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Abstract. We propose a generic framework for converting an arbitrary
short-term RGB tracker into an RGBD tracker. The proposed framework
has two mild requirements – the short-term tracker provides a bound-
ing box and its object model update can be stopped and resumed. The
core of the framework is a depth augmented foreground segmentation
which is formulated as an energy minimization problem solved by graph
cuts. The proposed framework offers two levels of integration. The first
requires that the RGB tracker can be stopped and resumed according
to the decision on target visibility. The level-two integration requires
that the tracker accept an external mask (foreground region) in the tar-
get update. We integrate in the proposed framework the Discriminative
Correlation Filter (DCF), and three state-of-the-art trackers – Efficient
Convolution Operators for Tracking (ECOhc, ECOgpu) and Discrimina-
tive Correlation Filter with Channel and Spatial Reliability (CSR-DCF).
Comprehensive experiments on Princeton Tracking Benchmark (PTB)
show that level-one integration provides significant improvements for all
trackers: DCF average rank improves from 18th to 17th, ECOgpu from
16th to 10th, ECOhc from 15th to 5th and CSR-DCF from 19th to 14th.
CSR-DCF with level-two integration achieves the top rank by a clear
margin on PTB. Our framework is particularly powerful in occlusion
scenarios where it provides 13.5% average improvement and 26% for the
best tracker (CSR-DCF).

Keywords: Visual object tracking · RGBD tracking

1 Introduction

Short-term visual object tracking has been an active research topic in computer
vision due to its widespread application areas. In recent years, the community
has witnessed rapid development and seen many successful trackers emerging
thanks to standardized evaluation protocols and publicly available benchmarks
and competitions [1–6]. In order to adapt to target appearance changes, short-
term trackers update their tracking models over time. However, that makes them
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prone to model corruption and drifting in case of persistent occlusions when the
tracker adapts to the occluding object and starts to track it.

To avoid corruption, a tracker should be able to discriminate between the
target object and the rest of the scene so that it can stop model updating if the
target is occluded. However, this is a challenging task in the RGB space if there
are occluders with similar visual appearance. To alleviate this issue, adding the
depth cue to short-term trackers is intuitive; even if a tracked object is occluded
by another object with similar appearance, the difference in their depth levels will
be distinctive and will help to detect the occlusion. The availability of affordable
depth sensors makes adoption of the depth cue even more attractive.

Since the depth channel lacks texture, depth itself may not provide useful
information for visual tracking. On the other hand, RGB trackers perform com-
petitively as long as no occlusions occur (see Table 1). Therefore, our work aims
at benefiting from the huge amount of effort that has been put on generic short-
term RGB trackers and adopts depth as means for occlusion detection. As a
novel solution, we propose a generic framework that can be used with any VOT
compliant [6] short-term tracker to convert it into an RGBD tracker with depth-
augmented occlusion detection. By applying the proposed framework through a
clear interface and not changing the internal structure of a short-term tracker, a
fast integration is ensured and the framework will benefit from ever improving
short-term tracker performance in the future.

The proposed framework contains two main components: short-term failure
detection and recovery from occlusion. Short-term failure detector continuously
evaluates the target region to decide whether to allow the short-term tracker to
update its model or switch to the recovery from occlusion mode. The framework
also contains an optional, powerful third component which can be used with
RGB trackers that accepts foreground masks that explicitly indicate occluded
regions that do not belong to the target(e.g. CSR-DCF [7]).

The main contributions of this paper are:

– A generic framework to convert an arbitrary RGB short-term tracker into an
RGBD tracker.

– Formulation of the framework’s core component - non-occluded foreground
segmentation - as an energy function of three terms, depth, color and spatial
prior, which is optimized using graph cuts.

– RGBD versions of one baseline and three state-of-the-art short-term RGB
trackers: DCF [8], ECO (ECOhc and ECOgpu variants) [9] and CSR-DCF [7]

The rest of the paper is organized as follows; Sect. 2 summarizes existing
literature on generic, short-term tracking and RGBD trackers, Sect. 3 explains
the proposed framework in detail, Sect. 4 provides the experiments and finally
Sect. 5 concludes the paper.

