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Abstract. Object tracking is an essential problem in computer vision
that has been researched for several decades. One of the main challenges
in tracking is to adapt to object appearance changes over time and avoid-
ing drifting to background clutter. We address this challenge by propos-
ing a deep neural network composed of different parts, which functions
as a society of tracking parts. They work in conjunction according to a
certain policy and learn from each other in a robust manner, using co-
occurrence constraints that ensure robust inference and learning. From
a structural point of view, our network is composed of two main path-
ways. One pathway is more conservative. It carefully monitors a large
set of simple tracker parts learned as linear filters over deep feature acti-
vation maps. It assigns the parts different roles. It promotes the reliable
ones and removes the inconsistent ones. We learn these filters simulta-
neously in an efficient way, with a single closed-form formulation, for
which we propose novel theoretical properties. The second pathway is
more progressive. It is learned completely online and thus it is able to
better model object appearance changes. In order to adapt in a robust
manner, it is learned only on highly confident frames, which are decided
using co-occurrences with the first pathway. Thus, our system has the
full benefit of two main approaches in tracking. The larger set of simpler
filter parts offers robustness, while the full deep network learned online
provides adaptability to change. As shown in the experimental section,
our approach achieves state of the art performance on the challenging
VOT17 benchmark, outperforming the published methods both on the
general EAO metric and in the number of fails, by a significant margin.
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1 Introduction

Object tracking is one of the first and most fundamental problems that has
been addressed in computer vision. While it has attracted the interest of
many researchers over several decades of computer vision, it is far from being
solved [17,18,23,32,36]. The task is hard for many reasons. Difficulties could
come from severe changes in object appearance, presence of background clutter
and occlusions that might take place in the video. The only ground-truth knowl-
edge given to the tracker is the bounding box of the object in the first frame.
Thus, without knowing in advance the properties of the object being tracked,
the tracking algorithm must learn them on the fly. It must adapt correctly and
make sure it does not jump toward other objects in the background. That is why
the possibility of drifting to the background poses on of the main challenges in
tracking.

Our proposed model, at the conceptual level, is composed of a large group
of different tracking parts, functioning like a society, each with different roles
and powers over the final decisions. They learn from each other using certain co-
occurrence rules and are monitored according to their reliability. The way they
function together gives them robustness. From a structural point of view, they
are all classifiers within a large deep neural network structure, composed of two
pathways, namely the FilterParts and the ConvNetPart pathways (see Fig. 2).
While the first insures robustness through the co-occurrence of a large number
of smaller tracker parts, the second pathway insures the ability to adapt to
subtle object changes. The ConvNetPart is fully trained online, end-to-end, and
uses as ground-truth high confidence tracker responses that are decided together
with the whole society of parts. We will refer to the frames of high confident
tracker responses as Highly Confident Frames (HCFs). We provide more details
in Sect. 3.2. Using as ground-truth only a small set of high precision points is
also related to the recent work on unsupervised object discovery in video [14].

Our approach is based on two key insights. One is the organization of the
whole tracker into a large group of different types of classifiers, simpler and
more complex, at multiple scales and with different levels of depth, as part of a
larger neural network structure, that make decisions together based on mutual
agreements. The second idea is the usage of co-occurrence constraints as basis
for ensuring robustness, both for online training of the overall tracker, as well as
for frame by frame inference.

Relation to Prior Work: Existing trackers in the literature differ in terms
of type of target region, appearance model, mathematical formulation and opti-
mization. Objects can be represented by boxes, ellipses [19], superpixels [35] or
blobs [13]. The appearance model can be described as one feature set over the
region or as an array of features, one for each part of the target [12,20,30].

In recent years, trackers based on discriminative correlation filters (DCF),
such as MOSSE [1] and KCF [16], achieved the best results on public bench-
marks. Newer models like Staple [4], CCOT [9] and ECO [7] provide consistent
improvements by adding to the DCF model different components, such as multi-
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channel feature maps and robust scale estimation [8,33]. CCOT, for instance,
proposes to learn continuous convolution parameters by optimizing a function
that results from transforming the original feature space into a continuous one
and applying onto it the continuous convolutions. While learning the parame-
ters continuously, provides adaptability to the tracker, overfitting to noise and
drifting could pose a threat. To reduce overfitting, ECO comes with a generative
model over training samples. Nevertheless, most recent tracking approaches still
suffer from overfitting to background noise, which causes tracker failure.

