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Abstract. View synthesis aims at generating a novel, unseen view of
an object. This is a challenging task in the presence of occlusions and
asymmetries. In this paper, we present View-Disentangled Generator
(VDG), a two-stage deep network for pose-guided human-image gen-
eration that performs coarse view prediction followed by a refinement
stage. In the first stage, the network predicts the output from a target
human pose, the source-image and the corresponding human pose, which
are processed in different branches separately. This enables the network
to learn a disentangled representation from the source and target view.
In the second stage, the coarse output from the first stage is refined by
adversarial training. Specifically, we introduce a masked version of the
structural similarity loss that facilitates the network to focus on generat-
ing a higher quality view. Experiments on Market-1501 and DeepFashion
demonstrate the effectiveness of the proposed generator.

Keywords: Pose-guided view synthesis · Generative models ·
Structural similarity

1 Introduction

View synthesis is of considerable interest for data augmentation, animation,
augmented and virtual reality. Generating a novel view of a human [1,2] is more
challenging that generating a view for a rigid 3D object [3,4], especially when
scene parameters are unavailable.

The appearance of an object from an unseen view can be generated with
geometry or transformation-based methods [5]. Geometry-based methods gener-
ate novel views by scaling, rotation, translation, and non-rigid deformations of
specific 3D objects [6,7]. A limitation of geometry-based methods is the struc-
ture of the rendered 3D objects, which are characterized by shape invariance
and symmetry [5]. Transformation-based methods encode directly the correspon-
dence between input and output images to synthesize the view [3,4,8,9].
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Synthesizing an image of a person from an arbitrary pose is challenging due
to occlusions and the potentially complex human pose changes from the source
to target view. Unlike 3D-object-based synthesis [8,9], synthesizing the image of
a human from another pose and view cannot always make use of extrinsic camera
parameters or information about changes in illumination. Moreover, there might
be considerable differences in image quality in the dataset; the scale difference
between the input pair and output can be large; some body parts can be occluded
and some poses can appear infrequently (e.g., crossed arm). These factors have
an impact on the quality of the synthesized image.

Human image synthesis methods can be classified as view specific or pose
guided. View-specific methods synthesize human images into a pre-defined set of
views (e.g. front, back, side [10]). Pose-guided methods impose constraints over
the input view using a target 2D pose (defined as a set of 2D locations of the body
joints) as a guidance in the generation [1,2,5,11,12]. Recent approaches [2,10]
force the input image of the human body and its target pose to be encoded into
a joint feature space. This solution is undesirable as the input image and the
target pose are fed to the same encoder and their mixing in early layers can lead
to misalignment in the decoder. This problem becomes even more critical if the
input and the target have different scales and spatial locations. In fact, because
of this variation, the receptive field of the convolutional layers may not capture
the change of body appearance between the input and the target pose [1].

To address this problem, in this paper we propose a two-stage deep encoder-
decoder pipeline that explicitly separates the processing of input and target into
two branches, namely the image and the pose branch. The image branch learns
the mapping of the input image and pose into a compact discriminative space.
The pose branch independently encodes the target pose into the same space
as the compact feature of the image branch. The two feature vectors are then
combined and fed to the decoder network, which learns the pixel correspondence
of the target pose to generate a new image. Our network is presented as a U-
Net [13] architecture with residual blocks and skip connections. To encourage
the generator to produce visually appealing images, instead of optimizing the
generator using pixel-wise penalty (e.g. L1) we use a masked version of the
structural similarity loss.

The rest of the paper is structured as follows: Sect. 2 reviews recent advances
in human view synthesis. Section 3 presents a general formulation of the problem.
In Sect. 4, we present our proposed generator as well as a new weighted loss
function based on a masked structural similarity loss (mask-SSIM). Experimental
results are discussed in Sect. 5. Finally, in Sect. 6 we draw conclusions.