2 Related Work

The aim of the provided generic framework is to convert any existing short-term
RGB tracker into an RGBD tracker. We are motivated by the facts that the field
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Fig. 1. Overview of the proposed framework. The short-term RGB tracker provides
bounding box coordinates to the framework to be used for segmenting the visible target
region with the help of depth. Using the ratio of the visible region to the bounding box,
occlusions are detected hence, short-term tracker update is stopped and recovery mode
is started. If the object is re-detected during recovery, the RGB tracker is resumed.

of short-term RGB tracking progresses on a steady basis and RGB provides a
strong cue for tracking. On the other hand, we also believe that depth can be
used as a complementary cue to instruct when a short-term tracker should be
stopped and switched to recovery mode. In this sense, the proposed framework
benefits from state-of-the-art short-term trackers which are briefly surveyed in
addition to the recent RGBD trackers (Fig. 1).

RGB Trackers – generic, short-term visual object tracking on RGB videos is a
well-established research topic in computer vision and the main approaches can
be grouped under two main categories. In Generative Trackers, a target model
is stored and the goal is to find the best matching region in the next frame.
A few descriptive examples for this category are Incremental Visual Tracking
(IVT) [10], Structural Sparse Tracking (SST) [11] and kernel-based object track-
ing [12]. On the other hand, Discriminative Trackers continuously train a clas-
sifier using positive and negative samples that are acquired during the tracking
process. Prominent examples of this category are Tracking-Learning-Detection
(TLD) [13], Continuous Convolutional Operators Tracking (CCOT) [14], Multi-
Domain Convolutional Neural Networks (MDNet) [15], Efficient Convolution
Operators for Trackers (ECO) [9], and Discriminative Correlation Filter with
Channel and Spatial Reliability (CSR-DCF) [7]. Due to their success in the last
few years, discriminative trackers have been widely adopted in the recent works.
For example, in the VOT 2017 challenge, 67% of the submissions were from
this category [6]. However, training a classifier can be computationally expen-
sive which has prompted the adoption of simple yet powerful methods for the
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training stage. Starting with the seminal work of Bolme et al. [16], Discrim-
inative Correlation Filter (DCF) based trackers have gained momentum due
to their performance, fast model update (training) and mathematical elegance.
Henriques et al. [17] proposed a method for efficient training of multiple sam-
ples that improves performance while providing very high FPS. To suppress the
border artefacts resulting from circular correlation, Galoogahi et al. [8] posed
the DCF learning as a more complex optimization problem which can still be
efficiently solved with the help of the Augmented Lagrangian Method (ALM).
Lukezic et al. [7] further improved their idea by introducing spatial reliability
maps to extract unpolluted foreground masks. In VOT 2017, DCF based algo-
rithms constitute almost 50% of the submitted trackers [6] with ECO [9] and
CSR-DCF [7] being among the top performers while CSR-DCF C++ implemen-
tation won the best real-time tracker award.

RGBD Trackers – as compared to generic, short-term tracking on RGB,
RGBD tracking is a relatively unexplored area. This can be partly attributed to
the lack of datasets with groundtruths until recently. Song et al. [18] captured
and annotated a dataset consisting of 100 videos with an online evaluation system
and their benchmark is still the largest available. They also provided multiple
baseline algorithms under two main categories; depth as an additional cue and
point cloud tracking. Depth as an additional cue trackers treat depth as an extra
channel to HOG features [19] whereas point cloud tracking methods use 3D point
clouds for generating 3D bounding boxes. Among the ten proposed variations
the one with RGBD HOG features and boosted by optical flow and occlusion
detector achieved the best performance.

The seminal work of Song et al. inspired many followups. Meshgi et al. [20]
proposed an occlusion-aware particle filter based tracker that can handle persis-
tent occlusions in a probabilistic manner. Bibi et al. [21] also used a particle
filter framework with sparse parts for appearance modeling. In their model, each
particle is a sparse, linear combination of 3D cuboids which stays fixed during
the tracking. Without occlusion, they first make a coarse estimation of the target
location using 2D optical flow and then sample particles over the rotation R and
translation T spaces. Occlusion is detected by counting the number of points
in the 3D cuboid representation. Success of the DCF approach naturally caught
the attention in the RGBD community as well. To the best of our knowledge, the
first DCF based RGBD tracker was proposed by Camplani et al. [22]. They first
cluster the depth histogram and then apply a single Gaussian distribution to
model the tracked object in the depth space. To extract the foreground object,
they assume that the cluster with the smallest mean is the object. The second
method using DCF was proposed by An et al. [23] where Kernelized Correlation
Filters (KCF) are used in conjunction with depth based segmentation for target
localization. Heuristic approaches were adopted for detecting whether an object
is in the occlusion state or not.