A common approach for top trackers in the recent literature is to model
object features with deep convolutional networks (CNNs). To address the issue
of robustness against background noise in the case of online training of CNNs, the
TCNN [26] algorithm, for example, maintains stability of appearance through a
tree structure of CNNs. MLDF [17] uses discriminative multi-level deep features
between foreground and background together with a Scale Prediction Network.
Another approach, MDNET [27] is used as starting point for many CNN trackers.
For instance, SSAT [17] uses segmentation to properly fit the bounding box and
builds a separate model to detect whether the target in the frame is occluded or
not. It uses this to consider frames for training the shape segmentation model.

Other line of object tracking research is the development of part-based mod-
els, which are more resistant to appearance changes and occlusions. Their multi-
part nature gives them robustness against noisy appearance changes in the
video. In recent benchmarks however, they did not obtain the top results. For
instance, in VOT16 [17] challenge, while the number of part-based trackers, such
as DPCF [3], CMT [28], DPT [21], BDF [2], was relatively high (25%), the best
one of the group, SHCT [11], is on the 14th place overall. SHCT [11] is a complex
system using a graph structure of the object that models higher order depen-
dencies between object parts, over time. As it is the case with deep networks, we
believe complex systems are prone to overfitting to background noise without a
high precision way of selecting their unsupervised online training frames.

Our proposed model combines the best of two worlds. On one hand it uses a
powerful deep convolutional network trained on high confidence frames, in order
to learn features that better capture and adapt to object appearance changes.
On the other hand, it uses the power of a large group of simpler classifiers that
are learned, monitored, added and replaced based on co-occurrence constraints.
Our approach is validated by the very low failure rate of our tracker, relative to
the competition on the VOT2017 and VOT16 benchmarks.

Our Main Contributions: (1) Our first contribution is the design of a tracker
as a dual-pathway network, with FilterParts and ConvNetPart pathways work-
ing in complementary ways within a robust society of tracking parts. FilterParts
is more robust to background noise and uses many different and relatively simple
trackers learned on top of deep feature activation maps. ConvNetPart is better
capable to learn object appearance and adapt to its changes. It employs a deep
convolutional network that is learned end to end during tracking using unsu-
pervised high confidence frames for ground-truth. (2) Our second contribution
is that every decision made for learning and inference of the tracker is based
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on robust co-occurrence constraints. Through co-occurrences over time we learn
which FilterParts classifiers are reliable or not. Thus we can change their roles
and add new ones. Also, through co-occurrences between the vote maps of the
two pathways, we decide which frames to choose for training the ConvNetPart
path along the way. Last but not least, through co-occurrences we decide the
next object center by creating a combined vote map from all reliable parts.

(3) Our third contribution addresses a theoretical point, in Sect. 3.1. We show
that the efficient closed-form formulation for learning object parts simultaneously
in a one sample vs. all fashion is equivalent to the more traditional, but less
efficient, balanced one vs. all formulation.

2 Intuition and Motivation

A tracking model composed of many parts, with different degrees of complexity,
could use the co-occurrences of their responses in order to monitor over time,
which parts are reliable and which are not. This would provide stability. They
could also be used to train the more complex ConvNetPart pathway only on
high-confidence frames on which the two pathway responses strongly co-occur in
the same region. Thus, they could provide robust adaptability. Last but not
least, by taking in consideration only where sufficient parts votes co-occur for the
object center, we could also achieve robust frame to frame performance.
We discuss each aspect in turn, next:
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Fig. 1. Qualitative comparisons between FilterParts, ConvNetPart and the final (STP)
voting maps. Often, in complicated scenarios, the ConvNetPart vote could be of better
quality. There are also relatively simple cases where the ConvNetPart activation map
look bad, and we need the stability of the FilterParts. The final vote map (STP),
provides a more robust maximum. The blue point represent the center of the final
vote. (Color figure online)



