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Abstract. Domain adaptation aims to learn models on a supervised
source domain that perform well on an unsupervised target. Prior work
has examined domain adaptation in the context of stationary domain
shifts, i.e. static data sets. However, with large-scale or dynamic data
sources, data from a defined domain is not usually available all at once.
For instance, in a streaming data scenario, dataset statistics effectively
become a function of time. We introduce a framework for adaptation over
non-stationary distribution shifts applicable to large-scale and streaming
data scenarios. The model is adapted sequentially over incoming unsu-
pervised streaming data batches. This enables improvements over several
batches without the need for any additionally annotated data. To demon-
strate the effectiveness of our proposed framework, we modify associative
domain adaptation to work well on source and target data batches with
unequal class distributions. We apply our method to several adaptation
benchmark datasets for classification and show improved classifier accu-
racy not only for the currently adapted batch, but also when applied
on future stream batches. Furthermore, we show the applicability of our
associative learning modifications to semantic segmentation, where we
achieve competitive results.

1 Introduction

Domain adaptation aims to adapt classifiers trained on source domains to novel
unlabeled target domains, where a domain shift, namely a difference in distribu-
tion statistics, is expected [8,34]. Typically, the domain shift is considered within
the context of “closed”, static domains, implicitly assuming datasets available
in their entirety at adaptation time [8,36]. However, in realistic applications
data collection is not static nor closed but “open”, giving rise to non-stationary
domain shifts [11].

Consider e.g. social media feeds, or urban imagery taken from inside a car.
These images often arrive in “bundles” with different distribution statistics, due
to, for instance, being collected in different cities or with different weather con-
ditions (see Fig. 1). If we were to consider these bundles as isolated domains, we
wouldn’t be exploiting the available unlabeled data entirely. In addition, if the
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Fig. 1. Distribution shift across stream batches in GTA5

distribution changes gradually over time in a streaming-like fashion, being able
to adapt over bundles sequentially may benefit real-time predictions on future
incoming data bundles. In streaming data this distribution shift over time is
called concept drift, and the incoming stream is usually too large to be held in
memory, therefore it is processed in data bundles which are later discarded.

As an adaptation method, we look into associative learning proposed by
Haeusser et al. [15,16], which uses association of embeddings in latent space and
has been shown to work well for domain adaptation and semi-supervised learn-
ing. However, associative domain adaptation makes the implicit assumption that
the class probability distributions between the source and the target domains
are similar at adaptation time. This assumption cannot be guaranteed to hold
when the target dataset is not well known in advance, such as in “open” datasets
the class probability statistics may change dynamically or in tasks where class
statistics across domains may vary a lot. An example of such a task is semantic
segmentation. To this end, the associations between source and target embed-
dings need to be performed while taking into account the non-stationary changes
of the class probability statistics.

This work makes three contributions. First, we argue that domain adapta-
tion is important beyond static domain datasets, including continuously collected
datasets whose statistics are non-stationary. For dynamic datasets domain adap-
tation should be able to adapt to the evolving statistics. Second, starting from
associative domain adaptation [15] we show that the similar class distribution
assumption between domains hurts adaptation. We therefore reformulate the
approach to make the adaptation loss invariant to the inevitable non-stationary
changes on the class distribution statistics. Third, we present two applications of
our proposed approach, one on adapting streaming image classification, where
the streaming data distribution changes over time, and one on domain adaption
for semantic segmentation (see Fig. 2), where the source and target datasets have
inherently different class statistics.
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Fig. 2. Adaptation results for semantic segmentation on Cityscapes

2 Related Work

Domain Adaptation. A handful of domain adaptation methods revolve around
discrepancy-based adaptation [23,24,31], for instance, [22] use a multi-kernel
maximum mean discrepancy (MMD) minimization approach. Other methods are
data reconstruction-based and often use reconstruction with e.g. autoencoders,
as an auxiliary task to learn invariant features [5,12,13].

Another category is adversarial approaches. Adversarial discriminative meth-
ods use a classifier to discriminate between domains during training and ensure
feature invariance for source and target [10,35]. Adversarial generative methods
use a generative adversarial network (GAN) [14] to learn a mapping between
source and target images by interleaving the task loss, mapping generator and
discriminator loss [3,18].

