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Abstract. Recent GAN-based video generation approaches model
videos as the combination of a time-independent scene component and a
time-varying motion component, thus factorizing the generation problem
into generating background and foreground separately. One of the main
limitations of current approaches is that both factors are learned by map-
ping one source latent space to videos, which complicates the generation
task as a single data point must be informative of both background and
foreground content. In this paper we propose a GAN framework for video
generation that, instead, employs two latent spaces in order to structure
the generative process in a more natural way: (1) a latent space to gen-
erate the static visual content of a scene (background), which remains
the same for the whole video, and (2) a latent space where motion is
encoded as a trajectory between sampled points and whose dynamics
are modeled through an RNN encoder (jointly trained with the genera-
tor and the discriminator) and then mapped by the generator to visual
objects’ motion. Performance evaluation showed that our approach is
able to control effectively the generation process as well as to synthesize
more realistic videos than state-of-the-art methods.

1 Introduction

Generative Adversarial Networks (GANs) [1] are a recent trend in computer
vision and machine learning that advanced the state of the art on image and
video generation to unprecedented levels of accuracy and realism. New adver-
sarial models [2–8] are proposed at an accelerating pace, both to increase the
diversity and resolution of generated images and to tackle theoretical issues on
training and convergence. GANs have been applied mainly to image generation,
and naively extending image generation methods to videos is not sufficient, as it
jointly attempts at handling both the spatial component of the video, describing
object and background appearance, and the temporal one, representing object
motion and consistency across frames. Building on these considerations, recent
generative efforts [9,10] have attempted to factor the latent representation of
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each video frame into two components that model a time-independent back-
ground of the scene and the time-varying foreground elements. We argue that
the main limitation of these methods is that both factors are learned by map-
ping a single point of a source latent space (sampled as random noise) to a
whole video. This, indeed, over-complicates the generation task as two videos
depicting the same scene with different object trajectories or the same trajec-
tory on different scenes are represented as different points in the latent space,
although they share a common factor (in the former case the background, in the
latter case object motion). To address this limitation, in this paper we propose
a GAN-based generation approach that employs two latent spaces (as shown in
Fig. 1) to improve the video generation process: (1) one latent space to model
the static visual content of the scene (background), and (2) a foreground latent
space to learn object motion dynamics. In particular, these dynamics are mod-
eled as point trajectories in the second latent space, with each point representing
the foreground content in a scene and each latent trajectory ensuring regular-
ity and realism of the generated motion across frames. Variations in the scene
latent space result in different scenes, while variations in the trajectories of the
foreground latent space result in different object motion. We demonstrate the
effectiveness of the proposed approach by extensively evaluating the realism of
the generated videos and compared the videos generated by state of the art
methods [9,10], which, conversely to our method, learn a mapping between a
single latent space and video data distribution instead of learning to generate
specific motion and eventually object behaviour.

Fig. 1. Video Generation in VOS-GAN: we employ a scene latent space to generate
background and a foreground latent space to generate object appearance and motion.

2 Video Generation Model

The video generation architecture presented in this work is based on a GAN
framework consisting of the following two modules:
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– a generator, implemented as a hybrid deep CNN-RNN, that receives two kinds
of input: (1) a noise vector from a latent space that models scene background;
(2) a sequence of vectors that model foreground motion as a trajectory in
another latent space. The output of the generator is a video with its corre-
sponding foreground mask.

– a discriminator, implemented as a deep CNN, that receives an input video
and predicts whether it is real or not.

The architecture of the generator, inspired by the two-stream approach in [9],
is shown in Fig. 2. Specifically, our generation approach factorizes the process
into separate background and foreground generation, on the assumption that
the world is generally stationary and the presence of informative motion can be
constrained only to a set of objects of interest in a semi-static scenery. However,
unlike [9], we separate the latent spaces for scene and foreground generation,
and explicitly represent the latter as a temporal quantity, thus enforcing a more
natural correspondence between the latent input and the frame-by-frame motion
output.

Hence, the generator receives two inputs: zC ∈ ZC = R
d and zM = {zM,i}ti=1,

with each zM,i ∈ ZM = R
d. A point zC in the latent space ZC encodes the

general scene to be applied to the output video, and is mainly responsible for
driving the background stream of the model. This stream consists of a cascade of
transposed convolutions, which gradually increase the spatial dimension of the
input in order to obtain a full-scale background image b(zC) that is used for all
frames in the generated video.

The set of zM,i points from the latent space ZM defines the objects motion to
be applied in the video. The latent sequence is obtained by sampling the initial
and final points and performing a spherical linear interpolation (SLERP [11])
to compute all intermediate vectors, such that the length of the sequence is
equal to the length (in frames) of the generated video. Using an interpolation
rather than sampling multiple random points should enforce temporal coherency
between appearances in the generated foreground. The list of latent points is
then encoded through a recurrent neural network (LSTM) in order to provide a
single vector (i.e., the LSTM’s final state) summarizing a representation of the
whole motion. The input to the foreground stream is then a concatenation of
the vector coming out of the LSTM and zC , so that the generated motion can
take into account the scene to which it will be applied. After a cascade of spatio-
temporal convolutions (i.e., with 3D kernels that also span the time dimension),
the foreground stream provides a set of frames f(zC , zM ) with foreground content
and binary masks m(zC , zM ) defining motion pixel location.