166 E. Burceanu and M. Leordeanu

(1) Stability Through Steadiness: A part classifier is a discriminative patch
detector (detailed in Sect. 3.1). We consider a part to be reliable if it has showed
independently and frequently enough agreement in voting with the majority of
the other parts - a statistically robust measure. A certain part is at the beginning
monitored as a candidate part, and not used for deciding the next tracker
move. It is only after a candidate part’s vote for the object center co-occurred
frequently enough at the same location with the majority vote, we promote the
candidate to become a reliable part. From then on its vote will participate in
the final vote map. Tracking parts that display consistent reliable behaviour over
relatively long periods of time are promoted to the status of gold members -
they will permanently have the right to vote, they cannot be downgraded and will
not be monitored. In similar fashion, for the ConvNetPart, we always keep the
tracker output from the first frames (=20) in video during the learning updates of
the convolutional net. We further ensure robustness by favoring current tracker
prediction to be close to the previous one. We use a tracker location uncertainty
mask, centered around the previous center location.

(2) Robust Adaptation: the tracker is able to continuously adapt by adding
candidate parts and removing unreliable ones. It also adapts by learning the
ConvNetPart on high confidence frames accumulated over time. For object parts
along the FilterParts pathway, gaining reliability, loosing it or becoming a gold
member, can happen only over time. It is the temporal buffer, when tracking
parts are monitored, which ensures both stability and the capacity to adapt
to new conditions in a robust way. In time, the second pathway has access to a
larger and larger set of reliable HCFs that are monitored through co-occurrences
between the voted tracker centers of the two pathways. By training the net
on larger sets of high quality frames we achieve both stability and capacity to
adapt to true object appearance changes. As mentioned previously, HCFs used as
ground-truth comes from past frames where the center given by the FilterParts
alone co-occurred at the same location (within a very small distance) with the
one given by the ConvNetPart. In Fig. 3 we show why the distance between the
two pathways is a good measure for frame confidence - the strong correlation
between the distance between the tracker and the ground-truth and the distance
between the centers voted along the two pathways is evident. In Fig. 1 we also
show qualitative results to demonstrate how ConvNetPart and FilterParts could
better work together in conjunction, than separately.

(3) Robust Frame to Frame Tracking: Each part produces a prediction
map for the object center. For the FilterParts pathway, an average vote map is
obtained from all reliable parts. That map is then added to the ConvNetPart
final vote map, with a strong weight given to the FilterParts pathway. This is the
final object center map in which the peak is chosen as the next tracker location.
It is thus only through the same strong co-occurrences of votes at a single
location that we robustly estimate the next move.
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3 The Tracker Structure, Function and Learning

Tracker Structure: At the structural level, the Society of Tracking Parts (STP)
has two pathways: FilterParts and ConvNetPart (Fig. 2). The first pathway is
formed of smaller object parts that are linear classifiers over activation maps,
from a pre-learned convolutional net. The ConvNetPart pathway is a deep con-
volutional net, with the same structure as the first pathway up to a given depth.
Now we present the actual CNNs structures of the two pathways:

The ConvNetPart is a fully convolutional network, where the first part (com-
mon as architecture with FilterParts features extractor) has 7 convolutional lay-
ers, with 3 × 3 filters (each followed by ReLU) and 2 maxpooling layers (2× 2).
It is inspired from the VGG architecture [31]. The second part, is composed
of 4 convolutional layers with 3× 3 filters, having the role to gradually reduce
the number of channels and computing the segmentation mask for object center
prediction. We could have tested with different, more recent architectures, but
in our experiments this architecture was strong enough.

256 

128 64 32 

64 128 256 256 128 64

Trained on first 20 frames, updated
on highly confident frames 

256 64 128 256 256 128 64

+
 Linear classifiers learned in "one
vs all" manner over convolutional

features 

Each classifier is responsible to
detect a part of the object

FilterParts 
(sum of filters activation maps) 

ConvNetPart 

Final voting map
for object center

Pretrained on ImageNetFilterParts 

ConvNetPart 

maxpoolingconv 3x3 
+ relu 
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Crop from frame t

Fig. 2. STP overview: The tracker functions as a society of parts. It combines the vote
for center maps from all parts over two main pathways, FilterParts and ConvNetPart.
The two pathways are learned differently. The FilterParts classifiers once learned are
fixed individually but adapt as a group. The ConvNetPart is trained end-to-end with
back-propagation over unsupervised tracker outputs from previous highly confident
frames (HCFs).