2 Background

Deep generative models for computer vision can be classified are Variational
Autoencoders (VAEs) [14] or Generative Adversarial Networks (GANs) [15].
GANs are widely used for image inpainting [16], image-to-image translation [17],
super-resolution [18], and cross-view image synthesis [19]. These solutions share
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the same encoder-decoder structure [20]. The idea is to map the high dimension
input to much lower dimensional discriminative feature using down-sampling
mappings (a series of convolutions and pooling operations). The resulting fea-
ture is then processed by a series of up-sampling (convolutions with interpola-
tions, e.g. Nearest-neighbour) to get to a target space (e.g. the reconstruction of
another image). U-Net is an encoder-decoder architecture that uses mid-level fea-
tures from the encoder in the decoding module by means of skip-connections [13].

Dosovitskiy et al. [21] presented a generative model by learning a lower
dimensional feature vector from the 3D object identity, a target view, and a
transformation vector. The combined feature vector is then transformed to the
desired 3D object and its segmented mask through a series of up-sampling and
convolutions. Appearance Flow Network [4] learns to map the input pixel to the
desired viewpoint by means of a learnable module called Spatial Transformer
[22] which allows explicit manipulation of the feature maps. The Transformation-
grounded view synthesis network (TVSN) [3] is a two-step model. The first mod-
ule called Disocclusion-aware Appearance Flow Network (DOAFN) extends the
Appearance Flow Network by only keeping the target pixels of the input that
are presented in the output transformation using a mask that uses ground truth
object coordinates and surface normals. The second network takes the output
of DOAFN and refines the results by a hallucination of the missing pixels using
adversarial training together with a pixel-wise reconstruction loss and percep-
tual loss [23]. More recently, a novel 3D synthesis model was proposed in which
optical flow is first estimated, then the target view image and the target mask
are synthesized on different networks. These two networks are linked using a
geometry module called perspective projection layer [9].

Zhao et al. [10] formulated the problem of multi-view person synthesis using
a pre-defined view as guidance in the generation. They proposed VariGANs
which are a combination of variational inference and adversarial learning. The
synthesized view is generated in a coarse-to-fine manner, i.e., a first stage is
used to produce a coarse result and a refinement step is applied to generate
the high-level details. Ma et al. [2] proposed the PG2 network which employs
U-Net with residual blocks in the generator, enabling to generate human images
as a coarse-to-fine manner from pose information. Siarohin et al. [1] addressed
the problem of pixel-to-pixel misalignments between the input and the target
image by introducing deformable skip connections in the generator and using
a nearest-neighbor loss. Ma et al. [12] proposed to generate each of the factors
(foreground, background, and pose) separately to synthesize the person image.
By learning each factor in a separate branch, the model is able to sample the
foreground, background, and pose separately and reconstruct a new image based
on these features. An unsupervised GAN [11] for human pose generation has been
proposed to avoid the need of supervision. The model introduces a loss function
that only depends on the input image and the generated one. The generator is
built in two-steps: firstly, a new image is generated based on the target pose, then,
the rendered image is fed to a second generator that reconstructs the input image
back. Si et al. [5] presented a multi-stage solution. First, a network learns to map
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the input pose to the target view pose based on a transformation vector. Then, a
generator synthesizes the person to the target view conditioned on the generated
pose along with the input image and pose. Finally, the background is generated in
a separated network. Recently, Yang et al. [24] proposed a pose-guided sequence
generation, from a single image, of people performing an action. A sequence of
poses of the human is predicted given the action as input. The video generation
is then performed as image synthesis conditioned on the predicted poses.

Fig. 1. The goal of pose guided human image synthesis is to generate the image of
the same person given the input image I

(i)
s , its corresponding pose P

(i)
s along with the

target pose P
(j)
s using a generator Φ.

3 Problem Formulation

We are given a set of N images taken from different view-point and poses I =⋃S
s=1 Is consisting of S persons, where |Is| = Ns and N =

∑S
s=1 Ns. Each image

I
(i)
s ∈ R

w×h×c is a bounding box around the person s, where w, h, and c = 3 are
the image width, height, and channel respectively.