Recently, Kart et al. [24] proposed an algorithm for using the depth as a
means to generate masks for DCF updates. Although this work is in a similar
spirit, our method differs from theirs in multiple, fundamental aspects; first of all,
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the authors incorporate neither color nor spatial cues for the mask creation. This
results with the loss of very vital information sources. Especially in sequences
where the target object and the occluding object have similar depth levels, it is
very likely that the algorithm will not be able to discriminate in between even
if they have different colors. Secondly, their foreground segmentation consists of
a simple thresholding of depth probabilities which is an ad-hoc approach that
requires careful fine tuning. Finally, the authors propose a brute force, full-frame
grid search for recovering from the occlusion state whereas we propose to use the
motion history of the target object to adaptively generate significantly smaller
search areas to avoid redundant computational complexity.

3 RGBD Converter Framework

The proposed framework offers two levels of integration with the level-two being
optional for trackers that can use a foreground mask in their model update.
In the level-one integration, the framework continuously calculates the visibil-
ity state of a target object by casting the visibility problem as a pixel-wise
foreground-background segmentation from multiple information sources: color,
spatial proximity and depth. The segmentation result is the foreground mask.
Without interfering with the internal structure of an RGB tracker, the framework
uses the tracker output and bounding box to obtain a region of interest (ROI)
for the segmentation step. If the ratio between the visible and occluded pixels is
below a threshold, model updating of the RGB tracker is stopped and the frame-
work goes into occlusion recovery mode. In the occlusion recovery mode, model
update is stopped and the search region is continuously expanded around the
last known location of the target. The search is performed by running the RGB
tracker in a coarse-to-fine manner to find its maximum response r in the search
region. The score is compared to the mean of last N valid responses (Sect. 3.4,
Algorithm 1). Once the target is detected, RGB tracker updating resumes. The
level-two integration is available for trackers that use foreground masks in their
model update.

For foreground segmentation, we adopt the energy minimization formulation
in [25]:

E(f) = Esmooth(f) + Edata(f) (1)

The goal is to find a pixel-wise labeling f (foreground/background) that min-
imizes the energy. Esmooth represents smoothness prior that penalizes neigh-
boring pixels being labeled differently and Edata represents the observed data
based energy. For Esmooth, we adopt the efficient computation of smoothed priors
in [26] and Edata we formulate as

Edata(f) = Ecolor(f) + Espatial(f) + Edepth(f) (2)

where Ecolor measures the likelihood of observed pixel color given the target
color model, Edepth models target region’s depth and finally Espatial the spatial
prior which is driven by the tracker location in the current frame. At the core
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Fig. 2. The workflow diagram of the proposed framework. The framework uses bound-
ing box coming from the RGB tracker and the depth frame to make a decision whether
the target object is visible or not. In case it is visible, it allows the RGB tracker to
update its model and continue tracking. If the target disappears, the framework runs
the occlusion recovery module where the target object is searched using the last valid
target model of the RGB tracker.

of our approach are proper formulations of Ecolor (Sect. 3.1), Edepth (Sect. 3.2)
and Espatial (Sect. 3.3) so that the global optimum can be computed efficiently
using the graph cuts algorithms [25,27] (Fig. 2).

An example of the segmentation process is given in Fig. 3. As it can be seen,
color based segmentation assigns both the target and the occluding object high
confidence. However, the depth component is able to discriminate between the
two while spatial component ensures high probability for the pixels that are close
to the center of the tracking window.

3.1 Color-Based Target-Background Model Ecolor

In our formulation, Ecolor represents conditional dependencies between random
variables (pixel fg/bg labels) for which we adopt a conditional random field
formulation. The formulation uses the foreground/background probabilities as

Ecolor =
∑

i∈V
ψi(xi) (3)

where i is a graph vertex index (pixel) and xi its corresponding label. ψi is
encoded as a probability term

ψi(xi = 0) = − log (p(xi /∈ fg))
ψi(xi = 1) = − log (p(xi ∈ fg))

(4)

Since tracking is a temporal process, we need to add the frame number indicator
to our notation xi ⇒ x

(t)
i where (t) is the current and (t−1) the previous frame.

