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Abstract. Convolutional Neural Networks (CNN) are the leading mod-
els for human body landmark detection from RGB vision data. How-
ever, as such models require high computational load, an alternative is
to rely on depth images which, due to their more simple nature, can
allow the use of less complex CNNs and hence can lead to a faster detec-
tor. As learning CNNs from scratch requires large amounts of labeled
data, which are not always available or expensive to obtain, we propose
to rely on simulations and synthetic examples to build a large train-
ing dataset with precise labels. Nevertheless, the final performance on
real data will suffer from the mismatch between the training and test
data, also called domain shift between the source and target distribu-
tions. Thus in this paper, our main contribution is to investigate the use
of unsupervised domain adaptation techniques to fill the gap in perfor-
mance introduced by these distribution differences. The challenge lies in
the important noise differences (not only gaussian noise, but many miss-
ing values around body limbs) between synthetic and real data, as well
as the fact that we address a regression task rather than a classification
one. In addition, we introduce a new public dataset of synthetically gen-
erated depth images to cover the cases of multi-person pose estimation.
Our experiments show that domain adaptation provides some improve-
ment, but that further network fine-tuning with real annotated data is
worth including to supervise the adaptation process.

Keywords: Human pose estimation · Adversarial learning ·
Domain adaptation · Machine learning

1 Introduction

Person detection and pose estimation are fundamental tasks for many vision
based systems across different types of computer vision domains, e.g. visual
surveillance, gaming and social robotics. Estimating the human pose provide
the different systems the means for fine-level motion understanding and activity
recognition.
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Representation based methods, specifically Convolutional Neural Networks
(CNN), are the leading algorithms to address the pose estimation task. Very
deep CNN models have shown robustness to pose complexity, people occlusion
and noisy imaging, providing excellent results. Normally, the deeper is the CNN
architecture, the larger are the computational demands. In addition, the learning
task needs sufficient amounts of data that span the human pose configuration
space to prevent overfiting.

To alleviate these issues, we propose the use of depth imaging for human body
pose estimation using CNNs. By using depth images we lower the complexity
introduced by variabilities such as color and texture, which result in using lighter
CNN architectures capable for real time deployment. Depth images have been
proven to provide relevant information for the task of human pose estimation.
Moreover, the need of training data can be addressed by depth image synthesis.
The obtained benefits are twofold, (1) they are easier to synthesize than natural
RGB images, and (2) accurate body part annotations come at no cost. However,
our pose estimation task will suffer from the domain shift. That is, synthetic and
real images come from different distributions, limiting the CNN’s generalization
capabilities on real depth images.

The challenge addressed in this paper is to fill the gap in the performance
caused by the domain shift provoked by learning from synthetic depth images
to deploy on real ones. We investigate unsupervised domain adaptation methods
to exploit large datasets of unlabeled depth images with people to boost the
performance of a CNN-based body pose regressor learned from synthetic data.
Landmark localization imposes a challenge in typical domain adaptation settings
where the final task is image classification and domains mainly vary in viewpoint
and objects are mainly image-centered. On this line, we address the need of train-
ing data by creating a dataset of synthetically generated depth images to cover
multi-person pose estimation settings by generating depth images displaying two
person instances. We show how data recorded with the same type of depth sensor
is meaningful for unsupervised domain adaptation for pose estimation purposes.
We finally analyze the limitations of unsupervised domain adaptation by compar-
ing the results of adapted models with those obtained by performing fine-tuning
with few annotated images. Our experiments suggest that domain adaptation
solely improves the performance, and can be further boosted by fine-tuning on
a small sample of labeled images.

In Sect. 2 we present a review of state-of-the-art CNN-based approaches for
body pose estimation and domain adaptation. In Sect. 3, we present the different
data we use for learning and testing purposes and our approach for synthesizing
images in multi-person scenarios. Section 4 describes the proposed approach for
depth domain adaptation for body pose estimation. Experiments and results are
described in Sect. 5. Finally, Sect. 6 presents our conclusions and future work.