Tracking by Co-occurrences of Part Votes: The tracker always chooses as
its next move at time t, the place (the center of the bounding box) lt+1 where
there is the largest accumulation of votes in Pt, its final object center prediction
map. For each filter part i, along the FilterParts pathway, there is an activation
map Fti, computed as the response of the classifier ci corresponding to that
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part over the search region. The activation maps of filter parts are each shifted
with the part displacement from object center and added together to form the
overall Ft. When all filter parts are in strong agreement, all votes from Ft focus
around a point. For the second pathway, the object center prediction map Ct

is the output of the ConvNetPart network, given the same image crop input as
to FilterParts. After smoothing Ft with a small Gaussian filter, it is added to
Ct. The final prediction map Pt is then obtained by multiplying pixelwise the
linear combination of Ct and Ft, with a center uncertainty mask Mc, around
the center in the previous frame. Mc is a circular soft mask, with exponential
decay in weights, as the distance from the previous center prediction increases.
Thus, Pt = (αFt + (1 − α)Ct) · Mc, where · denotes pixelwise multiplication. Mc

encourages small center movements at the expense of large, sharp, abrupt ones.
The maximum in Pt is chosen as the next center location lt+1.

3.1 Learning Along the FilterParts Pathway

STP chooses in the FilterParts update phase new parts to add as candidates.
They are classifiers, of different sizes and locations, represented as linear filters
over activation maps of deep features. To each part it corresponds a patch,
within the tracker’s main bounding box. Only patch classifiers that are highly
discriminative from the rest are selected. One is considered discriminative if the
ratio between the response on its own corresponding patch (the positive patch)
and the maximum response over negatives is larger than a threshold td. Positive
patches are selected from the inside of the bounding box, while (hard) negatives
are selected as patches from outside regions with high density of edges. We
sample patches from a dense grid (2 pixels stride) of 3 sizes. The small ones will
see local appearance and the larger ones will contain some context. A point in
grid is covered only by one selected discriminative patch, at one size. The smaller
ones have priority and we search the next size for the patch centered in the grid
point only if the smaller patch is not discriminative enough. The object box
is completely covered when each pixel is covered by any given patch. A simple
budgeting mechanism is added, in order to limit the speed impact. When too
many parts of a certain patch size become reliable > Nmax, we remove the new
reliable ones which are most similar to older parts, based on simple dot product
similarity for the corresponding classifiers.

Mathematical Formulation for Filter Parts Classifiers: We introduce the
mathematical formulation for learning the part classifiers in FilterParts. For a
given feature type let di ∈ R

1×k be the i-th descriptor, with k real elements,
corresponding to an patch window at a certain scale and location relative to the
object bounding box. In our case, the descriptor di is a vector version of the
specific patch concatenated over all activation map channels over the considered
layers of depth in the FilterParts pathway. Our formulation is general and does
not depend on a specific level of depth - features could as well be simple pixel
values of any image channel. Let then D be the data matrix, formed by putting
all descriptors in the image one row below the other.
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We learn the optimal linear classifier ci that separates di from the rest of
the patches, according to a regularized linear least squares cost, which is both
fast and accurate. Classifier ci minimizes the following cost ([25] Chap. 7.5):

min
1
n

‖Dci − yi‖2 + λc�
i ci. (1)

In classification tasks the number of positives and negatives should be bal-
anced, according to their prior distributions and the specific classifier used. Dif-
ferent proportions usually lead to different classifiers. In linear least squares
formulations weighting differently the data samples could balance learning.

Learning with One Sample Versus All: The idea of training one classifier
for a single positively labeled data sample has been successfully used before, for
example, in the context of SVMs [24]. When using very few positive samples for
training a ridge regression classifier, weighting is applied to balance the data.
Here we show that it is possible, when a single positive sample is used, to obtain
the same result with a single positive sample without weighting, as if balancing
was applied. We show a novel result, that while the magnitude of the corre-
sponding classifier vector is different for the single positive data sample case, its
direction remains unchanged w.r.t. the balanced case.

