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Vı́ctor Ponce-López(B) , Tilo Burghardt, Sion Hannunna, Dima Damen ,
Alessandro Masullo , and Majid Mirmehdi

Department of Computer Science, Faculty of Engineering, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK
vponcelop@gmail.com, {v.poncelopez,tb2935,sh1670,dima.damen,

a.masullo,m.mirmehdi}@bristol.ac.uk

Abstract. We present a deep person re-identification approach that
combines semantically selective, deep data augmentation with clustering-
based network compression to generate high performance, light and fast
inference networks. In particular, we propose to augment limited train-
ing data via sampling from a deep convolutional generative adversarial
network (DCGAN), whose discriminator is constrained by a semantic
classifier to explicitly control the domain specificity of the generation
process. Thereby, we encode information in the classifier network which
can be utilized to steer adversarial synthesis, and which fuels our Con-
denseNet ID-network training. We provide a quantitative and qualitative
analysis of the approach and its variants on a number of datasets, obtain-
ing results that outperform the state-of-the-art on the LIMA dataset for
long-term monitoring in indoor living spaces.

Keywords: Person re-identification · Selective augmentation ·
Face filtering · Adversarial synthesis · Deep compression

1 Introduction

Person re-identification (Re-ID) across cameras with disjoint fields of view, given
unobserved intervals and varying appearance (e.g. change in clothing), remains
a challenging subdomain of computer vision. The task is particularly demanding
whenever facial biometrics [29] are not explicitly applicable, be that due to very
low resolution [7] or non-frontal shots. Deep learning approaches have recently
been customized, moving the domain of person Re-ID forward [1] with potential
impact on a wide range of applications, for example, CCTV surveillance [5] and
e-health applications for living and working environments [23]. Yet, obtaining
cross-referenced ground truth over long term [17,27], realising deployment of
inexpensive inference platforms, and establishing visual identities from strongly
limited data – all remain fundamental challenges. In particular, the dependency
of most deep learning paradigms on vast training data pools and high computa-
tional requirements for heavy inference networks appear as significant challenges
to many person Re-ID settings.
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Fig. 1. Framework overview. Visual deep learning pipeline at the core of our approach:
inputs (dark gray) are semantically filtered via a face detector (green) to enhance adver-
sarial augmentation via DCGANs (blue). Original and synthetic data are combined to
train a compressed CondenseNet (red) for light and fast ID-inference. (Color figure
online)

In this paper, we introduce an approach for producing high performance, light
and fast deep Re-ID inference networks for people - built from limited training
data and not explicitly dependent on face identification. To achieve this, we
propose an interplay of three recent deep learning technologies as depicted in
Fig. 1: deep convolutional adversarial networks (DCGANs) [21] as class-specific
sample generators (in blue); face detectors [25] used as semantic guarantors to
steer synthesis (in green); and a clustering-based CondenseNet [10] as a com-
pressor (in red). We show that the proposed face-selective adversarial synthesis
allows to generate new, semantically selective and meaningful artificial images
that can improve subsequent training of compressive ID networks. Whilst the
training cost of our approach can be significant due to the adversarial networks’
slow and complicated convergence process [6], our parameter count of final Con-
denseNets is approximately one order of magnitude smaller than those of other
state-of-the-art systems, such as ResNet50 [33]. We provide a quantitative and
qualitative analysis over different adversarial synthesis paradigms for our app-
roach, obtaining results that outperform the highest achievements on the LIMA
dataset [14] for long-term monitoring in indoor living environments.

2 Related Work

Performing person Re-ID is a popular and long-standing research area with
considerable history and specific associated challenges [32]. Low-resolution
face recognition [7], gait and behaviour analysis [26], as well as full-person,
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appearance-based recognition [32] all offer routes to performing ‘in-effect’ per-
son ID or Re-ID. Here we will review particular technical aspects most relevant
to the work at hand, i.e. looking specifically at recent augmentation and deep
learning approaches for appearance-based methods.

