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Abstract. Automatic analysis of facial expressions is now attracting
an increasing interest, thanks to the many potential applications it can
enable. However, collecting images with labeled expression for large sets
of images or videos is a quite complicated operation that, in most of
the cases, requires substantial human intervention. In this paper, we
propose a solution that, starting from a neutral image of a subject, is
capable of producing a realistic expressive face image of the same sub-
ject. This is possible thanks to the use of a particular 3D morphable
model (3DMM) that can effectively and efficiently fit to 2D images, and
then deform itself under the action of deformation parameters learned
expression-by-expression in a subject-independent manner. Ultimately,
the application of such deformation parameters to the neutral model of
a subject allows the rendering of realistic expressive images of the sub-
ject. Experiments demonstrate that such deformation parameters can be
learned from a small set of training data using simple statistical tools;
despite this simplicity, very realistic subject-dependent expression ren-
derings can be obtained. Furthermore, robustness to cross dataset tests
is also evidenced.

Keywords: 3D morphable model · Deformation components learning ·
Facial expression synthesis

1 Introduction

In Computer Vision there is an increasing interest in developing methods for
either recognizing or synthesizing expressions in an automatic way. In fact, this
has both theoretical interest in disciplines as different as Cognitive Sciences,
Medicine or Psychology, as well as in practical applications, like surveillance by
analysis of human emotional state, monitoring for fatigue detection, gaming or
Human Computer Interaction, to cite a few. While for long time automatic anal-
ysis of facial expressions from images and videos has been based on the design
of hand-crafted features, now the success of neural networks, and deep learning
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solutions in particular, has drastically changed the scenario: the idea is to let
the network learn the low- and intermediate-level features that are best suited
to describe the training data, and then use them in any classification or recog-
nition task. This moves most of the criticisms to the networks design and the
collection of the data used for their training. In doing so, the amount of the data
and their variability play a fundamental role in learning significant representa-
tions. In the case of facial expressions, this has some additional difficulties since
obtaining large quantities of ground truth data with accurate expression labels
is a complicated and time consuming task if executed by human annotators.
Thus, an idea that is making its way is to synthetically generate such training
data. To this end, solutions based on parametric models, like the 3D Morphable
Model (3DMM) [5] and its variants are among the most promising. The idea
here is to fit such model to 2D target images so as to reconstruct a coarse 3D
shape of the face. Then, this 3D face model can be deformed to exhibit a target
expression and render a corresponding image. Of course, this process requires
the deformation components that change the neutral model to an expressive one
are known for each expression. This, by itself, is not an easy task since most
of the 3DMMs have been trained without using any expressive scan [7]. Some
recent works also applied Generative Adversarial Networks (GANs) for the task
of generating expressive face images from neutral ones [19,29]. However, also
in this case, 3DMMs can play a role for generating the images used for GANs
training.

Rendering expressive images of a subject starting from his/her neutral
one using parametric face models has potential applications also in designing
advanced interfaces and serious games [22]. For example, a desktop system could
use an avatar to interact with the user adapting the avatar’s expression to that
of the user; similarly, two avatars could be used in a virtual call simulating the
expression of the interacting people. A training scenario appears also realistic,
where disabled people or people recovering after a disease or injuries that com-
promised their facial mimic (e.g., a stroke) could use a virtual assistant to learn
reproducing facial expressions in a correct way [3]. People affected by autism
syndrome could also benefit from an application that helps them in reproduc-
ing expressions. This could be done by starting from a model representing the
neutral face of the subject and then by producing different expressions on it [37].

In this paper, we develop on the idea of automatically synthesize images of
expressive faces. To this end, we start with a particular variant of the 3DMM,
which is characterized by its capability of reproducing facial expressions starting
from the average model. This is possible thanks to two specific aspects of this
3DMM (called DL-3DMM [15]): (i) differently from most existing 3DMMs it is
trained also with 3D expressive facial scans; (ii) its deformation components are
learned as a dictionary of atoms using a dictionary learning approach; differently
from the standard approach that learns deformation components by Principal
Component Analysis (PCA) so that each component acts globally on the model,
the atoms identified by the dictionary learning solution capture quite well local
deformations of the face. This 3DMM can be efficiently fit to a target 2D face
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image using a closed form solution generating a coarse 3D model of the target
subject. Our goal here is to deform such 3D neutral model so as to realize a
given expression of the subject ultimately rendering a 2D expressive image. To
this end, we design a learning procedure that identifies the weights of the atoms
corresponding to each prototypical expression. The procedure is composed of
two main steps: first, the 3DMM is fit to a face image in neutral expression, pro-
ducing a person-specific 3D reconstruction; then, this reconstruction is used to
fit an expressive face image of the same subject and the deformation parameters
are collected. This allows us to separate between the deformations that model
identity traits and the ones modeling expressions. Once all these parameters are
collected, we look for recurrent patterns among them that identify prototypical
expressions and use such parameters to control the 3DMM deformation and gen-
erate expressive models. Such parameters are expression-specific, but can also be
mixed together so as to generate more complex expressions. Experiments show
that this strategy permits us to recover such parameters pretty easily, and that
we can effectively generate expressive and realistic models also in a cross-dataset
fashion. In particular, the main contributions of this work are as follows:

– We propose a simple yet effective framework that enables the extrapolation of
3DMM parameters that control expression-specific deformations, and success-
fully apply them to generate expressive renderings starting from face images
in neutral expression;

– We showcase the potential and versatility of the DL-3DMM in handling and
generating expressions;

– We demonstrate the generalization capability of our solution by showing that
more complex expressions can be generated by combining different prototyp-
ical expression parameters.

The rest of the paper is organized as follows: In Sect. 2, the works in the
literature that are most closely related to our proposed solution are discussed;
In Sect. 3, we summarize the 3DMM used in this work and the characteristics
that make it effective in modeling facial expressions; In Sect. 4, we present the
methods used to learn the deformation coefficients related to each expression;
These coefficients are then used to generate expressions starting from the neutral
3DMM for new identities; a qualitative evaluation is reported in Sect. 5; Finally,
discussion and conclusions are drawn in Sect. 6.

2 Related Work

In the following, first, we report on the solutions that define and use a 3DMM
to derive the 3D face model of a target subject starting from his/her 2D neutral
image; then, we summarize some methods that learn modes of deformations to
transform a neutral 3D model to an expressive one.

Blanz and Vetter [5] first presented a complete solution to derive a 3DMM
by transforming the shape and texture from a training set of 3D face scans into
a vector space representation based on PCA. However, the training dataset had
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limited face variability (200 neutral scans of young Caucasians), thus reducing
the capability of the model to generalize to different ethnicity and non-neutral
expressions. Despite these limitations, the 3DMM has proved its effectiveness
in image face analysis, inspiring most of the subsequent work. The 3DMM was
further refined into the Basel Face Model by Paysan et al. [28]. This offered
higher shape and texture accuracy thanks to a better scanning device, and a
lower number of correspondence artifacts using an improved registration algo-
rithm based on the non-rigid Iterative Closest Point (ICP) [2]. However, since
non-rigid ICP cannot handle large missing regions and topological variations,
expressions were not accounted for in the training data also in this case. In
addition, both the optical flow used in [5] and the non-rigid ICP method used
in [1,28] were applied by transferring the vertex index from a reference model
to all the scans, so that the choice of the reference face can affect the quality
of the detected correspondences, and the resulting 3DMM. The work by Booth
et al. [8] introduced a pipeline for 3DMM construction. Initially, dense correspon-
dence was estimated applying the non-rigid ICP to a template model. Then, the
so called LSFM-3DMM was constructed using PCA to derive the deformation
basis on a dataset of 9,663 scans with a wide variety of age, gender, and ethnic-
ity. Though the LSFM-3DMM was built from the largest dataset compared to
the current state-of-the-art, the face shapes were still in neutral expression.

Following a different approach, Patel and Smith [27] showed that Thin-
Plate Splines (TPS) and Procrustes analysis can be used to construct a 3DMM.
In [12], Cosker et al. described a framework for building a dynamic 3DMM,
which extended static 3DMM construction by incorporating dynamic data. This
was obtained by proposing an approach based on Active Appearance Model and
TPS for non-rigid 3D mesh registration and correspondence. Results showed
this method overcomes optical flow based solutions that are prone to temporal
drift. Brunton et al. [9], instead, proposed a statistical model for 3D human
faces in varying expression. The approach decomposed the face using a wavelet
transform, and learned many localized, decorrelated multilinear models on the
resulting coefficients. In [24], Lüthi et al. presented a Gaussian Process Mor-
phable Model (GPMM), which generalizes PCA-based Statistical Shape Models
(SSM).