The probabilities p(·) can be efficiently computed using the color histograms
of the foreground and background, hf and hb, respectively. It should be noted
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Fig. 3. Energy components in (2) and the segmentation output. The depth provides a
strong cue even if the tracked and the occluding object have a very similar appearance.

that these histograms are updated after processing every frame for adapting to
appearance changes. Therefore during processing frame t, the most recent color
histograms are represented as ht−1

f and ht−1
b . Now, the color probability term is

p
(
xt
i ∈ fg

)
= p

(
xt
i = 1 | hsv(xt

i), h
(t−1)
f , h

(t−1)
b

)
. (5)

where the hsv(·) function returns the HSV color space value of the pixel corre-
sponding the label xi in the current frame. The histograms are computed in 3D
using 8 × 8 × 8 = 512 uniformly distributed bins.

3.2 Depth-Based Target-Background Model Edepth

We model the depth induced energy Edepth similar to color using depth his-
tograms ĥf and ĥb

p
(
xt
i ∈ fg

)
= p

(
xt
i = 1 | depth(xt

i), ĥ
(t−1)
f , ĥ

(t−1)
b

)
(6)

where the depth probability is defined via the Bayesian rule (we use d to denote
depth(x(t)

i ) for more compact representation)

p
(
x
(t)
i = 1 | d, ĥ

(t−1)
f , ĥ

(t−1)
b

)
=

p
(
x
(t)
i = 1 | d, ĥ

(t−1)
f

)

p
(
x
(t)
i = 1 | d, ĥ

(t−1)
f

)
+ p

(
x
(t)
i = 0 | d, ĥ

(t−1)
b

)

(7)
The above depth histograms are computationally efficient, but strongly

biased against unseen depth levels. To be more precise, since probabilities for
previously seen depth levels are high, the current frame (t) pixels with the same
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depth levels are more likely to be assigned to the foreground and the model easily
fails to introduce new depth levels. For tackling this problem, we add foreground
and background distribution priors in the spirit of Bayesian estimation theory.
For the foreground histogram estimation prior, we adopt the triangle function
which has a maximum at the foreground depth mode (d denotes depth(xi) for
more compact notation and || · || is the length of the histogram)

Ψf (d) = tri(d) =

(
1 − |d − mode(ĥ(t−1)

f )|
||ĥ(t−1)

f ||

)
∗ γ (8)

and for the background histogram estimation, we adopt the uniform distribution
as a non-informative prior

Ψb(d) = unif(xi) =
1

||ĥ(t−1)
b ||

∗ θ (9)

γ and θ are constants that control the prior gains. The choice of using a triangle
distribution for foreground and uniform distribution for background stems from
the following; in case of the foreground depth levels, it is expected that the newly
seen depth levels will be similar to the current depth (e.g. a rotating object) and
depth values in general are concentrated around the mode/mean. However, we
cannot make any assumptions about the background and therefore we adopt the
non-informative prior in (9).

To ensure continuous depth levels while not compromising from quick
updates, we propose to apply a smoothening filter gt(d) to the observed his-
togram in the updating stage where gt(d) is a single Gaussian function centered
at the histogram mode. By suppressing depth values that are highly unlikely to
belong to the current observation, it provides a safety mechanism against wrong
detections and drifting. Thus, the depth histogram updating process takes the
following online update form:

ĥ
(t)
f = αĥ

(t−1)
f +

(
(1 − α)ĥ(t)

f

)
� gt(d)

ĥ
(t)
b = αĥ

(t−1)
b +

(
(1 − α)ĥ(t)

b

) (10)

3.3 Spatial Prior Espatial

The third energy term in our model is a spatial prior that gives preference to
foreground labels near the object center suggested by the short-term tracker;

p
(
xt
i ∈ fg

)
= p

(
xt
i = 1 | x(xt

i)
)

= k
(
x(xt

i);σ
)

(11)

where x(·) provides the spatial location (x,y) of the label xi and k(x;σ) is a
clipped Epanechnikov kernel commonly used in kernel density estimation.
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3.4 Occlusion Recovery

Given the energy terms Ecolor, Edepth and Espatial, graph cut [25] provides label-
ing of each pixel in the tracker window by minimizing the energy. If the number
of foreground pixels falls below a threshold τ , the tracker is stopped and recovery
process started. To this end, we propose to use the trained RGB model M t as
an object detector since the depth information is no longer reliable, especially
when the occlusion is persistent.