2 State-of-the-Art

State-of-the-art methods for pose estimation in the deep learning literature
mainly cover the RGB domain. They mainly address the task relying on the
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Fig. 1. Scheme of the proposed method for efficient human pose estimation from depth
images. A CNN (b) is learned relying on synthetically generated images of people under
multiple pose configurations combined with varying real background (a). The domain
shift is addressed via an unsupervised domain adaptation method (d) that uses real
unlabeled data (c).

cascade of detectors concept: sequentially stacking detectors to improve and
refine body part predictions. Image context is retrieved through different net-
work kernel resolutions [12,20,28,29], or embedding coarse to fine prediction in
the network architecture [2,10,18]. Moreover, learning the relationships between
pairs of body parts improves the performance [3,11,13,25].

Depth data has proven to be a good source of perceptual information of great
importance, specifically for robotics and autonomous systems. Depth images
preserve many essential features that also appear in natural images, e.g. corners,
edges, silhouettes, and it is texture and color invariant.

Pose estimation methods from depth images also exist in the CNN liter-
ature [6,9,28]. Given that depth image datasets with body part annotations
are scarse in the public domain, approaches of this kind use a large network
pre-trained on RGB data (e.g. VGG [24]) to fine-tune to the depth domain.
However, the use of RGB pre-trained models is not necessarily adequate for
the depth domain given the difference between the two data types. In addition,
such large pre-trained networks involve many parameters and may unnecessary
increase the processing time.

An alternative approach to address the lack of data is via image synthesis [5,
15,21,23]. The simplicity of depth images has an advantage for data generation:
the lack of texture and color removes some variability factors and simplifies the
synthesis process.

A very well known approach that pursued this path is the approach of Shotton
et al. [21] proposing a depth image synthesis pipeline to generate a large and
varied training set using computer graphics. Still, although a very high realism
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is achieved, the data does not span the full range of data content. The generated
data lacks of typical image characteristics of depth sensors which are difficult to
model, as illustrated in Fig. 3.

As a result, a model learned and tested on different data origins will suffer a
degraded performance provoked by the so called domain shift arising from the
differences in visual features. This issue can be alleviated provided extra labeled
data for the testing domain. However, since obtaining such data in large enough
quantities is often problematic, an unsupervised domain adaptation technique is
well suited to learn a predictor in presence of a domain shift between the training
(source) and testing (target) data distributions without the need of labeled data
in the target domain.

The premise of a domain adaptation technique is to learn a data represen-
tation that is invariant across domains. On the one hand, classical machine
learning approaches seek to align the data distributions by minimizing the dis-
tance between domains provided domain distribution parametrizations [7]. On
the other hand, current deep learning methods make use of various training
strategies and network architectures to ensure and ease domain confusion and
to automatically learn an invariant representation of the data [4,8,16,26,27].

For example [8] proposes to learn invariant data features in a multi-task
adversarial setting for object classification. The method learns jointly an object
class and domain predictors with shared features among the tasks. Domain adap-
tation is achieved by an adversarial domain regularizer which aims at fooling the
domain classifier, which is in charge of predicting the domain the data comes
from. The process encourages the learning of features that makes the domain
classifier incapable of distinguish between domains.

Domain adaptation has also been used for the task of 3D pose estimation
from RGB images [5]. The approach uses computer graphics software to syn-
thesize colored and textured images of humans that are subsequently merged
with natural images as background. Domain adaptation is performed in a two
step learning process by alternating the updates of a domain predictor and pose
regressor.

Deep domain adaptation in the depth image domain is less covered in the lit-
erature. A comparison of state-of-the-art domain adaptation techniques applied
to object classification from depth images is presented in [19]. Along the same
direction, a method for feature transfer from the real to the synthetic depth
domain is presented in [22].

Although deep domain adaptation techniques have obtained remarkable
results in transferring domain knowledge, in the majority of the problems the
visual domains mainly differ in the objects perspective, lighting, background,
and objects are mostly image centered. In addition, most of the final tasks are
image classification leaving an open door to apply the same methods for regres-
sion problems and object localization tasks, e.g. keypoint detection.
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Fig. 2. (a) Examples of the 3D characters we use for depth image synthesis, (b) skeleton
model we follow to perform pose estimation, (c) examples of rendered synthetic images,
(d) color labeled mask, (e) examples of training images combining synthetic depth
silhouettes and real depth background images. (Color figure online)

3 Depth Image Domains

This section presents the depth image domains we consider for our pose esti-
mation approach. First, we describe our approach to generate synthetic depth
images for multi-person pose estimation settings. Then, we introduce the target
data for testing composed of real depth image sequences recorded in a Human-
Robot Interaction (HRI) scenario.

