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Abstract. Incremental Learning (IL) is an interesting AI problem when
the algorithm is assumed to work on a budget. This is especially true
when IL is modeled using a deep learning approach, where two complex
challenges arise due to limited memory, which induces catastrophic for-
getting and delays related to the retraining needed in order to incorporate
new classes. Here we introduce DeeSIL, an adaptation of a known trans-
fer learning scheme that combines a fixed deep representation used as
feature extractor and learning independent shallow classifiers to increase
recognition capacity. This scheme tackles the two aforementioned chal-
lenges since it works well with a limited memory budget and each new
concept can be added within a minute. Moreover, since no deep retrain-
ing is needed when the model is incremented, DeeSIL can integrate
larger amounts of initial data that provide more transferable features.
Performance is evaluated on ImageNet LSVRC 2012 against three state
of the art algorithms. Results show that, at scale, DeeSIL performance
is 23 and 33 points higher than the best baseline when using the same
and more initial data respectively.
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1 Introduction and Background

Typical deep learning pipelines are well adapted to solve tasks when all training
data is available at all times and there are loose constraints regarding time avail-
able for training. Under these conditions, augmenting the classification ability
can simply be done by learning a new representation, either from scratch or
via Fine Tuning (FT). However, when one or both of the above conditions are
violated, adding new classes becomes non-trivial. The authors of iCaRL [11]
rightfully note that there exists no satisfactory algorithm that can qualify as
class-incremental. They frame three necessary properties of it: (i) be trainable
from new stream data that occurs arbitrarily; (ii) provide competitive perfor-
mance for past classes when new ones are integrated and (iii) computational
requirements and memory footprint should remain bounded.

In iCaRL, recognition capacity is incremented by retraining for every new
batch of classes. A fixed-size memory is used to store positive examples which
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provide a compact approximate representation of known classes. For each new
batch of classes, iCaRL starts with updating its representation by adding all
available data for the new classes to known examples. After each state the fixed
memory is updated with examples from the newly learned classes. To counter
catastrophic forgetting [8], i.e. the tendency of a neural net to forget old infor-
mation when new information is ingested, classification and distillation losses
are used. While fulfilling the three necessary conditions for a class-incremental
algorithm, the performance reduction is still important since top-5 accuracy
drops from roughly 90% for 100 to 45% for 1000 classes [11]. Learning-without-
Forgetting (LwF) [7] combines knowledge distillation and Fine Tuning. The
authors first perform a warm-up step by optimizing new parameters only, then
the whole network is optimized using classification loss for new tasks and distil-
lation loss for old tasks. A LwF adaptation for IL is introduced in [11] and has
the advantage of not requiring a memory for past data. However, its performance
is lower than that of iCaRL in a single task scenario. Aljundi et al. [1] intro-
duced ExpertGate, an architecture based on a network of experts from which
only the most adapted one is activated. A gating mechanism is applied to train-
ing samples to decide which expert to transfer knowledge from. When a new
task arrives, a new expert is added and knowledge is transferred from previous
models using FT or LwF [7]. Expert Gate learns a good data representation
when augmenting the number of tasks. However, it violates the third property
of IL algorithms since its number of parameters increases with the number of
tasks. The authors of [17] and [13] improve the plasticity of deep architectures
by widening existing layers and/or deepening the network. While this improves
recognition ability, the drawback in a constrained setting is that the number of
parameters is increased when augmenting the network’s capacity.

We introduce DeeSIL, an adaptation of a known transfer learning scheme [4,
6,10] to incremental learning. In order to qualify as class-incremental and max-
imize flexibility, DeeSIL includes two weakly correlated steps. First, a deep
model provides fixed representations which are then used to learn independent
shallow classifiers during the incremental phase. Instead of using the system
memory to keep positive examples, a set of negative features that are necessary
to train classifiers incrementally is stored. This choice makes it possible to use
all positive examples for training without violating the memory constraint. Our
hypothesis is that independent shallow learning over all positives compensates
the drawback related to the use of a fixed deep representation. Since no deep
retraining is needed to increase system capacity, the approach is considerably
less complex compared to its purely deep learning counterparts. The addition
of a new class is done through the training of a shallow classifier, an operation
that takes less than a minute on a single CPU. DeeSIL is tested against three
competitive IL algorithms, including iCaRL [11], the best such algorithm known
to the authors. The ImageNet LSVRC 2012 dataset is used for evaluation and
results show significant improvement for the proposed method.
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2 Method