Domain adaptation for semantic segmentation was recently pioneered by [19]
with an adversarial discriminative based approach. Similarly [6] use discrimina-
tors for feature invariance, but for different parts of an image grid. [28] use a
standard GAN approach to have a generator network learn the mapping while a
discriminator network distinguishes between real and fake images. [38] split the
original segmentation network into three output branches where the first two
generate pseudo-labels for the third branch. [39] adopt a curriculum learning
approach for by solving easy to difficult tasks to achieve adaptation.

Associative Learning. Introduced by [16], learning by association was initially
applied to semi-supervised learning. [15] use associations between source and
target to close the domain gap for classification achieve competitive results across
different domain adaptation benchmarks for classification. The advantage of this
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Fig. 3. Associative domain adaptation for unequal class distributions. Crosses represent
the source domain and circles represent the target. Arrows represent source to target
probabilities. (a) Uniformly distributed visit loss. (b) Intuition of correcting wrong
associations by balancing the visit loss according to class distributions. (c) Cluster
estimates to approximate class distribution in target.

method compared to discrepancy-based approaches is that it does not require a
choice of kernel and extra hyper-parameters that come with them.

Streaming Data Classification. Approaches that deal with streaming data
are either passive approaches that use a single classifier or an ensemble [30,37]
or active ones where an extra decision is made on whether to update the classi-
fier. Most often classification algorithms such as Decision Trees, Rule-Based and
Nearest Neighbor are used, whereas adjustments in neural network architectures
to account for streaming have been proposed [1]. [2] use a complex sampling and
filtering mechanism for active training and a random forest based classifier. [33]
use a micro-cluster nearest neighbor which makes use of statistical summaries
for data streams. Not many works look into exploiting unsupervised data for
improving data stream classifiers. [32] use semi-supervised feature learning to
adjust k-nearest neighbor weights. To our best knowledge, we are the first to
explore this direction for image classification with modern deep architectures.

3 Method

3.1 Associative Domain Adaptation

We start from two datasets, source and target. The source dataset, DS =
{xS

i , yS
i }, i = 1, ..., NS , comprises of NS image samples with embeddings xS

i ,
annotated by one-hot vectors yS

i = [yS
ic], c = 1, ..., C, which equals to 1 if the

image xS
ic belongs to class c, and 0 otherwise. The target dataset, DT = {xT

j }, j =
1, ..., NT , comprises only of image embeddings which belong to the same set of
classes, c = 1, ..., C; however, no class annotations are available for retraining or
fine-tuning. Between the source and target datasets there is a domain shift in
the distribution of their respective embeddings, thus p(xS) �= p(xT ). The goal,
therefore, is to adapt a classifier trained on the source dataset to work well for
the target.

Associative domain adaptation [15] adapts by considering an additional
adaptation loss during training on top of the standard task-specific loss,
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L = Ltask + Lassoc. Specifically, the associative domain adaptation is decom-
posed into a walker and a visit loss,

Lassoc = Lwalker + βLvisit, (1)

where β is a weighting coefficient. Central to the associative domain adaptation
is the affinity matrix A ∈ R

NS×NT , which contains elements aij proportional
to how likely the i-th embedding in the source domain, xS

i , is to be associated
with the j-th embedding in the target domain, namely aij ∝ p(xT

j |xS
i ). Learning

embeddings that yield an affinity matrix that minimizes the loss in Eq. (1) is
the goal of associative domain adaptation.

The walker and the visit losses have complementary objectives. The objec-
tive of the walker loss is to encourage the source embeddings to lie close after
adaptation to source embeddings of the same class. As no class labels are avail-
able in the target dataset, however, this objective is reformulated. Specifically,
after double transition from the source to the target and back to the source, the
starting and finishing source class labels should minimize the cross-entropy loss
with respect to a normalized equality matrix E = {eik}, namely

Lwalker =
∑

i,k

eik log
[
p(xS

k |xT
j ) · p(xT

j |xS
i )

]
, (2)

where xT
j is the closest embedding in the target set and ejk = yS

i ·yS
k

NS
.

The walker loss alone, however, can lead to degenerate solutions, where the
transition probabilities are learned to associate source embeddings only with
a few relevant yet “easy” target embeddings. To mitigate this, the visit loss
encourages that all target embeddings are equally visited. This is achieved by a
minimizing cross-entropy objective

Lvisit =
∑

j

vj log p(xT
j |xS

i ), vj = 1/NT (3)

where vj = 1/NT .