The proposed recovery strategy is based on three principles: (i) target object
will be found again near the spatial location where it was previously seen,
(ii) tracker response of a recovered object must be similar (proportional by Ω) to
the previous tracked frames (N = 30 in our experiments), and (iii) each region
must be expanded with a speed proportional to the object’s average speed before
the object was lost. By expanding the search region adaptively, computational
redundancy of processing irrelevant spatial regions is avoided. Algorithm1 sum-
marizes the occlusion recovery process.

Algorithm 1. Occlusion Recovery
Require: Current frame It, response threshold constant Ω and target information

before occlusion: {xi, bbi, ri}i=t−1,...,t−10 (centroid, bounding box and response)
Initialization: n = 0 {# of frames in recovery mode}
Compute target speed S = max

(
5,

t−1∑
i=t−10

||xi − xi−1||
)

while max response rn < Ω ∗ mean(ri) do
Expand Wn = n ∗ S + 2 ∗ bb(1)
Expand Hn = n ∗ S + 2 ∗ bb(2)
Extract patch IWn×Hn ⊂ It centered at xt−1

n = n + 1
Find the tracker maximum response rn in IWn×Hn

Move to the next frame t + 1
end while
Reset depth histograms: ĥ

(t)
f and ĥ

(t)
b

Resume tracking with the short-term RGB tracker

3.5 Target-Background Mask Extension for CSR-DCF

This section is related to the level-two integration explained in the beginning
of Sect. 3 and as the example case we use the CSR-DCF tracker in [7]. Since
the original idea of Discriminative Correlation Filter (DCF) for tracking [16,28],
many improvements have been proposed. An efficient solution in the Fourier
domain was proposed by Henriques et al. [29] and their work was followed by
an important extension by Galoogahi et al. [8] who relaxed the assumption
of circular symmetrical filters. These extensions were adopted in CSR-DCF [7]
which constructs a reliability mask that is used to mask out background regions
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during tracker updates. Intuitively, the CSR mask can be replaced with the pro-
posed foreground mask which is the output of graph cuts optimization (see Fig. 3
for an example mask). In our experiments, it turns out that this significantly
improves the performance of CSR-DCF since the proposed depth-based mask
avoids model pollution more effectively. The level-two integration of our frame-
work to CSR-DCF is simple: CSR mask is replaced with the mask produced by
minimizing (1).

4 Experiments

In this section, we present the results for various trackers augmented with the
proposed framework. Four generic, short-term trackers due to their proven suc-
cess and efficiency are chosen; DCF [8], ECO [9] and CSR-DCF [7]. Since ECO
has two variants, we applied the proposed framework to both ECO-gpu (deep
features) and ECO-hc (hand crafted features).

4.1 Experimental Setup

Implementation Details – All experiments were run on a single laptop using
a non-optimized Matlab code with Intel Core i7 3.6 GHz and Ubuntu 16.04
OS. The parameters for the proposed algorithm were empirically set and kept
constant during the experiments. Tracking parameters were as in the original
works with the exception of DCF and CSR-DCF filter learning update rates
were set to 0.03 and the number of bins for color histograms to 512. The rest of
the parameters can be found in the publicly available code of our framework [32].

Dataset – For validating the proposed framework we conducted experiments
on the Princeton Tracking Benchmark (PTB) [18]. The dataset consists of 95
evaluation sequences and 5 validation sequences from 11 tracking categories,
namely human, animal, rigid, large, small, slow, fast, occlusion, no occlusion,
passive motion and active motion. The videos have been recorded with a stan-
dard Kinect 1.0 device and all frames annotated manually.

Evaluation Metrics – We use the metrics as they are provided by PTB [18].
However, the evaluation sequences do not contain publicly available ground

truths except for the initial frame. To facilitate a fair comparison, Song et al. [18]
also provide an online system where the resulting coordinates are uploaded for
obtaining the final scores and ranking. The results of other methods in our paper
were taken from the online system’s website with the exception of DLST [23] who
have not registered their methods. DLST scores were obtained from its paper.
Bibi et al. [21] depth images are adopted in the experiments.