3.1 Synthetic Depth Image Generation

Training CNNs requires large amounts of labeled data. Unfortunately, a precise
manual annotation of depth images with body parts is troublesome, given that
people roughly appear as blobs.

As mentioned before, synthesizing depth images is easier than color images
due to the lack of texture, color and lighting. We consider the synthetic depth
image database generated by the randomized synthesis pipeline proposed in [17].
The dataset contains images displaying single person instances with different
body pose and view perspectives. Yet, it may not be well suited for learn-
ing multi-person pose estimation settings like in HRI where people occlusion
occur frequently. The data must then reflect these cases. Building upon [17], we
improve such pipeline to synthesize depth images displaying two people under
different pose configurations, and to extract high quality annotations. The syn-
thesis pipeline is briefly described below.

Variability in Body Shapes. We consider a dataset of 24 3D characters that
show variation in gender, heights and weights, and have been dressed with dif-
ferent clothing outfits to increase shape variation (skirts, coats, pullovers, etc.).

Synthesis with Two People Instances. We cover the scenarios of multi-
person pose estimation by adding two 3D characters to the rendering scene.
During synthesis, two models are randomly selected from the character database
and placed at a fixed distance between each other. To avoid checking for colli-
sion between the characters we set a minimum distance between them during
rendering.
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Variability in Body Poses. Motion simulation is used to add variability in
body pose configurations. We perform motion retargeting from motion capture
data sequences taken from the CMU labs Mocap dataset [1].

Variability in View Point. A camera is randomly positioned at a maximum
distance of 8 meters from the models, and randomly oriented towards the models
torso.

Dataset and Annotations. The generated image dataset displaying two peo-
ple instances is publicly available as an extension of the data presented in [17].
Altogether, the two datasets contain 223,342 images of people performing dif-
ferent types of motion under different viewpoints with 51,194 images displaying
two people. We automatically extract the location of 17 body landmarks (head,
neck, shoulders, elbows, wrists, hips, knees, ankles, eyes) in camera and image
coordinates. Keypoint visibility labels are also provided. In addition, we extract
color labeled silhouette masks for images that contain two people instances. See
Fig. 2(b) for some examples.

3.2 Real Depth Image Domain Data

Depth imaging is generated as triangulation process in which a series of laser
beams are cast into the scene, captured by an infrared camera, and correlated
with a reference pattern to produce disparity images and finally the distance to
the sensor. The image quality and visual features greatly depend on the sensor
specifications, e.g. measurement variance, missing data, surface discontinuities,
etc. It is therefore natural to handle depth-based pose estimation learning from
synthetic data as a domain adaptation problem, where each depth sensor type
constitutes a domain.

We study the problem of depth domain adaptation considering synthetic
depth imaging as the source domain and Kinect 2 depth imaging as the target
domain. We further focus in HRI settings and consider two datasets.

First, we consider the Watch-n-Patch (WnP) database introduced in [30]
which will be used for adaptation purposes. To evaluate the performance of our

Fig. 3. Depth imaging characteristics. (a) visual characteristics around the human
silhouette in depth sensing are difficult to synthesize and therefore not present in the
rendered image, (b) HRI scene recorded with different RGB-D cameras, left to right:
Intel D435, Kinect 2 and Asus Xtion. Different depth sensors makes the recorded depth
images to show specific type of visual characteristics for each sensor.
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method, we need a second dataset. To this end, we conducted a series of data
collection, recording videos of people interacting with a robotic platform. The
recorded data consist of 16 sequences in HRI settings recorded with a Kinect 2.
Each of the sequences has a duration of up to three minutes and is composed
of pairs of registered color and depth images. The interactions were performed
by 9 different participants in indoor settings under different background scene
and natural interaction situations. In addition the participants were asked to
wear different clothing accessories to add variability in the body shape. Each
of the sequences displays up to three people captured at different distance from
the sensor. In our experiments we refer to this recorded data as RLimbs. Both
datasets with annotations, synthetic and recorded HRI sequences, are publicly
available1.

In Sect. 5 we show how to use this data to bridge the gap between synthetic
and real depth image domains, improving the pose estimation performance in
real images without the need of annotations on the real data.

4 Depth Domain Adaptation for Pose Estimation

Our pose estimation approach is inspired in the convolutional pose machines
(CPM) framework [3]. That is, we predict body parts and limbs of multiple
people in a cascade of detectors fashion. In this section we describe the base
CNN architecture we follow for pose estimation and the modifications we add
to perform depth domain adaptation.