Augmentation. Despite improvements in methods for high-quality, high-
volume ground truth acquisition [17,19], input data augmentation [18] remains
a key strategy to support generalisation in deep network training generally. The
use of synthetic training data presents several advantages, such as the ability to
reduce the effort of labeling images and to generate customizable domain-specific
data. It has been noted that combining synthetic and measured input often shows
improved performance over using synthetic images only [24]. Recent examples
of non-augmented, innovative approaches in the person Re-ID domain include
feature selection strategies [8,12], anthropometric profiling [2] using depth cam-
eras, and multi-modal tracking [19], amongst many others. Augmentation has
long been used in Re-ID scenarios too, for instance in [1], the authors consider
structural aspects of the human body by exploiting mere RGB data to fully gen-
erate semi-realistic synthetic data as inputs to train neural networks, obtaining
promising results for person Re-ID. Image augmentation techniques have also
demonstrated effectiveness in improving the discriminative ability of learned
CNN embeddings for person Re-ID, especially on large-scale datasets [1,3,33].

Adversarial Synthesis. Generative Adversarial Networks (GANs) [6] in partic-
ular have been widely and successfully applied to deliver augmentation – mainly
building on their ability to construct a latent space that underpins the training
data, and to sample from it to produce new training information. DCGANs [21]
pair the GAN concept with compact convolutional operations to synthesise
visual content more efficiently. The DCGAN’s ability to organise the relation-
ship between a latent space and an actual image space associated to the GAN
input has been shown in a wide variety of applications, including face and pose
analysis [16,21]. In these and other domains, latent spaces have been constructed
that can convincingly model and parameterise object attributes such as scale,
rotation, and position from unsupervised models, and hence dramatically reduce
the amount of data needed for conditional generative modeling of complex image
distributions.

Compression and Framework. Given ever-growing computational require-
ments for very-deep inference networks, recent research into network compres-
sion and optimisation has produced a number of approaches capable of com-
pactly capturing network functionality. Some examples include ShuffleNet [30],
MobileNet [9], and CondenseNet [10], which have proven to be effective even
when operating on small devices where computational resources are limited.

In our work, we combine semantic data selection for data steering, adversarial
synthesis for training space expansion, and CondenseNet compression to sparsify
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the built Re-ID classifier representation. Our solution operates on single images
during inference, able to perform the Re-ID step in a one-shot paradigm1.

3 Methodology and Framework Overview

Figure 1 illustrates our methodology pipeline, which follows a generative - dis-
criminative paradigm: (a) training data sets {Xj} of image patches are produced
by a person detector, where each image patch set is either associated to a known
person identity label j ∈ {1, .., N}, or an ‘unknown’ identity label j = 0. (b) An
image augmentation component then expands on this dataset. This component
consists of (c) a facial filter network F based on multi-view bootstrapping and
OpenPose [25]; and (d) DCGAN [21] processes, whose discriminator networks Dj

are constrained by the semantic selector F to control domain specificity. The set
of DCGANs, namely network pairs (Dj , Gj), are employed to train generator net-
works Gj that synthesise unseen samples x associated with labels j ∈ {0, .., N}.
These generators Gj are then used to produce large sets of samples. We focus on
two types of scenarios: (1) a setup where we synthesize content for each identity
class j individually, and (2) one where only a single ‘unlabeled person’ generator
G is produced using all classes {Xj} as input, with the aim to generate generic
identity content, rather than individual-specific imagery. Sampled output from
generators is (e) unified with the original frame sets and labels, forming the
input data for (f) training a Re-ID CondenseNet R that learns to map sample
image patches xj to ID score vectors sj ∈ R

(N+1)
+ over all identity classes. This

yields the sparse inference network R built implicitly compressed in order to
support lightweight inference and deployment via a single network.

3.1 Adversarial Synthesis of Training Information

Adversarial Network Setup. We utilise the generic adversarial training pro-
cess of DCGANs [21] and its suggested network design in order to construct a
de-convolutional, generative function Gj per synthesised label class j ∈ {1, .., N}
that after training can produce new images x by sampling from a sparse latent
space Z. Instead, a single ‘generic person’ network G is built in some experiments
utilising all {Xj}. As in all adversarial setups, generative networks G or {Gj}
are paired with discriminative networks D or {Dj}, respectively. The latter map
from images x to an ‘is synthetic’ score v = D(x) > 0, reflecting network support
for x /∈ {Xj}. Essentially, the discriminative networks then learn to differentiate
generator-produced patches (v �) from original patches (v �). However, we
add to this classic dual network setup [16], a third externally trained classifier F
that filters and thereby controls/selects the input to Dj - in our case one that
restricts input to those samples where the presence of faces can be established2.
1 Whilst results are competitive in this setting, discovering and matching segments

during inference [14,15,20,28,34] is not used and could potentially further improve
performance.