3DMM has been used at coarse level for face recognition and synthesis. In
one of the first examples, Blanz and Vetter [6] used their 3DMM to simulate the
process of image formation in 3D space, and estimated 3D shape and texture of
faces from single images for face recognition. Later, Romdhani and Vetter [31]
used the 3DMM for face recognition by enhancing the deformation algorithm
with the inclusion of various image features. In [35], Yi et al. used the 3DMM
to estimate the pose of a face image with a fast fitting algorithm. This idea was
extended further by Zhu et al. [38], who proposed fitting a dense 3DMM to an
image via Convolutional Neural Network. Grupp et al. [16] fitted the 3DMM
based exclusively on facial landmarks, corrected the pose of the face and trans-
formed it back to a frontal 2D representation for face recognition. Hu et al. [17]
proposed a Unified-3DMM that captures intra personal variations due to illu-
mination and occlusions, and showed its performance in 3D-assisted 2D face
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recognition for scenarios where the input image is subjected to degradations
or exhibits intra-personal variations. Recent solutions also used deep neural net-
works to learn complex non-linear regressor functions mapping a 2D facial image
to the optimal 3DMM parameters [14,33].

In all these cases, the 3DMM was used mainly to compensate for the pose
of the face, with some examples that performed also illumination normaliza-
tion. Expressions were typically not considered. Indeed, the difficulty in making
3DMM work properly in fine face analysis applications is confirmed by the exis-
tence of very few methods that use 3DMM for expression recognition [4,10].
Among the few examples, Ramanathan et al. [30] constructed a 3D Morphable
Expression Model incorporating emotion-dependent face variations in terms of
morphing parameters that were used for recognizing four emotions. Ujir and
Spann [34] combined the 3DMM with Modular PCA and Facial Animation
Parameters (FAP) for facial expression recognition, but the model deformation
was due more to the action of FAP than to the learned components. In [13],
Cosker et al. used a dynamic 3DMM [11] to explore the effect of linear and
non-linear facial movement on expression recognition through a test where users
evaluated animated frames. Huber et al. [20] proposed a cascaded-regressor based
face tracking and a 3DMM shape fitting for fully automatic real-time semi dense
3D face reconstruction from monocular in-the-wild videos. The Dictionary Learn-
ing based 3DMM (DL-3DMM) proposed by Ferrari et al. [15] was one of the most
promising in producing realistic facial expressions from the mean model. This
is possible thanks to a dense alignment procedure based on landmarks, face
partitioning and resampling, which allows expressive scans are enrolled in the
training. This 3DMM has been used to enhance facial expression and action
unit recognition from 2D images and videos with state-of-the-art performance
on benchmark datasets.

3 3D Morphable Model

From the discussion of existing solutions for generating a 3DMM, it is quite evi-
dent the presence of some aspects that play a major relevance in characterizing
the different solutions: (1) the human face variability captured by the model,
which directly depends on the number and heterogeneity of training examples;
(2) the capability of the model to account for facial expressions; also this feature
of the model directly derives from the presence of expressive scans in the train-
ing. One of the few 3DMM existing in the literature that exposes both these
features is the Dictionary Learning based 3DMM (DL-3DMM) proposed by Fer-
rari et al. [15]. Since our contribution mainly develops on this model, to make
the paper as self-contained as possible, below we describe the peculiar features
that make this particular 3DMM formulation suitable for our purposes.

3.1 DL-3DMM Construction

The first problem to be solved in the construction of a 3DMM is the selec-
tion of an appropriate set of training data. This should include sufficient
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variability in terms of ethnicity, gender, age, so as to enable the model to include
a large variance in the data. Apart for this, the most difficult aspect in preparing
the training data is the need to provide dense, i.e., vertex-by-vertex, alignment
between the 3D scans. In the original work of Blanz and Vetter [5] this was solved
with the optical-flow method that provided reasonable results just in the case
of neutral scans of the face. Several subsequent works used non-rigid variants of
the Iterative Closest Point (ICP) algorithm, thus solving some problem related
to the optical-flow, but without the explicit capability of addressing large facial
expressions in the training data. The dense alignment of the training data for
the DL-3DMM was obtained with a different solution based on the detection
of landmarks of the face, and their use for partitioning the face into a set of
non-overlapping regions, each one identifying the same part of the face across all
the scans. Re-sampling the internal of the region based on its contour, a dense
correspondence is derived region-by-region and so for all the face. Such method
showed to be robust also to large expression variations as those occurring in the
Binghamton University 3D facial Expression (BU-3DFE) database [36]. This
latter dataset was used in the construction of the DL-3DMM.