Let Ψ : I → P be a mapping such that given an input image I
(i)
s ∈ I, it esti-

mates K-2D joints representing the body parts, i.e., P (i)
s = (P (i)

s [1], . . . , P (i)
s [K]).

Therefore, Ψ maps I to the pose set P =
⋃S

s=1 Ps ⊂ R
2×K . The pose guided

human image synthesis is defined as follows: Given an input image I
(i)
s and its

corresponding pose P
(i)
s along with the target pose P

(j)
s , the goal is to generate

the target image I
(j)
s using a mapping Φ that we call generator. The generator Φ

takes the input image, and is conditioned on an operator π : P → P that is able
to learn transform the input to the output. Finally, the target image is obtained
as: I

(j)
s = Φ(I(i)s , π(P (i)

s , P
(j)
s )) (see Fig. 1).
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4 View-Disentangled Generator Model

In this section, we present our View-Disentangled Generator (VDG) model. VDG
is a two-stage pipeline that first produces a coarse result from an input pair
(Ia, Pa) and a target pose Pb, we refer to this stage as Reconstruction stage. The
Refinement stage takes as input the generated image from the Reconstruction
stage and the original input Ia, along with the target pose Pb. To train our
Refinement stage model, we propose a new loss function that we extend from
Structural similarity (SSIM).

4.1 Reconstruction Stage

The Reconstruction stage synthesizes a coarse representation of the target image.
The encoder-decoder network is conditioned on the input image, input pose, and
the target pose. We explicitly disentangle the learning of the feature between the
input and the target view. The coarse image results from this stage (see Fig. 4)
are obtained by training the network via a L1 optimization.

Given an input view image of a person Ii
a and a target view Ii

b of the same per-
son, we build a dataset D1 of N pairs {(Ii

a, Ii
b)}N

i=1. We define the body pose P (I)
of an image I to be the set of K body joints locations P (I) = (p[1], . . . , p[K]).
Following [1], for a given image I, we compute a heat map H consisting of the
concatenation of K Gaussian heat maps centered around the jth joint of the
estimated pose. Therefore, for a location p ∈ R

2 and the concatenation operator

⊕, we compute H(I) =
K⊕

j=1
Hj , where:

Hj(p) = exp
(

−
∥
∥p − P (I)j

∥
∥2

2

2σ2

)
, (1)

where j ∈ {1, . . . , K}. We give to K and σ the same values as in [1]: K = 18
and σ = 6. We then compute the corresponding heat maps of the input pair
as: Ha = H(P (Ia)) and Hb = H(P (Ib)) using Eq. 1. Finally, the supervision
dataset is: D1 = (X1,Y), where X1 = {(I(i)a ,H

(i)
a ,H

(i)
b )}N

i=1, and Y = {I
(i)
b }N

i=1.
The poses are obtained using a pose estimator (e.g. [25]), thus, the resulting
estimations are prone to errors (Fig. 2).

Processing the input image and the target pose together in the encoder net-
work can be challenging for the network to make the correspondence if the
variation between the input and the output is high. Thus, we propose to disen-
tangle the processing of the input and the output into separate encoders. We
build a dedicated encoder for the target pose denoted as Encheat, this branch
will learn a compact representation of the pose, such that βb = Encheat(Hb).
The other encoder that we note as Encimg merges together the input image
Ia with the input heat map Ha, it allows the encoder to learn discriminative
spatial feature present in the image. The encoder Encimg also learns how to
combine the image space with the heat map space, this is a desirable property
that will be needed in order to join the Encheat feature output, from this we



Pose Guided Human Image Synthesis by View Disentanglement 385

Grec

fc

fc
E
n
c

E
n
c

D
ec

E
n
c

E
n
c

D
ec

Gref

⊕
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Fig. 2. Proposed VDG model.

have εa = Encimg(Ia,Ha). We then combine the two feature f = εa ⊕ βb, the
target view image is reconstructed using f i.e., Îb = Dec(f).