3.2 Associative Domain Adaptation for Unequal Class Distributions

Associative domain adaptation implicitly assumes that the source and target
distributions are similar on batch level during adaptation. The reason is that for
the visit loss to be minimized in Eq. (3) it is assumed that the ideal target is the
average over the size of the target dataset, vj = 1/NT . [15] consider a smaller β
for the visit loss, if the class distributions between the source and target datasets
are unequal. However, this solution implicitly expects access to the adaptation
set in order to tune β. In addition, simply receiving a weaker signal from the
visit loss does not exploit the full adaptation capacity and might enforce wrong
associations, as we illustrate in Fig. 3(a).

As we want target embeddings to be visited by the same-class source embed-
dings, intuitively they should be visited at a rate proportional to the difference
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Fig. 4. The streaming setup uses a pre-trained model from a stationary supervised set.
The model is then sequentially adapted to the incoming stream batches.

between the source and target class distributions, as shown in Fig. 3(b). We
can formalize the intuition by adding a weighting coefficient in front of vj and
reformulating Eq. (3) as:

Lvisit =
∑

j

γjvj log p(xT
j |xS

i ), γj =
p(Y S = yT

j )
p(Y T = yT

j )
(4)

namely weighted by the ratio of class probabilities at the source and target for
the correct class of the target embedding. Clearly, we cannot directly compute
the ratio p(Y S = yT

j )/p(Y T = yT
j ), as we would need to know the true class of

the target embedding yT
j . However, we propose a way to estimate them.

Although we have no control on the target dataset, we do have control over
the source dataset for which the labels are available, thus when constructing the
mini-batch based on which we will perform the adaptation, we can first sample
the source uniformly such that all class probabilities are equal in the source
dataset, i.e. p(Y S = yT

j ) = const. Consequently, from a probabilistic perspective
it is not important which particular class the j-th target embedding belongs to,
alleviating the necessity to make a soft prediction for the class label of the j-th
embedding.

What remains to compute the weighting coefficient γj is computing the class
probability p(Y T = yT

j ) for the j-th embedding. It is logical to expect that
same-class embeddings cluster together for a modern classifier to be able to dis-
criminate between classes. We can retrieve the class cluster around an embedding
sample in an unsupervised manner and compute the probability based on clus-
ter size. We rely on unsupervised clustering to estimate class probabilities in the
batch. The approximation holds true under the assumption that the clusters are
well aligned to the means of the respective, optimal classifiers. In practice, we
consider hierarchical agglomerative clustering, which experimentally appears to
allow for good alignment between the obtained clusters and works well when
clusters have very different sizes. We illustrate the process in Fig. 3(c).
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3.3 Dynamic Domain Shift in Streaming Data

Let us consider a pre-collected annotated set DS = {xS
i , yS

i }, i = 1, ..., NS with
embeddings xS

i , with one-hot labels yS
i and an incoming stream of image data

that needs to be classified. At every time step τ = 1, .,K, the stream is accumu-
lated in a streaming data batch DT

τ . Due to the concept drift, i.e. distribution
shift over time, a classifier f0(θ) trained to minimize Ltask(θ,DS) will perform
worse on the streaming batches. Being able to produce accurate predictions as
soon as a stream batch comes in is crucial. Changing the models over time aims
to account for the concept drift. A second problem to account for in streaming
is the size of the incoming data. Usually only a small part of this data can be
stored in memory. One way to deal with this is to have a mechanism in place
that selects the data to be stored; another way is to be able to use and then
discard all the data coming into the stream.