2 We also modify the initial layer of the DCGAN to deal with a temporal gap of the
specified number of frames. https://github.com/vponcelo/DCGAN-tensorflow.

https://github.com/vponcelo/DCGAN-tensorflow/
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Facial Filtering. We use the face keypoint detector from OpenPose [25] as the
filter network F to semantically constrain the input to Dj and D. If at least
one such keypoint can be established then face detection is defined as successful,
where formally F (xj ∈ Xj) ∈ [0, 1] is assigned to reflect either the absence (0)
or presence (1) of a face.

Training Process. All networks then engage in an adversarial training process
utilising Adam [13] to optimise the networks D, {Dj}, and G, {Gj}, respectively,
according to the discussion in [21], whilst enforcing the domain semantics via F .
The following detailed process describes this training regime: (1) each D or Dj

is optimised towards minimising the negative log-likelihood −log(D(x)) based
on the relevant inputs from {Xj} iff F (xj) = 1, i.e. on original samples that
are found to contain faces. (2) Network optimisation then switches to back-
propagating errors into the entire networks D(G(z)) or Dj(Gj(z)), respectively,
where z is sampled from a randomly initialised Gaussian to generate synthetic
content. Consider that whilst the generator weights are adjusted to minimise
the negative log-likelihood −log(D(G(z))), encouraging v to get lower scores,
the discriminator weights are adjusted to maximise it, prompting v to get higher
scores. DCGAN training then proceeds by alternating between (1) and (2) until
acceptable convergence.

3.2 Re-ID Network Training and Compression

Once the synthesis networks G and {Gj} are trained, we sample their output
and combine it with all original training images (withholding 15% per class for
testing) to train R as a CondenseNet [10], optimised via standard stochastic gra-
dient decent with Nestrov momentum. Structurally, R maps from 256×256-sized
RGB-tensors to a score vector over all identity classes. We perform 120 epochs of
training on all layers, where layer-internal grouping is applied to the dense lay-
ers in order to actively structure network pathways by means of clustering [10].
This principle has been proven effective in DenseNets [11], ShuffleNets [30], and
MobileNets [9]. However, CondenseNets extend this approach by introducing a
compression mechanism to remove low-impact connections by discarding unused
weights. As a consequence, the approach produces an ID inference network3

which is implicitly compressed and supports lightweight deployment.

4 Datasets

DukeMTMC-reID. First we confirm the viability of a GAN-driven Con-
denseNet application in a traditional Re-ID setting (e.g. larger cardinality of
identities, outdoor scenes) via the DukeMTMC-reID [22] dataset, which is a
subset of a multi-target, multi-camera pedestrian data corpus. It contains eight

3 https://github.com/vponcelo/CondenseNet/.

https://github.com/vponcelo/CondenseNet/
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Fig. 2. DCGAN synthesis examples. Samples generated by G(z) with (b) or without (a)
semantic controller. (c) 1st row: examples of generated images from G0 and Gj without
semantic controller; 2nd row: with semantic controller; 3rd row: original samples from
X0 and {Xj}. Columns in (c) are, from left to right, ‘unknown’ identity 0 and identities
j ∈ {1, ..., N}, respectively.

85-min high-res videos with pedestrian bounding boxes. It covers 1, 812 identi-
ties, where 1, 404 identities appear in more than two cameras and 408 identities
(distractor IDs) appear in only one4.

Market1501. We also use a large-scale person Re-ID dataset called Mar-
ket1501 [31] collected from 6 cameras covering 1, 501 different identities across
19, 732 images for testing and 12, 936 images for training generated by a
deformable part model [4].