Similar to [2], the encoder-decoder network presented above (denoted as
Grec) follows a U-Net [13] like architecture. The encoder is built using N stacked
residual blocks followed by a convolution. Each residual block is composed of two
Conv-ReLU operations. In the decoder, skip connections are added between the
decoder and the image branch feature maps.

Because the goal of this step is to reconstruct a coarse result, we believe that
all the pixels (foreground and background) in the input image have the same
importance. Therefore, to train the network we use a L1 loss function between
the prediction ÎR

b and Ib as follows:

LGrec =
∥
∥
∥ÎR

b − Ib

∥
∥
∥
1

(2)

4.2 Refinement Stage

We present the Refinement stage model, where the goal is to use adversarial
training to reconstruct the high fidelity of the resulting images. In terms of
architecture, the network has a similar disentangling encoder part except that
instead, we encode the input and reconstructed image together. SSIM is also
presented as loss function for the generator.

Let Î
R(i)
b = Grec(I(i)a ,H

(i)
a ,H

(i)
b ) be the output from the trained Grec model

for the ith data sample. The dataset of the Refinement stage generator Gref

is built as follows: D2 = (X2,Y), where X2 = {(I(i)a , Î
R(i)
a ,H

(i)
b )}N

i=1, and Y =
{I

(i)
b }N

i=1.
Because with the fully connected layer we lose more of the spatial information

in the encoder part, we did not add this layer in the Gref encoder (see Fig. 2)
as suggested in [2]. Other than that, the generator Gref is similar to the Grec

network. The image branch in this step is used to restore back the high-level
frequency via adversarial training. The network will use the input image Ia as a
reference to map the missing details from the Reconstruction stage.
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The training of the model is done using a more general class of functions that
was proposed in [16,26]:

L = λadvLadv + λrecLrec, (3)

where Ladv and Lrec are the adversarial loss and the reconstruction loss respec-
tively. The weighting terms are there to balance between the coarse (low-
frequency) results obtained from the reconstruction loss and the sharpness (high-
frequency) of the results. For the adversarial learning, instead of trying to opti-
mize ÎG

b to fit the target, we learn the residue in order for the Reconstruction
stage image ÎR

b to fit the target using Eq. 4:

Îb = ÎR
b + ÎG

b (4)

The network is trained using adversarial learning between our Refinement stage
generator Gref and the discriminator D by alternating the optimization between
Eqs. 5 and 6. We use conditional discriminator [27] on the pair (Ia, Ib) for the
positive samples and (Ia, Îb) for the generated images.

LD = EIa,Ib

[
log D(Ia, Ib)

]
+ EIa

[
log(1 − D(Ia, Îb))

]
, (5)

LGref = EIa

[
log D(Ia, Îb)

]
+ λLimg. (6)

E denotes expectation, λ is a parameter that controls the influence of the recon-
struction loss. Structural similarity (SSIM) [28] is a metric that assesses the
quality of images. Since the goal of Refinement stage is to enhance the images
from the Reconstruction stage, we propose mask-SSIM to let the model focus
more on the generated person by making use of the target mask Mb:

Lreconst =

{∥
∥
∥(ÎG

b − Ib) � (1 + Mb)
∥
∥
∥
1
, for loss=Lmask

1

LSSIM (Îb � (1 + Mb), Ib � (1 + Mb)), for loss=Lmask
SSIM

(7)

where LSSIM is the SSIM loss.
Because the generator creates some visible artifacts during the adversarial

training, we try to reduce them by another L1 term with a small weight. Inspired
by the weighted reconstruction loss [29], we propose an adapted version of our
model. The final loss function becomes:

Limg = αLmask
SSIM + (1 − α)Lmask

1 . (8)