Theorem 1. For any positive weight wi given to the positive i-th sample, when
the negative labels considered are 0 and the positive label is 1 and all negatives
have the same weight 1, the solution vector to the weighted least squares version
of Eq. 1 will have the same direction and it might differ only in magnitude. In
other words, it is invariant under L2 normalization.

Proof. Let ci be the solution to Eq. 1. At the optimum the gradient vanishes,
thus the solution respects the following equality (D�D + λIk)ci = D�yi. Since
yi(i) = 1 and yi(j) = 0 for j �= i, it follows that (D�D + λIk)ci = di. Since the
problem is convex, with a unique optimum, a point that obeys such an equality
must be the solution. In the weighted case, a diagonal weight n×n matrix W is
defined, with different weights on the diagonal wj = W(j, j), one for each data
sample. In that case, the objective cost optimization in Eq. 1 becomes:

min
1
n

‖W 1
2 (Dci − yi)‖2 + λc�

i ci. (2)

We consider when all negative samples have weight 1 and the positive one
is given wi. Now we show that for any wi, if ci is an optimum of Eq. 1 then
there is a real number q such that qci is the solution of the weighted case. The
scalar q exists if it satisfies (D�D+did�

i (wi−1)+λIk)qci = widi. And, indeed,
it can be verified that q = wi

1+(wi−1)(d�
i ci)

satisfies the required equality. In the
supplementary material we have provided a detailed proof.

Efficient Multi-class Filter Learning: The fact that the classifier vector
direction is invariant under different weighting of the positive sample suggests
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that training with a single positive sample will provide a robust and stable sep-
arator. The classifier can be re-scaled to obtain values close to 1 for the positive
samples. Theorem 1 also indicates that we could reliably compute filter classi-
fiers for all positive patches in the bounding box at once, by using a single data
matrix D. We form the target output matrix Y, with one target labels column
yi for each corresponding sample di. Note that Y is, in fact, the In identity
matrix. We now write the multi-class case of the ridge regression model and
finally obtain the matrix of one versus all classifiers, with one column classifier
for each tracking part: C = (D�D + λIk)−1D�. Note that C is a regularized
pseudo-inverse of D. D contains one patch descriptor per line. In our case, the
descriptor length is larger than the number of positive and negative samples, so
we use the Matrix Inversion Lemma [25](Chap. 14.4.3.2) and compute C in an
equivalent form:

C = D�(DD� + λIn)−1. (3)

Now the matrix to be inverted is significantly smaller (n × n instead of k × k).

Reliability States: The reliability of a filter part i is estimated as the frequency
fi at which the maximum activation of a given part is in the neighborhood of the
maximum in the final activation Pt where the next tracker center lt+1 is chosen.
If a part is selected for the first time, it is considered a candidate part. Every U
frames, the tracker measures the reliability of a given part, and promotes parts
with a reliability larger than a threshold fi > p+, from candidate state (C) to
reliable state (R) and from reliable (R) to gold (G). Parts that do not pass the
test fi ≤ p− are removed, except for gold ones which are permanent.

3.2 Learning Along the ConvNetPart Pathway

The end output of the ConvNetPart pathway is an object center prediction
map, of the same size as the one produced along the FilterParts pathway. Dif-
ferent from FilterParts, the second pathway has a deeper architecture and a
stronger representation power, being trained end-to-end with back-propagation
along the video sequence. First, we train this net for the first 20 frames, using
as ground-truth the FilterParts center prediction (expected to be highly accu-
rate). Afterwards, the ConvNetPart is considered to be reliable part and it will
contribute, through its center prediction, to the final tracker prediction.

From then on, the ConvNetPart will be fine-tuned using as ground-truth the
final tracker predictions on highly confident frames (HCFs). This will ensure
that we keep the object appearance up to date, and we won’t drift in cases of
local occlusion or distractors. Results from Table 4 supports our decision.