4.1 Base CNN Architecture and Pose Learning

Pose Regression CNN Architecture. Figure 4(a) and (b) comprise the base
architecture of the pose regression network used to detect body parts and limbs,
taking as input a single channel depth image.

Specifically, the neural network architecture is composed of a feature extrac-
tor module GF (·) parametrized by θF , and a pose regression cascade module
Gy(·) parametrized by θY . For an input depth image x the feature extractor
module computes a compact image representation (features) Fx = GF (x) that
is internal to the network. This internal image representation Fx is then passed
to the pose regression cascade module GY (·) in order to localize body parts and
limbs according to our skeleton model (Fig. 2(b)).

A predictor t in the pose regression cascade consist on two branches of fully
convolutional layers. Branch ρt(·) performs the task of body part detection,
whereas branch φt(·) localizes body limbs. By considering a number of sequen-
tially stacked detectors, the body parts and limbs predictions are refined using
the result of previous stages and incorporating image spatial context through
the features Fx.

1 https://www.idiap.ch/dataset/dih.

https://www.idiap.ch/dataset/dih
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Fig. 4. Architecture design of the CNN used for pose estimation from single channel
depth images. The base architecture is composed of a feature extractor module (a),
and a pose regression cascade (b). The architecture is further extended with a domain
classifier (c) for depth domain adaptation.

Finally, pose inference is performed in a greedy bottom-up step to gather
parts and limbs belonging to the same person, as originally proposed by the
CPM framework.

Feature Extractor Module. The network’s feature extraction module GF (·)
computes the image features Fx by applying a series of residual modules to the
image x. The architecture of GF (·) comprises three residual modules with small
kernel sizes and three average pooling layers. Batch normalization and ReLU are
included after each convolutional layer and after the shortcut connection.

The architeture of GF (·) has been designed targeting efficient and fast for-
ward pass, relying on the representational power and efficiency of residual mod-
ules. The combination of the processing time taken by the feature extractor
together with the cascade of detectors can provide estimations at a frame rate
of 35 FPS.

Pose Regression Module. In the pose regression cascade module, each stage
t takes as input the image features Fx and the output of the previous detector
t − 1. As depicted on Fig. 4(b), a detector consists of two branches of convolu-
tional layers, the first branch predicting the location of the parts, and the second
predicts the location and orientation of the limbs. Note that with only one stage
there is no refinement since the first stage only takes as input the features Fx.

Confidence Map Prediction and Pose Regression Loss. We regress con-
fidence maps for the location of the different body parts and predict vector fields
for the location and orientation of the body limbs.

The ideal representation of the body part confidence maps S∗ encodes the
ground truth location on the depth image as Gaussian peaks. The ideal rep-
resentation of the limbs L∗ encodes the confidence for the connection between
two adjacent body parts, in addition to information about the orientation of the
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limbs by means of a vector field. We refer the reader to [17] for more details on
the generation of the confidence maps.

We define the pair of body parts and body limbs ideal representations as
Y = (S∗,L∗). Intermediate supervision is applied at the end of each prediction
stage to prevent the network from vanishing gradients. This supervision is imple-
mented by two L2 loss functions, one for each of the two branches, between the
predictions St and Lt and the ideal representations S∗ and L∗. The loss functions
at stage t are

f1
t =

∑

p∈I

||St(p) − S∗(p)||22, f2
t =

∑

p∈I

||Lt(p) − L∗(p)||22. (1)

The pose regression loss is computed as LY =
∑T

t=1

(
f1

t + f2
t

)
where T is the

total number of stages in the pose regression cascade.

4.2 Depth Domain Adaptation

Ideally, testing and training depth images should live in the same domain. In
our case, learning a pose regression network from synthetic data limits its gener-
alization capacity given the missing real depth image details not present in the
synthetic training set. We perform domain adaptation to map synthetic and real
images to a representation that is similar across domains. We follow closely the
method presented in [8] for domain adaptation and adapt it to our body part
localization setting.

For our unsupervised domain adaptation learning algorithm we are given a
source distribution sample (synthetic depth image dataset) S = {(xi,yi)}N

i=1 ∼
DS and a target dataset sample (real depth image dataset) T = {xi}M

i=1 ∼
DT . We are only given annotations of 2D keypoint locations yi for the source
distribution samples xi.