We choose α ∈ {0.9, 0.8, 0.7, 0.6, 0.5} for an ablation study presented in
Sect. 5 i.e., the L1 term in Limg can go up to half of the influence. After that,
the results will be blurred.
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5 Experiments

This section presents our evaluation protocol as well as a quantitative and qual-
itative study. We provide an ablation study of our architecture and highlight
some of the key factors that challenge the generation. To evaluate our model
we start with an ablation study of each component of VDG (as described in
Sect. 4), trained using L1 loss for the reconstruction in both stages. We also
highlight the importance of the careful choice of the loss function and how it
affects the results. The VDG model is trained using the L1 loss in the recon-
struction term in the Refinement stage. VDGmask−L1 uses the target mask Mb

in the reconstruction L1 loss as defined in Eq. 7. For VDG, we instead train the
generator using the mask-SSIM loss. Finally, VDGw trains the Refinement stage
generator using Eq. 8.

Datasets: We use Market-1501 [30] and DeepFashion [31]. Market-1501 [30]
dataset contains 32, 668 images of 1, 501 identities collected from six cameras.
The datasets have images of different poses, illuminations, viewpoints and back-
grounds, all images are of size 128 × 64 and we split them into train/test sets of
12, 936/19, 732. We pre-process each split by removing the images that do not
contain any pose in the estimation, we then create pairs in which we have the
image of the same person but with different pose. After this step we end up
having 263, 631 training pairs and we randomly select 12, 000 pairs for testing.

We use the In-shop Clothes Retrieval Benchmark of DeepFashion [31] dataset,
it has 52, 712 clothes images of 256 × 256 pixels. In total, there are 200, 000
pairs of identical clothes with different poses and/or scales. Following the proce-
dure described for Market-1501 dataset, we build our train/test sets and we get
101, 268 training pairs and we select 8, 670 pairs for testing. To construct the
train/test set on each dataset, we follow the protocol defined by Ma et al. [2].

Implementation Details: We train the generators Grec, and Gref and the
discriminator D using Adam [32] optimizer with β1 = 0.5, β2 = 0.999, and
learning rate ε = 2.10−5.

On Market-1501 (resp. DeepFashion), we set the number of residual blocks in
the generators Grec and Gref to N = 5 (resp. N = 6). We train the model with a
minibatch of size 16 (resp. 6) for 22k (resp. 40k) iterations at the Reconstruction
stage and 14k (resp. 30k) iterations at the Refinement stage.

Model Evaluation: To assess the models we use the SSIM score and the Incep-
tion Score (IS) [33] which is one of the widely used metric to evaluate a gen-
erative model. IS measures the performance of the generator by evaluating the
quality and the diversity of the generated images. Because of the high variation
in the background of the Market-1501 dataset, Ma et al. [2] proposed a variant
of SSIM and IS scores, which is to only apply the mask to both the original and
the reconstructed image to get the scores, we report these as well.

Table 1 compares results obtained from the Reconstruction stage with the
PG2 model and our proposed VDG. To study the influence of the mask in this
phase, we train PG2 using only L1 without the mask which we refer to as PG2
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Table 1. Reconstruction stage results comparison with the PG2 [2] model.

Method Market-1501 DeepFashion

SSIM IS Mask-SSIM Mask-IS SSIM IS

PG2 [2] .285 3.363 .801 2.798 .693 2.882

PG2 [2] w/o mask .290 3.356 .804 2.797 .689 2.833

VDG .274 3.407 .799 2.733 .691 2.773

Table 2. Artifact removal evaluation by varying α over Limg.

Method Market-1501 DeepFashion

SSIM IS Mask-SSIM Mask-IS SSIM IS

VDGα=0.9
w .266 3.453 .783 3.227 .700 3.428

VDGα=0.8
w .258 3.315 .779 3.201 .706 3.073

VDGα=0.7
w .240 3.882 .773 3.469 .710 2.906

VDGα=0.6
w .261 3.195 .773 3.258 .711 2.887

VDGα=0.5
w .265 3.463 .777 3.210 .709 3.056

Table 3. Results comparison of our proposed model with other state-of-the-art solu-
tions. (�) Results were reported on different test set.