We simulate a streaming scenario where the stationary training set DS is pre-
collected and first used for off-line training of a predictive model f0(θ). Incoming
stream data batches DT

τ are small compared to the stationary set DS , but the
whole stream cannot be stored in memory, so at a time step τ = k only a set
of DT

k ,DT
k+1, ...D

T
k+w is available, where w is a storage window size. A classifier

fk−1(θ) trained on the stationary set and adapted to DT
1 , ...DT

k−1 sequentially is
available. We adapt to DT

k by minimizing the objective

arg min
θ

Ltask(fk−1(θ), yS) + Lwalker(θ,DS ,DT
k ) + βLvisit(θ,DS ,DT

k )

The benefits of this approach are twofold. First, adapting to DT
k improves

prediction results on DT
k itself in an unsupervised manner without extra anno-

tation. Second, the predictions improve for DT
k+1,D

T
k+2... and so on in a cascade

fashion, since distribution in incoming sets is more likely to be similar to the
previous stream sets nearby than the stationary source, especially if we would
use a sliding window over incoming sets. For simplicity we take a window size of
1. An illustration is provided in Fig. 4. In our setting, we extract patches from
the GTA5 dataset and do patch-wise classification in order to demonstrate the
working of our setup with a simpler task. We expect a similar behavior for more
complex tasks such as semantic segmentation and object detection.

3.4 Dynamic Domain Shift in Semantic Segmentation

Having relaxed the distribution assumption, associative domain adaptation can
be applied to tasks where source and target class distributions in a batch are
not uniform or uniformity cannot be approximated, such as semantic segmen-
tation. Consider a source dataset DS = {xS

i , yS
i,H×W }i = 1, ..., NS , where

H,W are image dimensions, is annotated at pixel level. The target images
DT = {xT

j }, j = 1, ..., NT are available without annotations. Using modern
segmentation architectures, we can consider embeddings extracted from a mid-
network layer which contains downsampled data. Using a DeepLab-V2 [4] archi-
tecture, we extract embedding xS

i′ at pixel level in decoder layers before bilinear
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upsampling which are 8 times downsampled in each spatial dimension. We down-
sample the label annotations and use yS

i′,U×V , where U = H/8 and V = W/8
together with downsampled embeddings for adaptation.

An important consideration when adapting for dense prediction is the choice
of affinity matrix A ∈ R

NS×NT between embeddings, where aij ∝ p(xT
j |xS

i ).
In [15], p(xT

j |xS
i ) is computed as softmax over rows of A, i.e. p(xT

j |xS
i ) =

exp(aij)/
∑

j′ exp(aij′), where aij = xS
i · xT

j is the dot product between embed-
ding vectors. The unnormalized dot product as an affinity is unbounded and can
cause very small probability values for the softmax, which may lead to explod-
ing gradients. We mitigate this by using an affinity measure based on Euclidean
distance. In addition, we observe that the dimensionality of pixel embeddings
for semantic segmentation is crucial for convergence. If too large, the gradients
propagated are noisy and adaptation not very effective. However, dimensionality
has to be large enough to allow for similar embeddings to group together but still
preserve discriminable structures in latent space. For this, we add an embedding
layer in the decoder where dimensionality can be adjusted for the task.

4 Experiments and Results

We validate the performance of the proposed domain adaptation method under
different settings for domain class distribution divergence. First, we show the
effect of increased class distribution divergence on associative domain adapta-
tion [15] and how we can recover accuracy drops with our formulation. Second,
we evaluate on a visual stream classification setting, where data and class dis-
tributions change over time. Third, we further validate the proposed method on
domain adaptation for semantic segmentation The code, models and datasets
will all become available upon publication.

4.1 Classification Under Different Class Distributions Between
Domains

We report our results on several image classification adaptation benchmarks.
For digit classification we adapt on MNIST [21] → MNISTM [10], SVHN (Street
View House Numbers) [26] → MNIST and Sythetic Digits [10] to SVHN [26].
Next, we adapt for street sign classification from Synthetic Signs dataset [25] to
German Traffic Sign Recognition Benchmark [29]. As a last benchmark, CIFAR-
10 [20] → STL-10 [7] adaptation is performed. Out of the 10 classes present
in STL-10 and CIFAR-10, 9 of these overlap so they can be used for domain
adaptation.

We report experiments after changing KL-divergence between the source and
target class distributions, to quantify the effect of unequal class distributions for
domain adaptation. In Table 1 we report the accuracies over the datasets when
class distribution divergence increases for associative domain adaptation, as well
as the proposed method.
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Table 1. Adaptation accuracy as KL-divergence of source to target class distributions
in a batch increases. The oracle version uses the true target class probabilities and
serves as an upper bound.