Once a dense correspondence is established across the training data, these are
used to estimate a set of deformation components that will be used to generate
novel shapes. In the classic 3DMM framework [5], new 3D shapes S are generated
by deforming an average model m with a linear combination of a set of M
principal components C, usually derived by PCA as follows;

S = m +
|M |∑

i=1

Ciαi. (1)

The DL-3DMM is instead constructed by learning a dictionary of deformation
components exploiting the Online Dictionary Learning for Sparse Coding tech-
nique [25]. Learning is performed in an unsupervised way, without exploiting any
knowledge about the data (e.g., identity or expression labels). Then, the average
model is deformed using the dictionary atoms Di in place of Ci in Eq. (1).

Dictionary learning is usually cast as an �1-regularized least squares prob-
lem [25]; however, the sparsity induced by the �1 penalty to the dictionary atoms,
can lead to discontinuous components and ultimately in a noisy or punctured 3D
shape. To address this issue, the dictionary learning is formulated as an Elastic-
Net regression, mitigating the sparsity effect of the �1 penalty with an �2 regu-
larization that forces smoothness. By defining �1,2(wi) = λ1 ‖wi‖1 + λ2 ‖wi‖2,
where λ1 and λ2 are, respectively, the sparsity and regularization parameters,
the problem can be formulated as (using N training scans):

min
wi, D

1
N

N∑

i=1

(
‖vi − Dwi‖22 + �1,2(wi)

)
, (2)

where vi ∈ R
3m is the vector of deviations between scan i and the average model

(being m the number of points in the scans), the columns of the dictionary
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D ∈ R
3m×k are the basis components, wi ∈ R

k are the coefficients of the dictio-
nary learning, and k is the number of basis components of the dictionary. Note
that the number of components (dictionary atoms) is fixed and pre-determined.
The coefficients vector w ∈ R

k provides an estimate of the degree of impor-
tance that each atom had in reconstructing the training set; in comparison with
the classic framework based on PCA, these can be interpreted similarly to the
eigenvalues. A favorable characteristic of the DL-3DMM is that, oppositely to
PCA, larger dictionaries lead to more accurate reconstructions and are likely
to include sparser and complementary atoms; this facilitates the identification
of the atoms that involve particular face areas. More details on the dictionary
learning procedure can be found in [15].

The average model m, the dictionary D and w, constitute the DL-3DMM.

3.2 DL-3DMM Fitting

Fitting a 3DMM to a 2D face image allows a coarse 3D reconstruction of the
face. To this end, estimating the 3D pose of the face, and the correspondence
between 3D and 2D landmarks are prerequisites. In order to estimate the pose,
a set of 49 facial landmarks l ∈ R

2×49 is detected on the 2D face image using
the technique proposed in [21], while an equivalent set of vertices L ∈ R

3×49 is
manually annotated on the average 3D model. Under an affine camera model [26],
the relation between L and l is:

l = A · L + T. (3)

The affine matrix is directly estimated with a closed-form least squares solu-
tion since, by construction, facial landmark detectors do not permit outliers or
unreasonable arrangement of the landmarks. The 2D translation is instead recov-
ered as T = l − A · L. The estimated pose P is represented as [A,T] and used
to map each vertex of the 3DMM onto the image.

Using the learned dictionary D = [d1, . . . ,dk], the average model is non-
rigidly transformed such that the projection minimizes the error in correspon-
dence to the landmarks. The coding is formulated as the solution of a regularized
Ridge-Regression problem:

arg min
α

∥
∥
∥
∥
∥
l − PL −

k∑

i=1

Pdi(Iv)αi

∥
∥
∥
∥
∥

2

2

+ λ
∥
∥α ◦ w−1

∥
∥
2
, (4)

where ◦ is the Hadamard product and Iv are the indices that correspond to
the vertices of the landmarks in the 3D model. By defining X = l − L and
Y = PD(Iv), the solution can be found in closed form as follows:

α =
(
YTY + λ · diag(w−1)

)−1
YTX. (5)

Again, for a detailed description of the procedure the reader can refer to [15].
A fitting example obtained using this solution is shown in Fig. 1; the 3D model
is deformed according to the target face image, the vertices of the model can
be projected onto the face image exploiting the estimated pose so that we can
sample its texture.
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Fig. 1. Examples of DL-3DMM fitting on expressive face images from the Cohn-Kanade
(CK+) dataset [23]

