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Abstract. We propose a novel memory model using deep convolutional
features for long-term tracking to handle the challenging issues, includ-
ing visual deformation or target disappearance. Our memory model is
separated into short- and long-term stores inspired by Atkinson-Shiffrin
Memory Model (ASMM). In the tracking step, the bounding box of the
target is estimated by the Siamese features obtained from both memory
stores to accommodate changes in the visual appearance of the target.
In the re-detection step, we take features only in the long-term store to
alleviate the drift problem. At this time, we adopt a coarse-to-fine strat-
egy to detect the target in the entire image without the dependency of
the previous position. In the end, we employ Regional Maximum Acti-
vation of Convolutions (R-MAC) as key criteria. Our tracker achieves
an F-score of 0.52 on the LTB35 dataset, which is 0.04 higher than the
performance of the state-of-the-art algorithm.

Keywords: Long-term tracking · Atkinson-Shiffrin Memory Model ·
Siamese network · Regional Maximum Activation of Convolutions

1 Introduction

Visual object tracking is one of the most popular tasks in computer vision with
many applications such as surveillance, traffic control, and autonomous driving.
Given a target with a bounding box in the first frame, the goal of visual tracking
is to estimate the bounding boxes of the target in the remaining frames of a
video sequence. In particular, short-term object tracking, which assumes that
the target is always located in the image, has greatly advanced with various
tracking benchmarks [20,29,33] and visual object tracking challenges [9,18] over
the last decade.

Meanwhile, long-term tracking has also received increasing attention with
the introduction of a new benchmark [24]. Unlike in short-term tracking, the
target could disappear over time in long-term tracking due to full occlusion or
out-of-view. The long-term tracking task also involves a variety of challenging
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problems (e.g., viewpoint change, object deformation, and fast motion), because
it deals with a relatively long sequence. Therefore, additional procedures are
required to achieve robust performance in long-term tracking.

Convolutional Neural Networks (CNNs) have recently demonstrated remark-
able performance in many computer vision tasks [12,15,34] and many CNN-
based short-term trackers have been proposed [2,3,26,30]. SiamFC [2], one of
the successful CNN-based trackers, has especially achieved high performance in
real-time on the short-term tracking benchmarks by using a fully-convolutional
Siamese network. However, although SiamFC could exploit the expressive power
of deep convolutional networks, it is difficult to handle the challenging issues in
long-term tracking without additional procedures.

The reason why SiamFC is not suitable for long-term tracking is as follows.
Firstly, SiamFC easily fails to track the target if the target appearance changes
significantly since tracking works with only the target appearance given in the
first frame without an online learning process. Secondly, the target re-detection
process is not implemented explicitly, so the re-entered target must be detected
in the same way as tracking. However, the tracking process in SiamFC not only
exploits the prior knowledge about the target position, but also covers a region
of interest which is the neighbor region of the target position estimated in the
previous frame. Eventually, this manner causes a strong dependency on the pre-
vious position, which may lead to re-detection failure when the target re-enters
far from its previous position.

In this paper, we propose a Memory Model via the Siamese network for Long-
term Tracking (MMLT) to address the problem for target appearance variation
and the dependency on the previous position. Our long-term tracker is a novel
approach that applies deep features extracted from the Siamese and VGG net-
works to Atkinson-Shiffrin Memory Model (ASMM) [1], unlike MUSTer [14]
based on the traditional descriptors such as HOG [10] and SIFT [21]. MMLT
consists of three parts: tracking, re-detection, and memory management. The
structure of the memory for long-term tracking is divided into short- and long-
term stores depending on period and manner in which the memory is stored.
Tracking and re-detection processes are performed based on this memory model.