Src -Tgt divergence Method Datasets

MNIST-

MNISTM

SVHN-

MNIST

Synth

Dig.-SVHN

Synth

Signs-

GTSRB

CIFAR10-

STL10

Source only 64.0 69.4 85.8 95.4 52.7

Target only 93.6 99.5 94.2 98.1 99.8

KL = 0.05 Adapted using [1] 87.6 97.0 91.9 96.2 61.3

Ours 88.3 97.2 92.6 96.5 61.2

Ours with oracle* 90.0 97.2 92.8 97.5 61.5

KL = 0.2 Adapted using [1] 85.2 94.3 87.6 95.9 57.6

Ours 87.6 96.9 89.9 95.6 58.3

Ours with oracle* 90.1 97.8 92.8 97.3 61.2

KL = 0.4 Adapted using [1] 81.7 94.2 87.1 95.5 53.4

Ours 83.8 94.9 88.0 95.3 56.2

Ours with oracle* 89.8 96.6 92.6 94.1 61.4

First, as expected, larger KL-divergence between source and target usually
leads to worse accuracy for associative domain adaptation. Second, the proposed
method improves recognition after domain adaptation, especially for larger class
distribution divergence, and especially for tasks where the classifiers are not
already near maximal adaptation capacity.

To further derive insights, we also include results with an oracle-weighted visit
loss that use the target class distributions (theoretical upper bound). Although
our off-the-shelf agglomerative clustering does not always approximate the batch
statistics perfectly, it does come considerably close to the oracle-weighted score
and almost always outperforms the unweighted approach. In addition, using
oracle test statistics the proposed method often comes close to the recognition
accuracies of classifiers trained directly on the target domain indicating that our
theoretical reasoning is correct. We conclude that when we expect a dynamical
domain shift, where class distributions between the source and target change,
our approach is more robust to for domain alignment.

4.2 Streaming Data Classification

Next, we evaluate the method on a streaming data scenario, where the class
distributions are expected to be different between source and target. To simulate
a streaming data scenario, we note that the popular synthetically generated and
finely annotated GTA5 dataset [27] is in fact ordered sequentially. Video-like
fragments can be observed throughout the dataset, and a shift in distribution
over time can also be observed, as shown in Fig. 1. We therefore extract patches
from GTA5 frame sequences and adapt to a patch-wise classification task, where
the label for each patch is equivalent to the dense label for the middle pixel.
We use 65 × 65 patches cropped from a 256 × 512 downsampled version of the
original GTA5 dataset.
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Table 2. Streaming classification accuracy per adaptation round. Cells marked “-”
indicate the batch hasn’t yet entered the stream.

Adaptation Set Source only Lag from adaptation timestep Adapted with [1]

5 4 3 2 1 0 (lag=0)

SB1 42.72 - - - - - 46.72 45.58
SB2 40.30 - - - - 44.02 45.22 44.50
SB3 38.58 - - - 40.88 41.48 42.02 42.13
SB4 37.85 - - 40.88 41.52 41.98 43.00 42.45
SB5 42.02 - 45.22 45.90 45.93 45.73 47.51 46.13
SB6 46.78 50.65 50.70 51.47 51.27 51.33 52.73 51.83

We consider a streaming data scenario where a small set of stationary labeled
data is pre-collected and available for training. For the stationary data, we sam-
ple patches from the first 5,000 images in the GTA5 dataset. About 32,000
patches of 65 × 65 dimensions are sampled. For the incoming stream we sam-
ple patches from bundles of 1,000 images each, collected sequentially. 6,000
patches are sampled from every bundle of images and accumulated in a stream-
ing batch. We experiment with adapting six of these sets following the stationary
training set.

Several observations follow from the results in Table 2. First, there is indeed
a dynamical domain shift when considering visual streams instead of static
datasets. When considering the classifiers trained only on the source, there is
considerable fluctuation on the recognition accuracy over time. Note that this
is not always harmful, e.g. for streaming batches 5 and 6 accuracy improves,
presumably because the shift between target and source is smaller.

Second, the proposed streaming adaptation method yields considerable and
constant accuracy improvements over the source-only scores, no matter the
source-only recognition accuracy. Also, the proposed method yields modest but
consistent improvements over standard associative domain adaptation [15].

