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Abstract. Although fully convolutional networks have recently
achieved great advances in semantic segmentation, the performance
leaps heavily rely on supervision with pixel-level annotations which are
extremely expensive and time-consuming to collect. Training models on
synthetic data is a feasible way to relieve the annotation burden. How-
ever, the domain shift between synthetic and real images usually lead to
poor generalization performance. In this work, we propose an effective
method to adapt the segmentation network trained on synthetic images
to real scenarios in an unsupervised fashion. To improve the adaptation
performance for semantic segmentation, we enhance the structure infor-
mation of the target images at both the feature level and the output
level. Specifically, we enforce the segmentation network to learn a rep-
resentation that encodes the target images’ visual cues through image
reconstruction, which is beneficial to the structured prediction of the
target images. Further more, we implement adversarial training at the
output space of the segmentation network to align the structured predic-
tion of the source and target images based on the similar spatial structure
they share. To validate the performance of our method, we conduct com-
prehensive experiments on the “GTA5 to Cityscapes” dataset which is a
standard domain adaptation benchmark for semantic segmentation. The
experimental results clearly demonstrate that our method can effectively
bridge the synthetic and real image domains and obtain better adapta-
tion performance compared with the existing state-of-the-art methods.

Keywords: Unsupervised domain adaptation ·
Semantic segmentation · Deep learning · Transfer learning

1 Introduction

Semantic segmentation is a critical and challenging task in computer vision,
which aims at predicting the class label of each pixel in images. Over the past
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years, deep convolutional networks have achieved great advances in semantic seg-
mentation [1,9,18]. However, the pixel-level annotation is an extremely heavy
work. Specifically, we need more than 1 h to annotate a single image in the
Cityscapes dataset [3]. Training models on synthetic images can be a promis-
ing way to relieve the tedious annotation burden as their pixel-level labels can
be automatically generated. Unfortunately, the domain shift between the syn-
thetic images and real-world scenarios will degenerate the prediction results on
real images. Therefore, domain adaptation should be considered to adapt the
segmentation network trained on synthetic images to real images, given labeled
source data and unlabeled target data. Although the recently proposed feature
adaptation methods can bridge the source and target domains through learn-
ing domain-invariant features with adversarial mechanism [2,7,13], they cannot
ensure that these features encode the structure information of the target images,
since semantic segmentation is a highly structured prediction task.

In this paper, we propose to improve the domain adaptation performance of
segmentation networks through enhancing the structure information of the tar-
get images at both the feature level and the output level. The main contribution
of our work is two-fold: (1) enforcing an intermediate feature to reconstruct the
training images; (2) adversarially aligning the structured output of the source
and target images. Specifically, the reconstruction branch can enforce the encod-
ing representation to preserve the visual cues of the target images, which are
beneficial to their structured prediction. On the other hand, the output-level
structure enhancement can directly regularize the target image’s structured pre-
diction since both domains should share similar spatial layout and local context.
We conduct experiments on “GTA5 to Cityscapes” which is a standard domain
adaptation benchmark for semantic segmentation to evaluate the performance
of our method. The experimental results clearly demonstrate that our method
can effectively bridge both domains and obtain better adaptation results than
the existing state-of-the-art methods.

2 Related Work

Over the past years, domain adaptation in computer vision has been primarily
explored for the classification task. Overall, the main idea is to learn a “deep”
representation that is domain invariant [4,5,10,15,16]. Thus far, unsupervised
domain adaptation for semantic segmentation has not been widely explored.
In [7], Hoffman et al. first proposed to adapt segmentation networks through
domain adversarial learning in the feature space. In [2], Chen et al. further
proposed class-specific domain adversarial learning framework, which aimed at
reducing the domain divergence in each class. In [11], Murez et al. proposed to
learn domain adaptive segmentation networks through directly translating the
source images to the target ones at the pixel level. In [14], Tsai et al. proposed to
align both domains at the structured output space. In short, the previous works
mainly focused on angling the source and target domains through implement-
ing adversarial learning at different levels, ranging from intermediate features
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to final predictions. In our method, our main idea is to enhance the structure
information of the target images, which provides a reasonable regularization to
their structured prediction.