In the tracking process, the position of the target is estimated based on the
response map of the Siamese network. At this time, we take a weighted sum of
the features in both short- and long-term stores to effectively capture appear-
ance variations. In contrast, we employ features only in the long-term store to
constrain the drift problem in the re-detection process. Furthermore, we adopt
a coarse-to-fine strategy to detect the target in the entire image without the
dependency of the previous position. Firstly, we collect several candidates that
retain similar semantic meanings with the target to pick out coarse positions in
the entire image. Next, we select the final candidate and refine the target posi-
tion by applying the Siamese network in the long-term store to each candidate.
Regional Maximum Activation of Convolutions (R-MAC) [31], which has been
proposed for image retrieval, is applied to determine whether the re-detected
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object is the target or not. We demonstrate that our tracker achieves the state-
of-the-art performance on the long-term tracking benchmark [24].

2 Related Works

Long-term tracking is characterized by the disappearance of the target object,
so re-detection is required as a key process. In addition, since the length of long-
term tracking sequence is considerably longer than that of the short-term, the
updating scheme capable of accommodating changes in the visual appearance
of the target greatly affects performance. Therefore, we briefly introduce how
recent long-term trackers [14,17,23] are used to overcome the critical issues of
long-term tracking.

Kalal et al. [17] proposed a new tracking framework, TLD, that decomposes
long-term tracking into tracking (T), learning (L), and detection (D). First, the
tracker estimates the position of the moving object based on the median-flow
tracker [16]. Next, the detector determines the presence of the target in a cascade
manner over the entire area of the image and modifies the tracker if necessary. At
this time, three processes are performed for detection: patch variance, ensemble
classifier, and NN-classifier. Assuming that the tracker and detector may fail, the
learning process estimates errors based on P-N learning and learns the tracker
and detector more robustly.

Hong et al. [14] firstly adopted Atkinson-Shiffrin Memory Model (ASMM)
[1], also known as the multi-store model, for long term tracking to cope with
appearance changes of the object. The MUlti-Store Tracker (MUSTer) consists
of short- and long-term memory stores. An Integrated Correlation Filter (ICF),
which is based on Kernelized Correlation Filter (KCF) [13] and Discriminative
Scale Space Correlation Filter (DSSCF) [4], is used for short-term tracking.
Furthermore, they add a complementary element based on keypoint matching-
tracking [27] and MLESAC estimation [32] as a long-term component. In the
end, they design a forgetting curve to model remembering-forgetting [7].

Lukežič et al. [23] suggested a Fully-Correlated Long-term Tracker (FCLT)
that applies discriminative correlation filters to long-term tracking. This is
decomposed into the short-term tracker and detector. These two components
are modeled by learning DCFs at different time scales. Especially, the problem
that the correlation filter could not be applied to detection is solved efficiently.

3 Memory Model for Long-Term Tracking (MMLT)

According to Atkinson-Shiffrin Memory Model (ASMM) [1], human memory is
divided into three separate components: a sensory register, a short-term store,
and a long-term store. The sensory register acts as a buffer for passing informa-
tion to the short-term store. The short-term store retains the information for a
short time, and repeated memories in the short-term store are transferred to the
long-term store with semantic information. These memories can be recalled by
the retrieval process as needed.
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Inspired by this memory model, we propose a memory model for long-term
tracking, which is divided into short- and long-term stores. It is not the first
time that this multi-store model has been used for long-term tracking. The
MUlti-Store Tracker (MUSTer) [14] is a representative long-term tracker based
on ASMM, which is described in detail in the previous section. They employ the
traditional descriptors (e.g., HOG [10], color attributes [6], and SIFT [21]) as
sensory information, whereas we incorporate rich features extracted from deep
neural networks into the memory model to accommodate large changes in the
visual appearance of the target.