Selecting Training Samples from Highly Confident Frames: We call HCF
(Highly Confident Frame) a frame on which the distance between FilterParts
and ConvNetPart votes for object center prediction is very small. When the
two pathways vote almost on the same center location, we have high confidence
that the vote is correct. In order to balance efficiently the number of updates
with keeping track of object appearance changes, we do the following. First, we
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accumulate frames of high confidence and second, at regular intervals, we fine
tune the network using the accumulated frames. The assumption we made is
that on HCFs, our tracker is closer to ground-truth than in the other frames.
This is confirmed in Fig. 3. 11% of all frames are HCFs. More extensive tests for
validating HCF usefulness are described in Sect. 4.
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Fig. 3. The plot shows the expected distance to ground-truth for a given distance
between the centers predicted by the two pathways. As seen, the correlation is strong
and is therefore used for selecting in an unsupervised way high confidence frames. We
choose HCFs from the first 11% percentile. (Color figure online)

Technical Details for Training the ConvNetPart: For each training frame,
we use as input an image crop around the object (Fig. 4). The ground-truth is
given as a segmentation map of the same size, with a circle stamp in the center.
We increase robustness and generalization by randomly shifting the image along
with its ground-truth - thus we also augment the data by providing two such
randomly shifted pairs, per frame. We use the Adam optimizer (Pytorch [29]),
with learning rate lr, at first for k epochs on the first N(=20) frames, then on k
epochs on each update, after each U frames. In the update step, we always use
as samples the last N HCFs and the first N frames - thus we combine the new
changes with the initial appearance. The training loss was MSE =

∑
(xi−yi)

2

n .
Note that we did not experiment with many architectures or loss functions,
which might have further improve performance.

Parameters: we use the following parameters values in all our experiments from
Sect. 4: α = 0.6, U = 10 frames, td = 1.4, p+ = 0.2, p− = 0.1, k = 10 epochs,
N = 20 frames, lr = 1e − 5 and Nmax = 200 parts for each scale size.

4 Experimental Analysis

Results on VOT17 and VOT16 Benchmarks: We tested our tracker on the
top visual object tracking benchmarks, VOT17 [18] and VOT16 [17]. VOT16
contains 60 video sequences, containing many difficult cases of occlusion, illu-
mination change, motion change, size change and camera motion. The VOT17
dataset replaces sequences from VOT16 that were solved by most trackers with
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Fig. 4. The voting maps for FilterParts, ConvNetPart and the final (STP), respectively.
We also show the qualitative view of training samples selection for ConvNetPart. Frame
is not Highly Confident if pathways votes centers are distanced. Best seen in colors.

new and more difficult ones. For computing the final EAO evaluation score, VOT
setup is re-initializing the tracker when it completely misses the target.

In Table 1 we present the results after running our tracker through the
VOT toolkit. We compared our method against top published tracking methods:
ECO [7], CCOT [9], CFWCR [15], Staple [4], ASMS [34], EBT [38], CCCT [6],
CSRDCF [22], MCPF [37], ANT [5], some with reported results on both bench-
marks. Our STP outperforms the current state of the art methods on VOT17,
and is in the top three on VOT16. Note that we used the exact same set of
parameters on all videos from both VOT17 and VOT16. What distinguishes
our tracker the most from the rest is the much lower failure rate (R is 0.76 vs.
second best 1.13, on VOT17). We think this is due to the robustness gained by
the use of co-occurrence constraints in all aspects of learning and inference, and
the dual-pathway structure, with each pathway having complementary advan-
tages. In the supplementary material we present visual results of our tracker
on VOT17 and comparisons on different challenging cases, as tagged by VOT
evaluation. We are in top first or second on 4 out of 5 special cases, while being
the first overall as shown in the Table 1. VOT16 [17] and VOT17 [18] identify
occlusion as the most difficult case, on which we strongly outperform the others.
Next we show how each design choice influenced the strong performance of our
tracker.