3 Our Method

In this paper, we focus on unsupervised domain adaptation for semantic seg-
mentation. Our goal is to learn a segmentation network which can achieve good
prediction results on the target domain, given source images IS with pixel-level
labels LS and unlabeled target images IT .

Fig. 1. The overall architecture of our model (best viewed in color).

Overall, our adaptation method contains two major components, including
reconstructing the training images and aligning the target images’ structured
prediction with adversarial training. Figure 1 shows the overview of our method.

Image Reconstruction: our main idea aims at adapting the segmentation
network trained on the source images through learning a representation that
encodes the visual cues of the target images. This is achieved through enforc-
ing an intermediate layer to reconstruct the training images. As displayed in
Fig. 1, the encoding network is shared by both the segmentation branch and the
reconstruction branch. The reconstruction branch can regularize the encoding
network to enhance the target images’ structure information.

Throughout this paper, we denote the encoding network and the decoding
network as E and G, respectively. The segmentation branch is represented as S.
We define our image reconstruction loss as

min
E,G,S

L(E,G, S)

s.t. L(E,G, S) = λrecLrec + Lseg

= λrec(L1(G ◦ E(IS), IS) + L1(G ◦ E(IT ), IT ))
+ Lsup(S ◦ E(IS), LS),

(1)



Domain Adaptive Semantic Segmentation Network 175

where the former part is the reconstruction term for the training images and
Lsup is the segmentation supervision term for the source images. In our method,
the image reconstruction is implemented with L1 loss. Though ideally we only
need to consider the reconstruction of the target images, the reconstruction of
the source images can help the training of the decoding network.

Output Adaptation: Further more, we implement adversarial training at the
output space of the segmentation network to align the structured prediction on
the source and target images since both domains should share similar spatial lay-
outs. As displayed in Fig. 1, a discriminative network is invoked to discriminate
whether a softmax prediction is from the source domain or the target domain. In
contrast, the segmentation network S ◦ E(·) will try to cheat the discriminator
in order to make the target images’ structured predictions resemble the source
images’ pixel maps. This can provide gradient updates to the segmentation net-
work when the target images’ predictions are not structured reasonably. As a
whole, the segmentation network and the discriminative network play a minimax
game.

To retain the spatial information, D is specified as a fully convolutional
network, which discriminates the domain label of each spatial unit. Following
[17], we adopt Atrous Spatial Pyramid Pooling (ASPP) in our discriminative
network since this can help to align the structured output at multiple scales.
The adversarial loss are formulated as

max
D

min
E,S

Ladv =EIT ∼Xt
[

1
HW

H∑

i=1

W∑

j=1

log(1 − Di,j(S ◦ E(IT )))]

+ EIS∼Xs
[

1
HW

H∑

i=1

W∑

j=1

log(Di,j(S ◦ E(IS)))].

(2)

H and W are the height and width of the discriminator’s output, respectively.
In conclusion, with the above sub-objectives, our finial objective function is

defined as
max
D

min
E,S,G

Lseg + λrecLrec + λadvLadv. (3)

In our defined minimax game, we alternately optimize each sub-network, while
holding the other parts fixed. The parameters of the encoding network E is
updated by averaging the gradients from each branch.

4 Experiments

4.1 Dataset

To evaluate the performance of our method, we conduct experiments on “GAT5
to Cityscapes”, which is a standard benchmark of domain adaptation for seman-
tic segmentation. Specifically, GAT5 is the dataset that contains 24,966 synthetic
images with resolution of 1914 × 1052, rendered by the gaming engine Grand
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Theft Auto V. The pixel-level annotations of the GAT5 images are automat-
ically generated. On the other hand, Cityscapes is a dataset that focuses on
autonomous driving. The Cityscapes dataset consists of 2,975 images for training
and 500 images in validation set. These images have a resolution of 2048× 1024.
We use 19 common semantic categories between GTA5 and Cityscapes as the
labels. Following the existing state-of-the-art works [7,14], we train our domain
adaptive segmentation network using the full GTA5 dataset and the Cityscapes
training set with 2,975 images, and evaluate the performance on the Cityscapes
validation set with 500 images.