4.2 Comparison to State-of-the-Art

The results of the converted short-term trackers and the other top performing
trackers on the PTB dataset are given in Table 1. Since the evaluation server
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did not allow multiple simultaneous submissions, we submitted each method
separately and generated the leaderboard using the official protocol; methods
were first ranked in each category and then the average rank was calculated.

Table 1. Comparison of short-term RGB and RGBD tracking methods on the Prince-
ton Tracking Benchmark (PTB) [18]. DCF [8] and three state-of-the-art trackers were
used within the framework – ECOgpu [9], ECOhc [9] and CSR-DCF [7]; their level-
one RGBD extensions are denoted DCF-rgbd, ECO-rgbd and CSR-DCF-rgbd, the
level-two CSR-DCF integration where the original RGB-based mask is replaced by the
proposed foreground mask (Sect. 3.5) is denoted CSR-DCF-rgbd++. (The table shows
results for the Princeton Benchmark as of June 15, 2018)

Avg Rank Tracking Category
Method Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active

�CSR-DCF-rgbd++ 3.64 0.77(2) 0.65(5) 0.76(6) 0.75(4) 0.73(1) 0.80(3) 0.72(3) 0.70(3) 0.79(5) 0.79(5) 0.72(3)
OAPF [20] 5.27 0.64(14) 0.85(1) 0.77(4) 0.73(6) 0.73(2) 0.85(1) 0.68(8) 0.64(8) 0.85(1) 0.78(9) 0.71(4)
3D-T [21] 5.36 0.81(1) 0.64(7) 0.73(15) 0.80(1) 0.71(6) 0.75(8) 0.75(1) 0.73(1) 0.78(11) 0.79(6) 0.73(2)
RGBDOcc+OF [18] 5.55 0.74(5) 0.63(9) 0.78(2) 0.78(3) 0.70(7) 0.76(5) 0.72(4) 0.72(2) 0.75(17) 0.82(2) 0.70(5)
◦ECOhc-rgbd 6.18 0.70(7) 0.55(15) 0.81(1) 0.69(9) 0.72(4) 0.78(4) 0.68(7) 0.65(6) 0.79(6) 0.83(1) 0.66(8)
DSKCF-Shape [30] 6.64 0.71(6) 0.71(3) 0.74(11) 0.74(5) 0.70(8) 0.76(6) 0.70(6) 0.65(7) 0.81(4) 0.77(11) 0.70(6)
DLST [23] 6.73 0.77(3) 0.69(4) 0.73(16) 0.80(2) 0.70(9) 0.73(14) 0.74(2) 0.66(5) 0.85(2) 0.72(16) 0.75(1)
DM-DCF [24] 6.73 0.76(4) 0.58(12) 0.77(5) 0.72(8) 0.73(3) 0.75(10) 0.72(5) 0.69(4) 0.78(13) 0.82(3) 0.69(7)
DSKCF [22] 9.36 0.67(10) 0.61(10) 0.76(8) 0.69(10) 0.70(10) 0.75(9) 0.67(9) 0.63(9) 0.78(12) 0.79(7) 0.66(9)
�ECOgpu-rgbd 9.82 0.66(11) 0.58(11) 0.76(7) 0.65(14) 0.71(5) 0.81(2) 0.64(14) 0.62(10) 0.77(14) 0.78(8) 0.65(12)
DSKCF-CPP [22] 10.36 0.65(12) 0.64(8) 0.74(12) 0.66(13) 0.69(12) 0.76(7) 0.65(13) 0.60(12) 0.79(7) 0.80(4) 0.64(14)
RGBD+OF [18] 11.36 0.64(15) 0.65(6) 0.75(9) 0.72(7) 0.65(17) 0.73(15) 0.66(10) 0.60(13) 0.79(8) 0.74(15) 0.66(10)
hiob [31] 11.64 0.53(19) 0.72(2) 0.78(3) 0.61(16) 0.70(11) 0.72(16) 0.64(15) 0.53(16) 0.85(3) 0.77(12) 0.62(15)
�CSR-DCF-rgbd 11.91 0.68(9) 0.57(13) 0.74(10) 0.68(11) 0.68(14) 0.74(12) 0.65(12) 0.62(11) 0.75(16) 0.77(10) 0.64(13)
◦ECOhc [9] 12.18 0.69(8) 0.56(14) 0.72(17) 0.67(12) 0.68(13) 0.74(11) 0.65(11) 0.59(14) 0.78(9) 0.74(14) 0.65(11)
�ECOgpu [9] 15.36 0.58(16) 0.54(16) 0.73(13) 0.59(18) 0.65(15) 0.73(13) 0.58(17) 0.51(17) 0.78(10) 0.69(17) 0.60(17)
•DCF-rgbd 15.45 0.64(13) 0.54(17) 0.73(14) 0.65(15) 0.65(16) 0.71(17) 0.63(16) 0.59(15) 0.74(18) 0.76(13) 0.61(16)
•DCF [8] 18.09 0.56(17) 0.52(19) 0.66(18) 0.60(17) 0.59(19) 0.65(18) 0.57(18) 0.48(18) 0.74(19) 0.68(18) 0.56(18)
�CSR-DCF [7] 18.36 0.54(18) 0.53(18) 0.64(19) 0.56(19) 0.59(18) 0.61(19) 0.56(19) 0.44(19) 0.76(15) 0.64(19) 0.55(19)