An overview of DeeSIL is provided in Fig. 1. The algorithm is an adaptation for
incremental learning of a well-known transfer learning scheme [6]. Given a set of
images Xi for a class to be learned, features F i are extracted using a fixed deep
representation provided by the deep features extractor (DFEDFEDFE). Then a shallow
binary classifier CiCiCi is trained using F i as positives and FN as negatives in order
to predict the activations pi of the class for test images. FN is the memory of the
system and it contains a constant number K of features, regardless of the state of
the system (i.e. number of recognizable classes). FN is generated by the negative
selector (NSNSNS) component which is the main adaptation introduced in DeeSIL to
make a classical transfer learning pipeline [6] suitable for incremental learning.
Given A (y recognizable classes), the initial state of the system, the following
steps are needed to move to state B (y+ j classes): (1) extract features for the j
new classes; (2) update the pool of negatives FN using NSNSNS component; (3) train
j shallow classifiers. Following common practice in transfer learning [4,6,10], we
use linear SVMs. We further discuss steps (1) and (2) hereafter.

Fig. 1. Overview of DeeSIL. Two states of the system, A (light gray background) and
B (light pink background) that recognize respectively y and y+j classes are presented.
Xi, F i are sets of images and features for the ith class. FN is a set of negative features
obtained using a negative selector (NSNSNS) and common to all shallow classifiers that are
added in a given state. DFEDFEDFE is a deep features extractor. CiCiCi is a shallow classifier
learned for the ith class and the output pi is the associated prediction. (Color figure
online)

Deep Features Extractor. In [11], each new state of the class-incremental-
algorithm depends on the representation learned in the preceding state. Here,
deep features extraction and shallow classifier learning are separated. DeeSIL
thus implements a form of transfer learning which uses a fixed deep representa-
tion. To evaluate the effect of the amount of training data and its visual proximity
with the test data, we train three variants of DFEDFEDFE:

– IN100 - train only with the ImageNet data of the initial state, a setting that
is directly comparable with [11].

– IN1000 - train with a larger dataset that has similar characteristics with the
test set but no common classes. 1000 diversified ImageNet classes are selected
to optimize their transferability toward new tasks [14,15].
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– FL1000 - train with a more challenging dataset which is obtained from weakly
annotated Flickr group data and is visually more distant from the test set.
Within each group, a semi-supervised reranking [2] is initially performed to
remove a part of noisy images.

A greedy algorithm [3] which operates with classes’ mean representations is used
for dataset diversification in the last two variants. It picks at each iteration the
class which is on average least similar to those already selected. Visual represen-
tations from IN100 are used as basis for the diversification process.

Negatives Selection. In standard transfer learning [6], shallow classifiers are
learned in a one-VS-rest fashion since all data is available at all times. Here, a
selection is necessary to fit FN features in the memory budget K for any state
of the algorithm. We test three negative selection strategies:

– ind - following [4] FN is composed of K YFCC image features [16] selected
so as to represent frequent but diversified tags.

– rand - a random and balanced sampling of image features from all past and
current classes.

– div - diversified samples from all recognizable classes. The greedy algorithm
implemented for dataset diversification is reused here at image level.

For rand and div, if DeeSIL recognizes y classes in a given state, each class
will have K

y representatives in FN . Naturally, a class’ own representatives are
discarded from FN when training its shallow classifier.

3 Evaluation and Discussion

DeeSIL is tested using the ILSVRC 2012 dataset [12]. The evaluation protocol
(order of classes, size of system states) is nearly identical to the one used for
iCaRL [11]. ILSVRC 2012 includes a total of 1000 classes, further split into
10 batches of 100 classes, which means that 10 distinct states of the class-
incremental algorithms are tested. The test set is the same but, since we need to
optimize the SVMs, we keep out 20 images for validation and train on remaining
images. We use the best three systems from [11] as baselines: (1) iCaRL - their
contribution and the best IL algorithm known to us; (2) LwF-MC - adaptation
of Learning without Forgetting [7] to IL scenario and (3) Fixed Representation
- training over a frozen initial network, except for the classification layer.

ResNet-18 [5] was trained from scratch using PyTorch [9] following the
methodology described in [5] with 100 and 1000 ImageNet classes and 1000
Flickr groups. Training images are processed using a random resized crop of
size 224× 224 and a random horizontal flip and they are normalized after these
transformations. An SGD optimizer is used. The learning rate starts at 0.1 and
is divided by 10 when the error plateaus for 10 consecutive epochs. The weight
decay is 0.0001 and the momentum is 0.9. Each configuration is trained for
100 epochs and the model with optimal accuracy is retained. The penultimate
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Fig. 2. Top-5 accuracy on ILSVRC for
DeeSIL variants obtained with three
negative selection strategies.

Fig. 3. Top-5 accuracy on ILSVRC
for fixed deep representations obtained
with larger datasets.

layer (average pooling with 512 dimensions) is extracted by DFEDFEDFE and then L2-
normalized before being fed into the shallow classifiers. The memory size, which
stores negative features, is K = 20000, the same as in [11].