Combining the FilterParts and ConvNetPart Pathways: In Table 2 we
test the effect of combining the two pathways on the overall tracker. Each path-
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Table 1. Top published trackers in terms of Expected Average Overlap (EAO), Robust-
ness and Accuracy (R,R∗ and A). We computed R in two ways: (1) R as initially com-
puted by VOT and also reported by our main competitors, ECO [7] and CFWCR [15];
and (2) R∗, a more complex robustness metric, as currently computed in the VOT
benchmark. Note that our tracker outperforms the published methods in terms of both
robustness measures R,R∗ on both VOT17 and VOT16 by a significant margin. We
obtain the state of the art final EAO metric on VOT17 and the 3rd EAO score on
VOT16. Our overlap score (A) is slightly lower as we did not explicitly learn object
shape or mask. Note that we obtained these results with the exact same tracker and
parameters for both VOT17 and VOT16. We will make our code available.

Tracker Dataset

VOT17 [18] VOT16 [17]

EAO R ↓ A ↑ R∗ ↓ EAO R ↓ A ↑ R∗ ↓
STP (ours) 0.309 0.76 0.44 0.206 0.361 0.47 0.48 0.140

CFWCR [15] 0.303 1.2 0.48 0.267 0.39 0.81 0.58 -

ECO [7] 0.28 1.13 0.48 0.276 0.374 0.72 0.54 0.200

CCOT [9] 0.267 1.31 0.49 0.318 0.331 0.85 0.52 0.238

Staple [4] 0.169 2.5 0.53 0.688 0.295 1.35 0.54 0.378

ASMS [34] 0.169 2.23 0.49 0.623 0.212 1.925 0.5 0.522

CCCT [6] – – – – 0.223 1.83 0.442 0.461

EBT [38] – – – – 0.291 0.9 0.44 0.252

CSRDCF [22] 0.256 1.368 0.491 0.356 – – – –

MCPF [37] 0.248 1.548 0.510 0.427 – – – –

ANT [5] 0.168 2.16 0.464 0.632 – – – –

way is let by itself to guide the tracker. In the “FilterParts only” line, we have
results where the first pathway becomes the tracker, with no influence from Con-
vNetPart (α = 1). On the second we show the opposite case, when the tracker
is influenced only by ConvNetPart (α = 0). In that case the ConvNetPart is
trained on the first 20 frames, then continuously updated on its own output,
with no influence from the FilterParts pathway.

In general, the FilterParts pathway is more robust and resistant to drifting
because it incorporates new information slower, after validating the candidates
in time. It is also based on stronger pre-trained features on ImageNet [10]. It is
more stable (lower failure rate) but less capable of learning about object appear-
ance (lower accuracy, as IOU w.r.t ground-truth). The ConvNetPart pathway is
deeper and more powerful, but as it is continuously trained on its own tracker
output it is prone to overfitting to background noise, resulting in many failures.

When using both components, the two pathways work in conjunction and
learn from each other using their outputs’ co-occurrence constraints. The deeper
pathway (ConvNetPart) is learning from the less flexible but more robust path-
way (FilterParts). The numbers confirm our intuition and show that the two
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paths work in complementary, each bringing important value to the final tracker.
The boost in performance after combining them is truly significant.

Table 2. In “FilterParts only” experiment, the second pathway is not used at all. In
“ConvNetPart only” experiment, we use the FilterParts pathway only for the first 20
frames, to initialize the network, and not use it afterwards. In the absence of high
confidence frames selection, the ConvNetPart is trained on each frame, using its own
predictions as ground-truth.

Version Dataset

VOT17 VOT16

EAO R ↓ A ↑ EAO R ↓ A ↑
FilterParts only 0.25 0.99 0.42 0.306 0.80 0.44

ConvNetPart only 0.205 2.09 0.43 0.265 1.53 0.46

Combined 0.309 0.765 0.44 0.361 0.47 0.48

Using Different Part Roles in FilterParts Pathway: In this case all filters
have one single role. Instead of considering candidates, reliable and gold parts,
which ensure stability over time, now all parts added over the sequence have the
right to vote at any time. In Table 3 we see that the impact of multiple roles for
filter parts, depending on their validation in time is high, bringing a 5% increase
in terms of EAO, comparing to the basic one role for all version.

