = k) as param-
eter, we propose a few constraints to determine whether the clustered result is
best for the training and search for the optimal interval of n. The clustering
evaluation is conducted under three constraints:

1. Objects inside the same group are similar enough with each other regarding
frequency distribution

2. The number of clusters is small enough to benefit model’s computation
3. The total number of data inside each clusters are expected to be maximized.

The number of clusters most suitable under the three constraints lies in the
range of 8 clusters to 10 clusters. The clustering curtails the original classifica-
tion space (85 in original) in a significant range (8 after clustering). The optimal
choice of number of clusters might vary depending on the attributes and distri-
bution of the data.

3.5 Relation Prediction

In the PIC Challenge, every relations is human-centered. In other words, every
relation candidates is predicted based on the previously generated pairs of each
human in the instance and the rest of other objects. Say there is n instances
in the image, and k human among the instances. In this case, the number of
relation candidates will be (n − 1) ∗ k.

The subject in each relation prediction must be human, so we only need to
check out which pseudo label groups the object is to make decision. If action
relations (non-geometric relation) are more frequent or serious class imbalance
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happens in the group, frequency based prediction will be adopted. The frequency
based prediction method is a probability model whose every prediction is totally
based on the distribution of each relation’s frequency. That is to say, the more
frequent a relation is the more probability it is predicted as answer. We also
have the other form of frequency based method where only the most frequent
relation label is predicted, discarding the rest of other less frequent relations.
On the other hand, if geometric relations (especially ‘in-front-of’, ‘next-to’ and
‘behind’) are the major composition of the group’s relation distribution, we will
take the previously taken features (total 10 values) into training:

1. The bounding box difference (y1, x1, y2, x2) - 4 values
2. The bounding box overlap between subject and object
3. The pseudo label group of the object
4. The depth means and medians of subject and object - 4 values.

Those features will then be sent to gradient boosting classifier to train for
the final relation prediction.

4 Experimental Results

We have tried several different approaches on the PIC dataset. In this section,
we will shed light on the big picture of our clustered results, and then we will
break into the details of the approaches we mainly propose. Finally, we will show
and compare every approaches we’ve experimented in an ablative analysis way.

Before we dive into the details of our relation prediction method, we will
introduce the result after clustering human-object categories into several pseudo
label groups.

The clustering results is shown in Fig. 2. Before the clustering, although there
are 85 categories, only few category actually possesses significant relation num-
bers for the training, such as ‘human’. After the clustering, we still can’t say
that the total numbers of each cluster are average enough, but the pseudo label
group do augment the data similar in frequency distribution together. We hope
the clustered result to meet the three constraints we proposed above as possible
as they can.

We evaluate the similarity within each cluster by the standard deviation of
every cosine distance between every frequency normalized vectors and the mean
vectors. Finally, we pick the number of clusters as 8, which is the optimal choice
we’ve tried so far. The clustered result is also shown in Fig. 2.

We attempted several different approaches on relation prediction part. First,
we build the neural motifs [8] model on the dataset as the baseline, and the
instance segmentation model in this case we choose is Mask R-CNN. However,
suffering from the large classification space and the class imbalance issues, neural
motifs can’t reach its full potential on the dataset. At first, we build a totally
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(a) Before Clustering (b) After Clustering

Fig. 2. Our proposed method clusters the 85 human-object categories into several
pseudo label groups.

frequency based probability model to establish another baseline. Then we con-
duct experiments on the relation prediction we mentioned above, including the
prediction path decision regarding using frequency based prediction or gradient
boosting. We also train the gradient boosting model with or without the mean
and median of each instance depth to compare the performance. The results are
shown in Table 1).

The results of each approaches are shown in the table. The score metric
IoU@n means that only predictions with IoU metrics above threshold will be
computed its relation accuracy. We can see the improvement from freq-85 to
freq-8 in the table. The improvement indicates that clustering do improve the
performance. Second, from the 3rd column to the 4th column, the performance
is improved because of the additional depth information.

Fig. 3. The illustration of masked depth. Those images from the 1st column to 4th
column are raw images, depth images extracted from the raw image, instance segmen-
tation of the images and the combined masked depth.
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Table 1. ‘Baseline’ in the method means Neural-Motifs; ‘Freq-85’ means frequency-
based method on 85 categories; ‘Freq-8’ means 8 pseudo type; ‘Gb’ means gradient
boosting; ‘Gb-Depth’ means with the depth information. The two scores under the
same column are the validation score and test score. In PIC Challenge, the time of
submission is limited, so not every method can be tested.

Method IoU(0.25) IoU(0.5) IoU(0.75) Average

Baseline 0.156/0.139 0.137/0.125 0.089/0.083 0.127/0.116

Freq-85 0.312/- 0.242/- 0.133/- 0.229/-

Freq-8 0.317/0.186 0.246/0.151 0.134/0.082 0.232/0.140

Gb 0.323/- 0.256/- 0.140/- 0.240/-

Gb-Depth 0.324/0.314 0.258/0.251 0.140/0.131 0.241/0.232

5 Conclusions

In this paper, we showed that unsupervised clustering can be effective in mitigat-
ing the large classification space and class imbalance issues in visual relationship
prediction tasks. We proposed a technique to cluster object labels of similar rela-
tionship distribution with human beings in the same dataset into categories. In
order to enhance the accuracy of instance segmentation based relationship pre-
diction tasks, we further proposed to incorporate an auxiliary depth prediction
path into our instance segmentation model. We demonstrated the effectiveness
of the proposed techniques on the PIC dataset, with a detailed ablation study.
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