The SVM classifiers were optimized with 20 images per class for validation.
Values of the regularization parameter between 0.0001 and 1000 were tried and
the optimal parameter was then used in each variant of the system.

The results in Fig. 2 show that all variants of DeeSIL, trained with rand, div
and ind negatives selection outperform the state of the art systems. At scale, i.e.
1000 classes learned incrementally, performance increases from 45% for iCaRL
to 68% when rand and div negatives are exploited. This gain is consistent over
all the states of the class-incremental evaluation, with larger difference for large
batches. DeeSIL can be seen as a variant of Fixed Representation learning but
differs from it through the use of all positives in the incremental phase. This
leads to an even higher performance gain than in the case of iCaRL.

The three NSNSNS variants have rather performance and this finding shows that
our method is robust w.r.t. the choice of negatives. Selecting negatives from the
dataset (rand and div) gives marginally better results (0.5 points gain) compared
to the use of an independent negative set (ind) for 1000 classes. rand being
simpler to compute than div, DeeSILrand will be used in further experiments.

In Fig. 3, we test the effect of using more data to obtain strong fixed represen-
tations. 1000 ImageNet classes and Flickr groups are used respectively. Richer
data compensates for the fact that features are transferred from classes that
are different from the tested ILSVRC classes. This is especially the case for
DeeSILIN1000

rand , which exploits a subset of ImageNet distinct from ILSVRC. Per-
formance improvements of 10 and 33 points are obtained over DeeSILIN100

rand , the
best configuration trained with the 100 initial ILSVRC classes and over iCaRL
respectively. DeeSILFL1000

rand , the version trained on non-curated Flickr data has
lower performance than DeeSILIN1000

rand , but is close to DeeSILIN100
rand and still

well above the state of the art algorithms. The last result confirms the finding
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in [2] that it is possible to learn reasonable representations even with little or no
manually labeled data.

Beyond performance, it is also important to compare the complexity of
DeeSIL to that of iCaRL, the main baseline. ResNet-18, the basic deep archi-
tecture is the same for both methods. Recognition capacity incrementation is
done with linear SVMs. This entails the computation of a dot product per class,
which is equivalent to adding a class in the final layer of a CNN. Training is
simpler in DeeSIL since a single deep network training is needed at the begin-
ning. In the incremental step, we only train shallow classifiers. Adding a single
class typically takes less than 1 min, distributed among deep features extraction
and SVM training on an INTEL-Xeon-E5-2650-v2@2.60 GHz CPU. For compar-
ison, adding a batch of 100 new classifiers in iCaRL takes approximately 32 h
on an NVIDIA Titan X GPU. Incremental learning is typically needed in low-
resource contexts and, assuming that an initial deep representation is available,
DeeSIL can be deployed even in absence of a GPU. Equally important, due to
the independent learning of shallow classifiers, DeeSIL can seamlessly integrate
batches of new classes of arbitrary size. In contrast, purely deep learning based
algorithms need retraining and this step is particularly long if one class is added
at a time.

Compared to iCaRL, the focus is shifted from positive to negative selection
to fill in the memory of the system. As shown in the experiments, our algo-
rithm is affected by catastrophic forgetting to a much lesser extent. The choice
to select negatives is beneficial for scalability in terms of number of learnable
classes. Given a memory budget K, iCaRL can learn at most y � K classes while
DeeSIL can learn as many classes as presented to the system. Naturally, neg-
atives selection becomes more complicated if y � K since not all known classes
will be represented anymore. Also, while the same number of items is stored
in iCaRL and DeeSIL, memory needs are lower in our case since we store 512
dimensional features instead of images of past classes.

It is interesting to evaluate the decrease in performance compared to a sit-
uation in which all training data is available at all times. ResNet-18 [5] top-5
accuracy on 1000 ILSVRC classes trained with all data is approximately 89%.
iCaRL halves this score while our best configurations with DFEDFEDFE based on 100
and 1000 classes lose only 22 and 12 points respectively. The gap could probably
be further reduced if the feature extractors were more universal [14,15]. This
could, for instance, be achieved if DeeSIL’s initial training would be done with
an even larger number of classes.

4 Conclusion

We revisit a known transfer learning scheme for it to fit the three necessary
conditions needed to qualify as a class-incremental algorithm [11]. The proposed
method achieves significantly better performance than existing algorithms while
also being much faster to train and more scalable in terms of number of learnable
classes. To facilitate reproducibility, classifier configurations and data used to
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train them will be made public. The results presented here encourage us to
pursue the development of DeeSIL along the following directions: (1) test the
effect of using lower size memory, (2) push the evaluation to a much larger
number of classes to test the limits of the different methods and (3) integrate
more universal deep representations to improve overall performance.
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