The symbols •, 
, �, and ◦ in Table 1 mark the trackers that our framework
applied to. As it can be observed, the proposed method clearly has a big impact
on overall rankings for all three trackers. Especially in sequences with occlusions,
this impact becomes more visible. CSR-DCF improves 8 ranks, ECOgpu ranking
sees 7 ranks improvement and ECOhc rank improves by 8. In terms of accuracy,
the improvement is as strong as in rankings. When the proposed framework
(without foreground masked updates) is applied to CSR-DCF, its performance
in occlusion sequences increases 18% while ECOhc grows by 6% and ECOgpu
11%. The level-two integration further boosts occlusion sequences accuracy for
CSR-DCF to a total of 26%.

Unlike other top performing methods, CSR-DCF-rgbd++ also maintains a
well-balanced performance over all the categories by staying among the top in
every one. This suggests that it does not overfit to specific categories but it pro-
vides similar performance for different scenarios which makes it a very suitable
candidate for real-life applications.

Figure 4 shows that the proposed framework adds to tracker’s occlusion
resilience to both short-term and long-term occlusions. For example, ECOhc-
rgbd was able to detect the occlusion and it also re-detected the target object
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Fig. 4. Short-term and long-term occlusion examples comparing the original methods
(red) and their RGBD versions (green). Top row – DCF, second row – ECOgpu, third
row – ECOhc, bottom row – CSR-DCF. (Color figure online)

when it reappeared in the scene instead of drifting due to model pollution. As
a good example of long-term recovery example, CSR-DCF-rgbd++ was able to
recover even after 35 frames of occlusion state since it avoided model corruption
and expanded the search region gradually.

The reason why CSR-DCF-rgbd++ performs better than the other RGBD
methods can be possibly explained by its masked DCF update mechanism which
uses the foreground provided by the framework. In the discriminative tracking
paradigm, the tracker’s target model is updated over the time for coping with
the visual changes. However, when a rectangular bounding box is used for this
purpose, it is likely to include background and occluding object’s pixels as well.
This results with learning of irrelevant information that may cause drifting.
Whereas in the masked update approach, the updates are done only using the
pixels that are confidently belong to the target object. Thus, the target model
stays uncorrupted which results with better performance.

5 Conclusions

A generic framework was proposed for converting existing short-term RGB track-
ers into RGBD trackers. The framework is easy to adopt as it only requires
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control of model updating (stop/resume) and a tracking bounding box which
are both provided in any tracker that is VOT compliant [6]. At the core of
the framework is a foreground model which uses depth, color and spatial cues
to efficiently detect occluded regions which are utilized at two-levels: occlusion
detection and optionally, masked tracker updates. In all experiments, existing
RGB trackers improved their ranks in the publicly available Princeton tracking
benchmark [18]. CSR-DCF tracker which allows level-two integration of the pro-
posed foreground model achieved state-of-the-art accuracy and was ranked the
best on the day of submission. The full source code of the framework is publicly
available [32].
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