Table 1. Results of different methods on the “GTA5 to Cityscapes” dataset. Abla-
tion studies are conducted for both the feature-level encoding and the output-level
enhancement.
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MCD[12] 90.3 31.0 78.5 19.7 17.3 28.6 30.9 16.1 83.7 30.0 69.1 58.5 19.6 81.5 23.8 30.0 5.7 25.7 14.3 39.7
CYCADA[6] 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5
ROAD[7] 76.3 36.1 69.6 28.6 22.4 28.6 29.3 14.8 82.3 35.3 72.9 54.4 17.8 78.9 27.7 30.3 4.0 24.9 12.6 39.4
AdaptSeg[14] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
RAN[17] 84.5 36.9 72.9 15.8 23.3 39.4 41.8 36.8 67.1 25.2 89.1 50.5 20.6 77.8 22.1 24.3 22.8 28.5 37.9 43.0
source only 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
feature-level 86.3 30.8 76.4 26.2 20.0 23.1 31.6 16.5 80.5 33.1 75.0 56.5 25.7 76.8 15.0 29.5 1.0 25.6 13.0 39.1
output-level 85.3 35.1 79.0 22.9 23.4 23.1 34.1 14.8 83.2 33.0 74.2 57.8 27.2 73.1 32.3 34.8 3.0 29.8 28.0 41.7
full model 88.9 31.3 81.5 28.3 23.5 28.7 37.1 30.2 82.2 33.1 76.8 59.7 29.2 80.8 28.9 43.5 4.2 31.6 32.3 44.8

4.2 Implementation Details

We adopt deeplabv2 as our baseline [1]. Specifically, the encoding network E is
implemented with Resnet-101. The outputs of the res5c layer are fed into both
the segmentation branch S and the reconstruction network G. G follows the
identical architecture in [8], except that all the layers are shared by both domains.
The discriminative network D contains 3 layer, including a ASPP layer with 4
dilated convolutional operators in parallel, and a convolutional layer followed
sigmoid activations. The sampling rates in the ASPP layer are respectively set to
1, 2, 3 and 4. In our experiments, we use the PyTorch framework to implement
our method. Overall, our experimental setting follows [14]. For E and S, we
adopt stochastic gradient descent (SGD) with momentum of 0.9 as the optimizer.
The parameters G and D are optimized by Adam with momentum of 0.99. In
addition, we initialize the learning rate to 2.5 × 10−4 and decay it through the
polynomial policy with power of 0.9. As the tradeoff parameters, λrec and λadv

are set to 1.0× 10−5 and 1.0× 10−3, respectively. The mIoU value is used as the
metric of evaluation.
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Fig. 2. The qualitative example results. The first row displays the target images, with
their corresponding ground truth segmentation masks in the second row. The third
and fourth rows display the results before adaptation and after adaptation with our
adaptation method, respectively.

4.3 Experimental Results

In Table 1 and Fig. 2, we report our adaptation results both quantitatively and
qualitatively. The results demonstrate that our adaptation method can effec-
tively improve the structured predictions of the target images. From Fig. 2, we
can see that the structure information of the target images’ predictions are sig-
nificantly enhanced, which is consistent with our motivation. With our method,
the target images’ pixel-level predictions clearly delineate the real spatial layout.
As displayed in Table 1, our method performs better than the existing state-of-
the-art methods. The ablation studies demonstrate that the feature-level encod-
ing and the output-level enhancement can work complementarily to improve
the adaptation performance. This can be ascribed to the fact that these two
branches enhance the target images’ structure information from complementary
perspectives. Specifically, the reconstruction branch enforces the encoding repre-
sentation to preserve the target images’ visual cues such as the local contexts or
spatial layouts, which are essential for the structured predictions. In contrast, the
output-level enhancement can directly leverages the source images’ pixel maps
to regularize the target images’ structured predictions.
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5 Conclusion

In this paper, we propose an effective method to learn domain adaptive segmen-
tation network in an unsupervised domain adaptation setting. Through enhanc-
ing the structure information of the target images at both the feature level and
the output level, our method can effectively improve the domain adaptation per-
formance of the segmentation networks. After adaptation using our method, the
target images’ pixel maps can clearly reveal their structure characteristics such
as the spatial layout or the local context. The experimental results demonstrate
that our method can effectively bridge the source and target domains.
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