The two streams are finally combined as

G(zC , zM ) = m(zC , zM ) � f(zC , zM ) + (1 − m(zC , zM )) � b(zC) (1)

Foreground generation can be directly controlled acting on zM . Indeed, vary-
ing zM for a fixed value of zC results in videos with the same background and
different foreground appearance and motion. Thus, zC can be seen as a condition
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for the foreground stream, in a similar way to conditional generative adversarial
networks for restricting generation process to a specific class.

Fig. 2. Generator architecture: the background stream (bottom) is conditioned by a
latent vector defining the general scene of the video, and produces a background image;
the foreground stream (top) processes a sequence of latent vectors, obtained by spher-
ically interpolating the start and end points, and the scene latent vector to generate
frame-by-frame foreground appearance and motion masks. Information about dimen-
sions of intermediate outputs is given in the figure by (channels, height, width, duration)
tuples.

The primary goal of the discriminator network is to distinguish between
generated and real videos, in order to push the generator towards more realistic
outputs. The architecture of our discriminator follows a standard architecture
for video discrimination [9]. The input to the model is a video clip (either real
or produced by the generator), that goes first through a series of convolutional
layers, encoding the video dynamics in a more compact representation, which is
provided to a discrimination stream (bottom), which applies a 3D convolution
to the intermediate representation and then makes a prediction on whether the
input video is real or fake.

We jointly train the generator and the discriminator in a GAN framework,
with the former trying to maximize the probability that the discriminator predict
fake outputs as real, and the latter trying to minimize the same probability.

The discriminator loss is then defined as follows (for the sake of compactness,
we will define z = (zC , zM )):

LD = −Ex∼preal [log Dadv (x)] − Ex∼pz
[log (1 − Dadv (G (z)))] (2)

In the equation above, the first line encodes the adversarial loss, which pushes
the discriminator to return high likelihood scores for real videos and low ones
for the generated videos.

The generator loss is, more traditionally, defined as:

LG = −Ez∼pz
[log Dadv (G (z))] (3)



496 S. Palazzo et al.

In this case, the generator tries to push the discriminator to increase the likeli-
hood of its output being real.

During training, we follow the common approach for GAN training, by sam-
pling real videos (from an existing dataset) and generated videos (from the
generator) and alternately optimizing the discriminator and the generator.

3 Performance Analysis

Our video generation model was trained on the “golf course” videos (over 600,000
videoclips) of the dataset proposed in [9]. For testing the video generation capa-
bilities we performed quantitative evaluation. In particular, we evaluated sepa-
rately the quality of generated background, foreground, and motion using the
following metrics:

– Foreground Content Distance (FCD). This score aims at assessing the
consistency between visual appearance of foreground objects in consecutive
figures and is measured by computing the average L2 distance between visual
features, extracted from a fully-connected layer of a pre-trained Inception
network [12], of foreground objects in two consecutive figures. The input to
the Inception model is the bounding box containing the foreground region,
defined as the discriminator’s segmentation output.

– Motion coherency (MC). While the previous score describes the qual-
ity of the generated visual appearance of moving objects, this one aims at
evaluating how realistic the generated motion is, and is computed as the KL-
divergence between magnitude/orientation histograms of optical flows of real
and generated videos.

– Inception score (IS) [13] is the most adopted metric in GAN literature. In
our case, we compute the Inception score by sampling a random frame from
each video of a pool of generated ones.

During GAN training, we performed gradient-descent using ADAM, with an
initial learning rate of 0.0002, β1 = 0.5, β2 = 0.999 and batch size of 16 for 25
epochs.

FCS, MC and IS scores were computed on a set of 50,000 videos generated
by the compared models trained on “golf course” [9], and on the same num-
ber of random real videos as a baseline. The results in Table 1 shows that our
approach significantly outperformed VGAN and TGAN on the three metrics,
achieving closer values to those yielded by real videos, indicating a higher real-
ism in scene appearance and object motion. Samples of generated videos on for
VGAN, TGAN and our method are shown in Fig. 3.
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Table 1. Quantitative evaluation of video generation capabilities measured by fore-
ground content distance (FCD), motion coherency (MC) and Inception Score (IS).

FCD MC IS

VGAN [9] 10.61 0.017 1.74

TGAN [10] 3.74 0.011 2.02

Our approach 4.80 0.002 2.90

Real videos 4.59 0.0001 4.59

Fig. 3. Frame samples. (First and forth row) VGAN-generated video figures show very
little object motion, while (second and fifth row) TGAN-generated video figures show
motion, but the quality of foreground appearance is low. Our approach (third and
sixth row) generates video figures with a good compromise between object motion and
appearance.
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4 Conclusion

We propose a novel GAN-based video generation approach that employs two
input latent spaces: one for modeling the background, and one to model
foreground motion and appearance. Extensive experimental evaluation showed
that our VOS-GAN outperforms significantly existing GAN-based methods,
VGAN [9] and TGAN [10], on the video generation process, by creating videos
with more realistic motion measured quantitatively.
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