The distance between the source and target distributions can be measure via
the H-divergence [8]. Although this is impractical to compute, it can be approx-
imated by the generalization error of the problem of domain classification. In
essence, the distance between distributions is minimum if the domain classi-
fier is incapable of distinguishing between the different domains. Therefore, to
achieve domain confusion, the data need to be mapped to a representation that
is invariant, or at least indistinguishable, across domains.

Let Fx be the internal representation of image x in the network (features)
computed as Fx = GF (x) for a feature extractor GF (·). A measure of domain
adaptation is computed by

Ld = − 1
|S|

∑

x∈S

ld(Gd(Fx)) − 1
|T |

∑

x∈T

ld(Gd(Fx)), (2)

where and ld is a logistic regression loss, and Gd is a domain classifier,
parametrized by θd, such that Gd(Fx) = 1 if x ∈ T and 0 otherwise.
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In the problem of domain classification, the domain classifier Gd(·) is fooled
when GF (·) produces equivalent features for both domains. A feature extractor
capable of producing such type of features is learned by maximizing Eq. (2)

Rd = max
θd

Ld. (3)

Equation (3) aims to approximate the empirical H-divergence between
domains S and T as 2(1 − Rd).

4.3 Joint Pose Learning and Adaptation

The pose learning and domain adaptation joint optimization objective can be
written as

L = LY + λRd, (4)

where λ is a parameter that tunes the trade-off between the pose learning and
domain adaptation. The second term of Eq. (4) acts as a domain regularizer.

Our pose regression network shown in Fig. 4(a) and (b) naturally provides
the scheme for the joint learning and adaptation problem via a domain classifier
(Fig. 4(c)). We implement the domain classifier via a neural network composed
of two average pooling layers with an intermediate layer of 1 × 1 convolution
and followed by two fully connected layers that produces a sigmoid function. As
shown in Fig. 4 both the pose regression cascade GY (·) and the domain classifier
Gd(·) receive as input the features generated by GF (·).

The learning and adaptation problem stated by Eq. (4) proposes an adver-
sarial learning process which involves a minimization with respect to the pose
regression loss LY and a maximization with respect to the domain classifier
regularizer Rd. We follow [8] by including a gradient reversal layer (GRL) in
the architecture to facilitate the joint optimization. The GRL acts as identity
function during the forward pass of the network, but reverses the direction of
the gradients from the domain classifier during backpropagation.

The nature of pose regression and domain adaptation problems makes the
losess involved in Eq. (4) to live in different ranges. Therefore, the trade-off
parameter λ has to reflect both the importance of the domain classification
regularizer as well as to this difference between ranges.

5 Experiments and Results

In a series of experiments we show how different datasets, recorded with the same
type of sensor, are used to improve pose estimation via unsupervised domain
adaptation. In this section we analyze the performance obtained under different
modeling selections on the network architecture and domain adaptation config-
urations.
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5.1 Data

Synthetic Domain Data. We split the synthetic dataset into three folds with
the following percentage and amount of images: training (85%, 189,844), valida-
tion (5%, 11,165), and testing (10%, 22,333).

Synthetic Training Data Augmentation. We add the following perturba-
tions to the synthetic images to add realism and avoid overfitting to synthetic
clean details.

Adding Real Background Content. We consider the dataset in [14] containing
1,367 real depth images recorded with a Kinect 1 and exhibiting depth indoor
clutter. During learning, training images were produced on the fly by randomly
selecting one depth image background and body synthetic images, and compos-
ing a depth image with background using the character silhouette mask. Sample
results are shown in Fig. 2(d).

Pixel Noise. We randomly select 20% of the body silhouette’s pixels and set their
value to zero.

Image Rotation. Training images are rotated with a probability 0.1 by a ran-
domly selected angle in the range [−20, 20] degrees.

Real Domain Data. Our real domain consist Kinect 2 data. We use the data
presented in Sect. 3.2 to perform domain adaptation. The Watch-n-Patch dataset
was used for adaptation purposes only. We randomly select 85% out of the total
number of images comprised over all the sequences, leading to a total of 66,303
depth.

We used the RLimbs data for training, validation and testing purposes. We
divide the data taking into account clothing features, actor ID and interaction
scenario, in such a way that an actor does not appear in the training and testing
sets under similar circumstances. The train, validation and test folds consist of
7, 5 and 4 sequences respectively. We annotate small sets from each fold to be
used for validation (750 images), testing (1000 images) and fine-tuning (1750
images).