LIMA. The Long term Identity aware Multi-target multi-camerA tracking
dataset [14], provides us with our main testbed for the approach. In contrast
to previous datasets, image resolution is high enough in this dataset to effec-
tively apply face detection as a semantic steer. LIMA contains a large set of
188, 427 images of identity-tagged bounding boxes gathered over 13 independent
sessions, where bounding boxes are estimated based on OpenNI NiTE operating
on RGB-D and are grouped into time-stamped, local tracklets. The dataset cov-
ers a small set of 6 individuals filmed in various indoor environments, plus an
additional ‘unknown’ class containing either background noise or multiple people
in the same bounding box. Note that the LIMA dataset is acquired over a signif-
icant time period capturing actual people present in a home (e.g. residents and
‘guests’). This makes the dataset interesting as a test bed for long-term analy-
sis, where people’s appearance varies significantly, including changes in clothing.
In our experiments, we use a train-test ratio of 12:1 implementing a leave-one-
session-out approach for cross-validation in order to probe how well performance
generalises to different acquisition days.

5 Experiments and Results

We perform an extensive system analysis by applying the proposed pipeline
mainly to the LIMA dataset. We define as the LIMA baseline the best so-far
4 Evaluation protocol located at: https://github.com/layumi/DukeMTMC-reID evalu

ation.

https://github.com/layumi/DukeMTMC-reID_evaluation
https://github.com/layumi/DukeMTMC-reID_evaluation
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reported micro precision metric on the dataset achieved by a hybrid M2&ME
approach given in [14] - that is via tracking by recognition-enhanced constrained
clustering with multiple enrolment. This approach assigns identities to frames
where the accuracy of picking the correct identity as the top-ranking estimate is
reported. Against this, we evaluate performance metrics for our approach judging
either the performance over all ground truth labels j, including the ‘unknown
content’ class (ALL), that is j ∈ {0, ..., N}, or only for known identity ground-
truth (p-ID), that is j ∈ {1, ..., N}. We use two metrics: prec@1 as the rank-
one precision, i.e. the accuracy of selecting the correct identity for test frames
according to the highest class score produced by the final Re-ID CondenseNet
R, and mAP as mean Average Precision over all considered classes. Table 1
provides an overview of the results.

DeepCondenseNetwithoutAugmentation (R only).The baseline (Table 1,
row 1) is first compared to results obtained when training CondenseNet (R) on
original data only (Table 1, row 2). This deep compressed network outperforms
the baseline ALL prec@1 by 2.88%, in particular generalising better for cases of
significant appearance change such as wearing different clothes over the session
(e.g. without jacket and wearing a jacket afterwards. The p-IDmAP results (i.e.
discarding the ‘unknown’ class) at 96.28% show that removing distracting con-
tent, i.e. manual semantic control during the test procedure, can produce scenar-
ios of enhanced performance over filtered test subsets. We will now investigate how
semantic control can be encoded via externally trained networks applied during
training.

Direct Semantic Control (FR). Simply introducing a semantic controller F
to face-filter the input of R is, however, counter-productive and reduces perfor-
mance significantly across all metrics (Table 1, row 5). Restricting R to train on
only 39% of the input this way withholds critical identity information.

Augmentation via DCGANs (G). Instead of restricting training input to
the Re-ID network R, we therefore analyse how Re-ID performance is affected
when semantic control is applied to generic DCGAN-synthesis via G of a cross-
identity person class as suggested in [33]. Figure 2 shows examples of generated
images and how the semantic controller affects the synthesis appearance. Aug-
mentation of training data with 24k synthesised samples without semantic con-
trol (Table 1, row 3) improves performance slightly across all metrics, confirming
benefits discussed in more detail in [33]. Table 2 confirms that applying such
DCGAN synthesis together with CondenseNet compression to the DukeMTMC-
reID dataset produce results comparable to [31]. Note that whilst the large
deep ResNet50+LSRO [33] approach outperforms our compressed network sig-
nificantly (Table 2, row 6), this comes at a cost of increasing the parameter
cardinality by about an order of magnitude5. Moreover, non-controlled synthe-
sis is generally limited. Indeed, on LIMA no further improvements can be made

5 Require approximately 8× fewer parameters and operations to achieve comparable
accuracy w.r.t. other dense nets (i.e. 600 million less operations to perform inference
on a single image) [10].
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Table 1. Results for LIMA - top rank precision (prec@1) and mean Average
Precision (mAP) for baseline (row 1), non-semantically controlled deep CondenseNet
approaches (rows 2–4), and various forms of semantic control (rows 5–7). Note improve-
ments across all metrics when utilising: compressed deep learning (row 2), augmentation
(row 3), and semantically selective filtering (rows 6–7).