4 Learning Expression Coefficients

Given the DL-3DMM as described above, the result of the fitting procedure is
a set of coefficients α that are used to deform the average model using Eq. (1).
Considering a generic face image, the latter coefficients codify the global shape
deformation (i.e., the identity) along with other deformations (i.e., expressions).
Our main goal is to derive the set of coefficients that reproduce expressions; in
order to do so, we first need to isolate the identity component from the deforma-
tion. To this aim, we first fit the DL-3DMM to a face image in neutral expression
to account for the identity and obtain the coefficients αid; subsequently, the fit-
ted model is used in place of the average model to fit an expressive face image
of the same subject. In this way, we obtain a set of coefficients αexpr that codify
the expression. The procedure is depicted in Fig. 2. The final and crucial step is
to find a recurrent pattern in the αexpr coefficients, separately for each expres-
sion. To this end, we propose to investigate and compare the appropriateness of
different methods using: (i) statistical indicators; (ii) regressors.

Fig. 2. Workflow of the proposed procedure to extract the expression-specific defor-
mation coefficients from the DL-3DMM fitting

Statistical Indicators. First, we have investigated some basic statistical indica-
tors, namely mean, median and mode. Best results have been obtained with the
latter, which we estimated using the mean-shift algorithm. Using a Gaussian
kernel
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K(xi − x) = e−c||xi−x||2 ,

a centroid xi at iteration t is updated with xt+1
i = xt

i + m(x), at iteration t + 1,
with

m(xi) =

∑
xj∈N(xi)

K(xj − xi)xj∑
xj∈N(xi)

K(xj − xi)
.

In this latter equation, N(xi) is a neighborhood of xi, that is the set of points
such that K(xi) �= 0, and m(x) is the mean shift vector. The centroid updating is
repeated till the convergence of m(x). The only parameter used in this algorithm
is the bandwidth, i.e, the radius of the gaussian region. In our case, we search for
the centroid best representing the data distribution. To this end, we started with
a fixed bandwidth and repeated the mean shift iteration by increasing the radius;
the procedure terminates when an individual point is returned; this centroid is
assumed as the vector representing the data distribution of a given expression.

At this stage, we also used the mean-shift algorithm to investigate the data
distribution. To this end, first, we fixed the bandwidth, applied the algorithm,
took the resulting number of centroids and counted how many samples fall in the
region of influence of the centroids. Table 1 reports the results for each expression.
It can be observed as the first centroid, located at the maximum peak of the
data distribution, is the most representative of the samples: arguably, this is due
to the fact the other maxima capture possible outliers or errors included in the
dataset.

Table 1. For each expression, the number of centroids found by fixing the bandwidth,
and the percentage of vectors that fall in the region of the first centroid are reported.
Expressions in the Cohn-Kanade (CK+) dataset have been used here

Expression #Centroids % vectors first centroid

Angry 4 93%

Contempt 5 73%

Disgust 2 98%

Fear 2 96%

Happy 5 92%

Sadness 3 93%

Surprise 2 95%

As a further analysis, we iterated the algorithm by augmenting the band-
width so as to find two centroids. Then, we have compared the faces obtained
by applying both the weight vectors corresponding to the two maxima for each
expression. Results indicated that the deformed faces obtained from the weight
vector of the first maximum are the same as those obtained using a single maxi-
mum; applying the weight vector corresponding to the second maximum, instead,
resulted in non-realistic faces.
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Regressors. In the following, we model the problem of estimating the deformation
coefficients of the 3DMM as a regression one, using the Support Vector Regres-
sion (SVR) technique. A cross validation process has been used to determine the
train/test splits. The coefficients vectors have been used as “multi-labels” that
are predicted using a multi-output regressor, which repeats the estimate for each
component of the array. The regressor is controlled by parameters that do not
depend on the dimensionality of the feature space. In our case, a 4-fold cross
validation has been performed to determine the best kernel and the values of
the parameters C and ε of the regressor.

As a result, for both the methods, we obtained for each expression a set of
coefficients αest that allow the application of an expression to a subject-specific
model in neutral expression.

5 Experimental Results

In this Section, we first describes the dataset adopted for the experimental eval-
uation (Sect. 5.1), then we provide a qualitative evaluation (Sect. 5.2), of the
different modalities we have used for model parameter estimation.