5.2 Evaluation Protocol

Accuracy Metric. We use standard precision and recall measures derived from
the Percentage of Correct Keypoints (PCKh) as performance metrics [31]. More
precisely, we extract landmark predictions p whose confidence is larger than a
threshold τ . Pose estimates are generated from these predictions by the part
association algorithm. Then, for each landmark type we associate the closest
prediction p whose distance to ground truth q is below a distance threshold
d = κ × h, where h stands for the height of the ground truth bounding box of
the person to which q belongs to. The associated predictions p count as true pos-
itives and the rest as false positives. Ground truth points q with no associated
prediction are counted as false negatives. The average recall and precision values
can then be computed by averaging over the landmark types and then over the
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dataset. Finally, the average recall and precision values used to report perfor-
mance are computed by averaging the above recall and precision over several
distance thresholds by varying κ in the range [0.05, 0.15].

5.3 Implementation Details

Pose Regression Network. We use Pytorch as the deep learning framework
in all our experiments. First, we train our pose regression network (Fig. 4(a) and
(b)) on synthetic data with stochastic gradient descent with momentum during
300K iterations. We set the momentum to 0.9, the weight decay constant to
5 × 10−4, and the batch size to 10. We uniformly sample values in the range
[4 × 10−10, 4 × 10−5] as starting learning rate and decrease it by a factor of
10 when the validation loss has settled. All networks are trained from scratch
and progressively, i.e. to train network architectures with t stages, we initialize
the network with the parameters of the trained network with t − 1 stages. We
consider network architectures with pose regression cascade modules comprised
by upto 2 prediction stages.

Domain Adaptation. After training the pose regression network for some time
with synthetic data, we run the domain adaptation process. The adaptation is
performed for T = 100K iterations. We monitor and select models according
to the lowest value of a validation loss computed on the RLimbs validation
set. The learning rate parameter is kept fixed to the last value in the previous
training procedure. Domain classifier parameters are randomly initialized using
a Gaussian distribution with mean zero and small variance.

We opt to gradually adapt the trade-off parameter λ of Eq. (4) according to
the training progress as

λp =
2Λ

1 + exp(−10p)
− Λ, (5)

where p = t/T for the current iteration progress t. The constant Λ was exper-
imentally chosen in order to accommodate both losses in Eq. (4) in the same
range. In our experiments we observed a good behavior of pose learning and
adaptation for Λ = 100.

Model Notation. We analyze CNN architectures with 1 and 2 prediction stages
in the pose regressor cascade. In our results we refer to this configurations as
RPM1S and RPM2S respectively. Postfixes -DA and -FT are added whenever
used domain adaptation or fine-tuning respectively.

5.4 Results

Domain Adaptation and Network Configuration. We analyze the impact
of domain adaptation on the different levels of prediction stages. For these exper-
iments we consider the Watch-n-Patch data for the adaptation process and the
RLimbs data for testing. The models were trained as follows. First, a single
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stage network was trained with synthetic data and then with domain adapta-
tion. Next, a network architecture with 2 stages was trained on synthetic data
taking the single stage adapted network as initial point. Finally domain adap-
tation is performed.

The resultant average recall-precision curves are presented in Fig. 5(a). We
observe that domain adaptation improves mainly the recall performance at the
two levels of prediction stages. Including spatial context via a second prediction
stage is vital. Table 1 summarizes these results reporting the models with the
largest F1-Score in the curves. The table also shows the performance on the
upper-body. In Fig. 6 we show a comparison of the per body part precision
and recall before and after adaptation. Domain adaptation mainly improves the
recall on the lower body parts. As depicted in Fig. 3, these parts are the main
components in the body silhouettes affected by noise and sensing failures.

Domain Adaptation Starting Point. We conducted experiments in order to
find the best training point to start the domain adaptation process. To this end,
we start domain adaptation at different points of the synthetic training progress
for the RPM2S model. We selected starting points at t = 150K, t = 200K and
t = 300K training iterations. Figure 5(b) shows the performance of the different
learned models. We note the performance among the different runs remains the
same. However, the earliest starting point considered show more stable behavior.