Third, as expected, best adaptation is achieved when adapting and testing
on the same stream batch (lag = 0). However, adapting with some lag allows
for accurate adaptation as well. We conclude that for visual streams, where
we cannot store the data and we cannot always immediately adapt, dynamical
domain adaptation is valuable.

4.3 Semantic Segmentation

Last, we validate the proposed method on the task of domain adaptation for
semantic segmentation of urban street scenes. This is an application where source
and target class statistics cannot be expected to align, especially on batch level
where adaptation happens.

We adapt on the GTA5 → Cityscapes adaptation benchmark, which is
important to domain adaptation as adapting from synthetic to real data



168 S. Shkodrani et al.

Table 3. GTA5 to Cityscapes domain adaptation. The last two rows show results on
adapting with the unweighted version of the method and the distribution independent
one.
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m
ot
or
b.

bi
ke mIoU Pixel Acc

NoAdapt 33.8 23.2 67.5 18.2 20.1 18.1 15.9 21.8 66.9 18.0 72.4 33.0 6.5 25.0 15.8 19.3 6.0 8.4 5.8 26.1 72.8
Adapt (no wght.) 59.9 29.8 67.1 16.2 10.7 22.9 13.2 9.1 78.0 33.4 75.7 41.9 0.3 32.3 12.4 16.5 5.7 2.9 0.1 27.8 78.8
Adapt (est. wght.) 63.8 31.3 68.4 19.4 19.6 23.2 17.6 11.8 62.9 22.7 61.0 52.1 7.8 42.5 13.4 22.1 6.2 9.1 0.1 29.2 81.9

provides potential for exploiting very easily rendered synthetic sets. GTA5 con-
tains 24,966 images with resolution 1914 × 1052, of which 12,500 are used for
training and around 6,800 for validation. Cityscapes contains 5,000 pixel-level
annotated images of 2048× 1024 resolution, of which 2,975 images for the train-
ing set and 500 images for validation are available. We run our experiments with
images from both datasets downsampled to 512 × 256 size.

As a base segmentation network we use DeepLab-V2 [4] with a ResNet-
50 [17] backbone. We extend the original DeepLab-V2 architecture with a D-
dimensional embedding layer that can be adjusted for experiment purposes and
report results with D = 64. The embedding layer is placed before the bilinear
upsampling part of the decoder, yielding embeddings that are 8 times down-
sampled in each spatial dimension. In this way we can not only adapt to more
compressed information on pixel level embeddings, but also fit embedding met-
rics in reasonable memory even for large datasets.

We use β = 0.5 for the visit loss, adjusted for the magnitude of the loss values.
We use the respective training sets of GTA5 and Cityscapes as the domains for
training, test on the Cityscapes val set, and report the results in Table 3.

First, we train for 30K iterations on source only for GTA5, using pre-trained
ImageNet [9] weights for the ResNet-50 encoder part of the network. We observe
that the proposed distribution independent approach consistently improves stan-
dard associative domain adaptation, both in terms of mIoU and pixel accuracy.

Further, the proposed method improves standard domain adaptation on 15
out of the 19 categories. Standard associative domain adaptation is still better
for large classes with near constant class frequency (e.g. vegetation, terrain, sky),
since adaptation over these would overrule smaller classes in a batch. Interest-
ingly, the proposed method seem to improve significantly (6–10%) over mid-size
classes, such as car, bus and person, where indeed we expect larger class fre-
quency fluctuations. We conclude that our approach is promising for domain
adaptation of complex dense prediction tasks such as semantic segmentation, and
potentially, integrating with the streaming techniques above, to video semantic
segmentation.
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5 Conclusion

We have presented a robust and distribution independent associative learning
method for domain adaptation. Our formulation accounts for realistic scenarios
where source and target data distribution in a batch cannot be approximated
to be equal. A novel setup for dynamic domain adaptation that adapts over
unlabeled data in order to improve classifier prediction over time for streaming
data has been proposed. We have shown that we can exploit unsupervised data
to achieve improvements over several streaming batches without additionally
annotated samples. Using our associative domain adaptation formulation and
architecture considerations we achieve competitive results for semantic segmen-
tation.

Having considered a dynamic time-shifting distribution setup and shown
dense prediction adaptation results, we lay the grounds for a framework that
can potentially work well with dense prediction tasks for streaming video data
such as video segmentation.
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