ALL prec@1 p-ID prec@1 ALL mAP p-ID mAP

No semantic control

1: Baseline (M2&ME) [14] 89.1 - - -

2: No augmentation (R) 91.98 93.49 90.90 96.28

3: Augmentation 24kG → R 92.43 94.27 91 96.95

4: Augmentation 48kG → R 91.74 93.48 90.61 96.54

Semantic control via F

5: No augmentation (FR) 82.02 92.14 72.90 95.48

6: Augment. F322kG → R 92.58 94.57 91.14 97.02

7: (24kG0+F24kGj) → R 92.44 94.37 90.96 97.04

Table 2. Results for DukeMTMC-reID - top rank precision (prec@1) for classifi-
cation and Single-Query (S-Q) performance with No Semantic Control∗. Our results
outperform [31] when using augmentation (row 4), or using Market1501 as synthesis
input (row 5). However, the performance of the 8× larger ResNet50+LSRO [33] cannot
be achieved in our setting of compression for lightweight deployment.

Method/NSC∗ prec@1 prec@5 mAP CMC@1 S-Q mAP S-Q

1: Baseline BoW+KISSME [31] - - - 25.13 12.17

2: Baseline LOMO+XQDA [31] - - - 30.75 17.04

3: No augmentation (R) 87.70 95.54 87.79 29.04 15.99

4: Augmentation 24kG → R 88.08 95.73 88.26 36.45 21.11

5: Transfer 24k (Market)G → R 88.84 95.82 88.64 35.95 20.6

6: ResNet50+LSRO [33] (� 8x) - - - 67.68 47.13

by scaling up synthesis beyond 24k, whereby performance drops slightly across
all metrics and overfitting to the synthetised data can be observed (Table 1,
row 4). We now introduce semantic control to the input of augmentation and
observe that the scaling-up limit can be lifted. Diminishing returns take over at
levels above 300k though (i.e. 54% of synthesis w.r.t. original training data). We
report results when synthesising 322k of imagery via G, improving results for
all metrics (Table 1, row 6). We note that these improvements are achieved by
synthesising distractors rather than individual-specific augmentations.

Individual-Specific Augmentation (G0 + Gj). To explore class-specific aug-
mentation we train an entire set of DCGANs, i.e. produce generators Gj and G0,
respectively as specific identity and non-identity synthesis networks, and apply
semantic control F to the identity classes j ∈ {1, ..., N}. We observe that when
balancing the synthesis of training imagery across all classes equally only slightly
improves on p-ID mAP, whilst other measures cannot be advanced (Table 1,
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Fig. 3. Some results as confusion matrices. Columns from left to right correspond to
the experimental settings grouped by the presence of semantic selection, according to
Table 1 rows 2–4 and 5–7, respectively.

row 7). Figure 3 provides further result visualisations. The limited improvements
of this approach compared to non-identity-specific training (despite synthesis of
overall more training data) suggest that, for the LIMA setup at least, person
individuality can indeed be encoded by augmentation-supported modelling of a
large, generic ‘person’ class against a more limited, non-augmented representa-
tion of individuals. Furthermore, experiments on the most challenging LIMA ses-
sions demonstrate that the pre-trained generator G can generalize at re-training
individual-specific generators G0 and Gj so as to reduce training cost of DCGAN
indvidual-specific augmentation.

6 Conclusion

We introduced a deep person Re-ID approach that brought together semanti-
cally selective data augmentation with clustering-based network compression to
produce light and fast inference networks. In particular, we showed that aug-
mentation via sampling from a DCGAN, whose discriminator is constrained
by a semantic face detector, can outperform the state-of-the-art on the LIMA
dataset for long-term monitoring in indoor living environments. To explore the
applicability of our framework without face detection in outdoor scenarios, we
also considered well-known datasets for person Re-ID aimed at people matching,
achieving competitive performance on the DukeMTMC-reID dataset.

Acknowledgements. This work was performed under the SPHERE IRC funded
by the UK Engineering and Physical Sciences Research Council (EPSRC), Grant
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