5.1 Dataset

The experiments have been performed on the Extended Cohn-Kanade (CK+)
dataset [23], which includes about 600 sequences of 123 subjects showing 7 dif-
ferent expressions, namely Disgust, Surprise, Angry, Sadness, Fear, Contempt,
Happy ; for each sequence the neutral (first) and expressive (last) frames have
been used. The DL-3DMM has been deformed to each of these frames using the
fitting procedure illustrated in Sect. 3.2; we used a dictionary of 300 atoms. A
subset of the 123 individuals has been used to learn the parameters so as to test
on different identities. For neutral frames, these coefficients capture the shape
information of the individual; for expressive scans, we first deformed the 3DMM
on the neutral frame of the same subject, then from this to the expressive frame,
following the procedure of Fig. 2. In this way, the coefficients capture the shape
deformation to pass from a neutral to an expressive scan for a specific identity.

5.2 Qualitative Results

In order to derive qualitative results, we fitted the DL-3DMM to some neutral
faces of the dataset and applied the estimated deformation coefficients αest so as
to generate expressive scans for each expression. Figure 3 shows some examples
of generated expressive renderings starting from the neutral one and applying
the deformation. The magnitude of the deformations can be controlled with
a parameter λ, useful to emphasize subtle expressions that do not sufficiently
change the neutral face (e.g., contempt). The expressive models generated from
the neutral 3DMM according to the learned deformation vectors are rendered
for qualitative evaluation. Some examples can be appreciated in Fig. 3; starting
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Fig. 3. Qualitative examples of synthetically generated expressive renderings of two
subjects from the CK+ dataset. The leftmost column reports the 3DMM fitting to the
neutral face images of the two subjects, while the other columns report the models
derived from the neutral ones by applying the deformation coefficients corresponding
to each expression, from disgust to happy, left-to-right

from the neutral expression, we can effectively generate expressive renderings
applying the expression-specific parameters separately.

Figure 4 shows another interesting application of our method, that is the
generation of complex expressions by combining the parameters of the single
prototypical expressions. This feature allows us to mix an arbitrary number
of expressions and further demonstrates the meaningfulness of the estimated
parameters. The examples in Fig. 4 are generated using a combination of 2 (top
row) or 3 (bottom row) basic expressions. A drawback of this application is that
if the weights of the single expressions are not balanced, the final model can
result noisy or excessively deformed.

Fig. 4. Qualitative examples of mixed deformations on one subject of the CK+ dataset;
two (top row) or three (bottom row) prototypical expressions have been used

In Fig. 5, we show a comparison between the different techniques used to esti-
mate the αest coefficients; the generated images are rather similar to each other,
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even using basic statistical indicators as the mean. This suggests us that the
elements of the dictionary are effective in separating the identity and expression
components and that our methodology allows us to easily extrapolate expression-
specific patterns within the deformation coefficients.

Fig. 5. Qualitative comparison of the different parameters estimation methods

Finally, Fig. 6 shows the application of our expression transfer method to face
images coming from different datasets, demonstrating the generalization capa-
bility of our approach in a cross-dataset scenario. Specifically, Fig. 6 (top row)
shows a face image from the Bosphorus dataset [32], while in Fig. 6 (bottom row)
a face image coming from the Labeled Faces in The Wild dataset (LFW) [18]
is shown. The former is a 3D face analysis dataset and comprises face images
along with their 3D models captured in controlled conditions; the LFW, instead,
is composed of “in the wild” face images and is used to address the face verifi-
cation problem. For both the examples, we are able to transfer the expression
of the subject from neutral to any of the learned expressions; this because the
3DMM is independent from the dataset which is applied to.

Fig. 6. Cross-dataset evaluation of the proposed method on sample images from the
Bosphorus (top row) and LFW (bottom row)
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6 Conclusions

In this paper, we have proposed a method to isolate the expression-specific
deformation parameters of a 3DMM and applied them to synthetically generate
expressive renderings of subjects in neutral expression. We exploited a pecu-
liar 3DMM implementation based on a dictionary learning technique, able to
reproduce expressions thanks to the inclusion of expressive scans in the train-
ing set. We showed that our two-step 3DMM fitting methodology is effective in
removing the identity component from the 3DMM fitting, and that expression-
specific recurrent patterns can be easily found within the parameters used to fit
the subject-specific model to its own expressive image. Moreover, the recovered
parameters can be effectively mixed so as to generate more complex expressions.
However, our solution is not exempt from limitations: first, expressions might
be more or less subtle; this means that they must be weighted accordingly in
order not to produce exaggerated or imperceptible deformations. Another issue
arose is that the textured renderings might result somewhat unnatural at times
when trying to generate expressions that are very diverse from the neutral one.
Indeed, we can assume that even a very slight expressiveness might be present
in “neutral” frames. As a future work, we are considering an extension of the
technique to the texture component of the images.
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