RLimbs Based Domain Adaptation. As mentioned before, it is natural to
think a depth sensor as a generating domain. We perform domain adaptation
using the training fold of the RLimbs database as the target domain sample.
As before, we start domain adaptation at different points of the synthetic train-
ing and report the model results with the best F1-Score. Table 2 compares the
obtained performances. In the table we specifically show the dataset used as tar-
get sample during the adaptation process, the source data and the testing data.
Note that using both Kinect 2 datasets in the adaptation process improves the
performance. Adaptation with the Watch-n-Patch dataset provides slightly bet-
ter results. It is worth to notice that the number of recorded scenarios, people,
and view points contained in the Watch-n-Patch is larger than those contained
the RLimbs dataset. This variability is somehow useful in the adaptation pro-
cess. We include the performance obtained by preprocessing the image with a
simple in-paint process. This technique was previously used to alleviate the dis-
continuities inherited from depth sensing for non adapted models [17]. However,
this lowers the precision score with a very little gain in accuracy.

Fine-Tunning. To understand the limits of adapting between depth domains,
we performed fine-tunning on an annotated subset of the RLimbs dataset. We
considered both, the models trained with synthetic data and adapted models.
Figure 5(c) shows the detailed recall- precision curves. As expected, fine tuning
on the target data provides better generalization capabilities. However, fine-
tuning on models with previous adaptation show further improvement. Table 2
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Fig. 5. Average recall-precision curves. (a) impact when applying domain adaptation
at the different levels of prediction stages. (b) performance for different starting points
of domain adaptation. (c) comparison of domain adaptation and fine-tuning.
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Fig. 6. Recall (left) and precision (right) per body part before and after domain adapta-
tion. Note the high gain in recall for lower body parts after applying domain adaptation.

Table 1. Comparison of the performance (%) on the RLimbs test set for architectures
with different number of prediction stages before and after domain adaptation.

Architecture Performance

All body Upper body

AP AR AP AR

RPM1S 83.55 39.20 85.98 55.86

RPM1S-DA 83.68 48.56 89.39 68.63

RPM2S 91.56 53.47 93.93 69.93

RPM2S-DA 92.62 61.66 95.00 76.09

summarizes the results for the models with the largest F1-Score. Figure 7 shows
a qualitative comparison of the pose estimation approach for adapted and not
adapted models.



360 A. Mart́ınez-González et al.

Table 2. Top: comparison of performance (%) by using two different datasets of depth
images as the target data for domain adaptation. IP stans for in-paint preprocessing.
Bottom: performance obtained by fine tuning (FT) on an annotated subset of the
RLimbs training set after learning with synthetic data and after domain adaptation on
the different depth image datasets.

Data Performance

All body Upper body

Source Target Testing AP AR AP AR

Synthetic — RLimbs 91.56 53.47 93.93 69.93

Synthetic — RLimbs (IP) 81.98 58.23 85.20 72.66

Synthetic WnP [30] RLimbs 92.62 61.66 95.00 76.09

Synthetic RLimbs RLimbs 92.32 59.32 95.05 74.55

Synthetic + FT — RLimbs 90.56 79.23 93.64 89.52

Synthetic + FT WnP [30] RLimbs 91.27 82.03 93.73 90.83

Synthetic + FT RLimbs RLimbs 91.03 78.98 94.32 89.32

Fig. 7. Output of the different models for some images contained in the testing set
of RLimbs. Top row: pose estimation before domain adaptation. Middle row: pose
estimation after domain adaptation. Bottom row: pose estimation with fine tuning
after domain adaptation.

6 Conclusions

In this paper we investigated the use of unsupervised domain adaptation tech-
niques applied to the problem of depth-based pose estimation with CNNs. Specif-
ically, we investigated an adversarial domain adaptation method to improve the
performance on real depth images of a CNN-based human pose regressor trained
with synthetic data. We introduced a new dataset of synthetically generated
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depth images displaying two people instances to cover cases of multi-person
pose estimation. In addition, we presented a dataset containing videos of people
in HRI scenarios. Both synthetic and real recorded data are publicly available.

Our experiments show that different data from the same type of sensor is
meaningful to cover part of the performance gap introduced by learning from
synthetic depth images. However, devoting some effort to label a few examples
maybe critical to increase the model’s generalization capabilities. We observed
that the combination of both approaches, domain adaptation and fine tuning,
increase performance. Suggesting that domain adaptation for body pose estima-
tion from depth images a better path to follow is a semi-supervised approach.
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