Table 3. Impact of different part roles used in FilterParts pathway. Considering roles
based on parts credibility over time (candidate, reliable, gold), which is measured
using spatial and temporal co-occurrences, is of great benefit to the tracker. It brings
an advantage of 5% in EAO over the vanilla, “one role for all” case.

Version Dataset

VOT17 VOT16

EAO R ↓ A ↑ EAO R ↓ A ↑
One role 0.262 0.99 0.44 0.31 0.715 0.47

All roles 0.309 0.765 0.44 0.361 0.47 0.48

Learning with Highly Confident Frames on ConvNetPart Pathway: In
order to better appreciate the value of HCFs in training the ConvNetPart, we
have tested it against the cases of training on all frames (all frames are good
for training) and that of training only on the first 20 frames (no frame is good,
except for the first 20 when the ConvNetPart is initialized). As we can see in
Table 4, the “Full continuous update” regime on all frames is worst or at most
similar in performance with “No update” at all. This shows that the model can
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overfit very quickly, immediately resulting in drifting (high failure rate). The
idea to learn only from Highly Confident Frames is of solid value, bringing a
2% improvement in the final metric EAO, and a large cut off in failure rate.
Even when we randomly select frames to be HCFs, of the same number as in
the case of the true HCF measure, we again obtained the same drop of 2% in
performance. These results, along with the statistical correlation between HCF
and the ground-truth presented previously in Fig. 3 validate experimentally the
value of considering only a smaller set of high precision frames for training, even
when that set might be just a small portion of all high quality frames.

Speed: The “No update” version runs in realtime, at 30 fps on GTX TITAN
X, for 600 filter parts. The performance of the “No update” compared to our
best version, the “HCFs update”, is only 2% lower, in terms of EAO, on both
benchmarks, as presented in Table 4.

Table 4. Comparison in performance on VOT17 and VOT16, between updating the
ConvNetPart only on Highly Confident Frames (HCF update), not updating it at all
(No update), or updating it on every frame (Full update). We mention that in all our
experiments we used the top 11% past frames, in confidence score, to perform training
at a given time.

Version Dataset

VOT17 VOT16

EAO R ↓ A ↑ EAO R ↓ A ↑
No update 0.28 0.95 0.43 0.34 0.7 0.48

Full update 0.284 0.92 0.44 0.327 0.66 0.46

HCFs update 0.309 0.765 0.44 0.361 0.47 0.48

Our top version, the “HCFs update”, runs at 4 fps due to the updates of
the ConvNetPart, which happen in 5% of the frames. The computational time
needed by these updates depend on the GPU technology we use and is expected
to drop in the near future as GPUs are getting faster. The top “HCFs update”
can run at 30 fps if the updates and the tracking are done in parallel, such that
when the ConvNetPart update is performed the “No update” version continues
tracking. The performance of the parallel version drops by about 1%, situated
between the top sequential “HCFs update” and the “No update” versions.

5 Conclusions

We proposed a deep neural network system for object tracking that functions
as a society of tracking parts. Our tracker has two main deep pathways, one
that is less flexible but more robust, and another that is less robust but more
capable of adapting to complex changes in object appearance. Each part uses
co-occurrences constraints in order to keep its robustness high over time, while
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allowing some degree of adaptability. The two pathways are also combined in
a robust manner, by joining their vote maps and picking the locations where
their votes co-occurred the most. From a technical point of view, the novelty
aspects of our system include: (1) the way the classifiers in the FilterParts
pathway are learned and ascribed different roles, depending on their degree of
reliability. These roles relate to the idea of a society, where some parts are
candidates that are being monitored, others are reliable voters, while those who
proved their reliability long enough become gold members; (2) another novelty
aspect represents the way we train the ConvNetPart on high confidence frames
only, by selecting for training only those frames where the two different and
complementary pathways agree; and (3) we provide a novel theoretical result,
which proves that the efficient one sample vs. all strategy employed for learning
in the FilterParts path, is stable - it basically gives the same classifier as in the
balanced case. In experiments we provide solid validation of our design choices
and show state of the art performance on VOT17 and top three on VOT16,
while staying on top on both in terms of robustness (R and R∗, which measure
the failure rate), by a significant margin.
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