Method Market-1501 DeepFashion

SSIM IS Mask-SSIM Mask-IS SSIM IS

PG2 [2] .252 4.015 .771 3.555 .641 3.187

Def-GAN [1] .290 2.990 .798 3.544 .665 3.420

PDIG [12] (�) .099 3.483 .614 3.491 .614 3.228

VDGL1 .224 3.733 .767 3.503 .700 3.428

VDGmask−L1 .238 3.933 .768 3.542 .690 3.429

VDG .238 4.007 .775 3.354 .708 3.003

VDGw .266 3.453 .783 3.227 .702 3.491

w/o mask. We notice a slight improvement on the SSIM for PG2 model compared
to our, as for the mask, from Table 1 we do not notice any clear evidence of using
the mask during this stage.

We further conducted an empirical evaluation on how varying the weight-
ing term α affects the artifact removal due to the adversarial training and the
perceptual quality as well. Table 2 reports the scores over Market-1501 and Deep-
Fashion, we can notice that the overall best performing model is with α = 0.9
which suggest that the L1 term helps to remove the noticeable artifacts without
altering the perceptual quality of the results. We show some qualitative results
as well in Fig. 3, for example, in the second row of DeepFashion, we can clearly
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Îα=0.9
b Îα=0.8

b Îα=0.7
b Îα=0.6

b Îα=0.5
b Ib

Market-1501

DeepFashion

Fig. 3. Qualitative results on a various weighting scheme with the proposed loss.

see the advantage of VDGα=0.9
w where for the other models the generation of the

shirt comes with additional artifacts.
For the Refinement stage (Table 3), we can observe that the mask loss

(VDGmask−L1) improves the results over only a L1 term (VDGL1), this is
because we let the network focus more on the generation of human image. Addi-
tionally, using SSIM as a loss function helps the generator (VDG and VDGw).
We explain the equality in the SSIM scores for VDGmask−L1 and VDG due to
the background influence which is still challenging for both models. We further
compare our model against other state-of-the-art methods. From these results,
we can see the effectiveness of branching solution (VDG and Def-GAN [1]) com-
pared to PG2.

An important remark to make regarding the results is the inconstancy on how
the evaluation measures behave. In our study, we observe that when the SSIM
score improves the inception scores decrease. Similar behavior has been observed
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Fig. 4. Sample results obtained from Market-1501 and DeepFashion datasets.

also in [12], where the authors reported the opposite phenomena. We believe that
this is still a challenging open problem on how to benchmark properly over GANs
performance, we refer the reader to the work presented in [34] for more in-depth
study.

Qualitatively, Fig. 4 shows the generated images from the Reconstruction
stage and the final results w/o mask. Results from Reconstruction stage (second
column on both datasets) reconstruct the target image based on appearance and
the target pose but high-level details are absent. Refinement stage adds details
by a hallucination of some missing human parts from the input (e.g., faces). We
notice some artifacts that are present in the final results produced by the GAN
generator, which affect the general scores. Figure 5 compares our method against
other state-of-the-art, our improved loss VDGw can generate images with a clear
distinction between the body and the arms compared to the VDG model (see
the fourth row). We also note that the L1 term in the proposed loss helps to
remove some of the visible artifacts due to the residual term in the adversarial
process (2nd and 5th row). We observe that PG2 can not preserve well the color
as can be seen from the third and seventh row.

Quality Assessment: In general, the generator is able to reconstruct the full
body limbs. Figure 6 shows some results of our model with regards to the factors
defined in Sect. 1: quality, scale, occlusion, and complexity. Interestingly, when
some parts of the body are missing in the input but needed in the output our
generator can hallucinate about the face and the full arm with the appropriate
pants colors even with partial initial information (3rd row right part). The model
can handle well the scale difference (1st and 2nd rows). On the other hand, the
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Ia Pa Pb VDG VDGw [2] [1] Ib

Fig. 5. Generated results using different methods on Market-1501 and DeepFashion.
(Color figure online)
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model produces crippled outputs on challenging cases like occlusion and the
quality of the images. Also, the high variation between the input and the target
background affects the produced samples.

Ia Pa Pb Îb Ib Ia Pa Pb Îb Ib

Fig. 6. Results of our model on challenging cases. (Color figure online)

6 Conclusions

We presented a two-stage deep encoder-decoder network for pose guided human
image generation. We proposed a disentangled generator that explicitly sepa-
rates the source image and the target pose into different branches. We further
introduced mask-SSIM as a reconstruction loss function during the adversarial
training, which facilitates the generator to focus on perceptually appealing out-
puts. The proposed model has shown competitive performance compared to the
state of the art.

We observed that the background should be taken into account as it affects
the quality of the generated view. Moreover, further improvements could be
achieved by using sub-modules, each focusing on a specific part [5,12,35].
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16. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders:
feature learning by inpainting. In: IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR, June 2016

17. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, July 2017

https://doi.org/10.1007/978-3-319-46493-0_18
https://doi.org/10.1007/978-3-319-46493-0_18
https://doi.org/10.1007/978-3-319-24574-4_28


394 M. I. Lakhal et al.

18. Ledig, C., et al.: Photo-realistic single image super-resolution using a genera-
tive adversarial network. In: IEEE International Conference on Computer Vision,
ICCV, October 2017

19. Krishna, R., Ali, B.: Cross-view image synthesis using conditional GANs. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, June 2018

20. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35, 1798–1828
(2013)

21. Dosovitskiy, A., Springenberg, J.T., Tatarchenko, M., Brox, T.: Learning to gener-
ate chairs, tables and cars with convolutional networks. IEEE Trans. Pattern Anal.
Mach. Intell. (PAMI) 39, 692–705 (2017)

22. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: Advances in Neural Information Processing Systems, NIPS, Decem-
ber 2015

23. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

24. Yang, C., Wang, Z., Zhu, X., Huang, C., Shi, J., Lin, D.: Pose guided human video
generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV
2018. LNCS, vol. 11214, pp. 204–219. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01249-6 13

25. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose esti-
mation using part affinity fields. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, July 2017

26. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics
based on deep networks. In: Advances in Neural Information Processing Systems,
NIPS, December 2016

27. Mirza, M., Osindero, S.: Conditional generative adversarial nets. Volume
abs/1411.1784 (2014)

28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. (TIP) 13,
600–612 (2004)

29. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with
neural networks. IEEE Trans. Comput. Imag. 3, 47–57 (2017)

30. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person
re-identification: a benchmark. In: IEEE International Conference on Computer
Vision, ICCV, December 2015

31. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes
recognition and retrieval with rich annotations. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, June 2016

32. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations, ICLR, May 2015

33. Salimans, T., et al.: Improved techniques for training GANs. In: Advances in Neural
Information Processing Systems, NIPS, December 2016

34. Borji, A.: Pros and cons of GAN evaluation measures. Volume abs/1802.03446
(2018)

35. Guha, B., Amy, Z., Adrian, V.D., Fredo, D., John, G.: Synthesizing images of
humans in unseen poses. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, June 2018

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-030-01249-6_13
https://doi.org/10.1007/978-3-030-01249-6_13

	Pose Guided Human Image Synthesis by View Disentanglement and Enhanced Weighting Loss
	1 Introduction
	2 Background
	3 Problem Formulation
	4 View-Disentangled Generator Model
	4.1 Reconstruction Stage
	4.2 Refinement Stage

	5 Experiments
	6 Conclusions
	References