In this paper, we introduce a novel Memory Model based on the Siamese
network for Long-term Tracking (MMLT) to effectively deal with the problems
for visual deformation and target disappearance. The short-term store S retains
the Siamese features of the target, and the long-term store L holds both the
Siamese features and semantic features as follows:

S = {f(zSi
)}NS

i=1, L = {f(zLi
), g(zLi

)}NL
i=1, (1)

where f(·) and g(·) denote the Siamese feature and the semantic feature
extracted from deep neural networks. z is an exemplar image that covers a larger
region than the estimated bounding box, which is discussed in SiamFC [2]. We
note that the exemplar image z and the estimated target region ẑ (e.g., bounding
box) are different. Si and Li indicate the frame index of the stored features, and
i indicates the order entered in each memory store. The memory capacities of
the short- and long-term stores are NS(= 60) and NL(= 40), respectively.
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Fig. 1. The overall flowchart of our tracker. The black arrows represent how the track-
ing and re-detection procedures work depending on two main conditions, and the red
arrows indicate how memory is stored and delivered. (Color figure online)

The entire tracking process including re-detection is executed based on this
memory model, which is depicted in Fig. 1. The proposed long-term tracker com-
prises three parts: tracking, re-detection, and memory management. If the tar-
get position in the previous frame is successfully estimated, the tracking pro-
cess is performed with the Siamese features in the short- and long-term stores
(Sect. 3.1). On the contrary, if this estimation fails in the previous frame or if
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Algorithm 1. Tracking
1: Input: Searching region x, short-term store S, long-term store L, P-Net f
2: Output: Estimated target ẑ, tracking reliability flag
3: Compute the response using Eq. (3)
4: if (Satisfy Eq. (6)) then
5: Tracking reliability flag ← 1
6: Estimated target ← ẑ
7: NT ← NT + 1
8: else
9: Tracking reliability flag ← 0

10: Estimated target ← ∅
11: NT ← 0
12: end if

the current tracking result is unreliable, the re-detection process is operated
based on the features in the long-term store (Sect. 3.2). In the end, Sect. 3.3
gives details on how memory is stored in the short-term store, how short-term
memory is transferred to long-term memory, and memory limits for the short-
and long-term stores.

3.1 Tracking

Our network for tracking is the same as SiamFC [2]. Thus, we briefly review
the process of SiamFC. They denote an exemplar image given in the first frame
and a searching region as z and x, which have a dimension of 127 × 127 × 3 and
255 × 255 × 3, respectively. The output feature of the Siamese network, which
we call it P-Net, is denoted by f(·). The formulation of the SiamFC to obtain
response map can be written as:

y = f(z) ∗ f(x), (2)

where ∗ denotes the correlation operation. The center position and target size
can be estimated from this response map. And, the searching region x of the next
frame is formed based on the center position of the estimated target. However,
since SiamFC only utilizes the exemplar image given in the first frame, it is
difficult to capture target appearance variations during the tracking.

To address this problem, f(z) in Eq. (2) is replaced by combining the output
features of P-Net in the short- and long-term stores. Thus, the response map
can be calculated by the following equation,

y = fM (S,L) ∗ f(x), (3)

where fM (S,L) denotes the combined features of the short- and long-term stores.
fM (S,L) is obtained as a weighted sum of short-term features fS(S) and long-
term features fL(L):

fM (S,L) = λ exp(−NT

hM
)fS(S) + (1 − λ exp(−NT

hM
))fL(L), (4)
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where λ denotes a weight parameter to control the relative importance between
short-term memory and long-term memory, hM is a constant to control the
strength of the time, and NT is the number of successive frames with reliable
tracking results. According to this equation, as the number of consecutive frames
with reliable tracking results increases, the weight of fS(S) decreases and that of
fL(L) increases. It means that the tracker initially focuses on short-term memory
to accommodate changes in the visual appearance of the target, but switch focus
to long-term memory since reliable information is transferred to the long-term
store over time. Each feature is calculated as a combination of exemplar images
extracted from selected frames as follows:

fS(S) =

∑NS

i=1 exp(− i
hS

)f(zSi
)

∑NS

i=1 exp(− i
hS

)
, fL(L) = αLf(zL1) + (1 − αL)

∑NL

i=2 f(zLi
)

NL − 1
,

(5)
where hS is a constant to control the impact of the short-term store length.
fS(S) is computed by assigning a higher weight to the features according to the
order entered early in the short-term store to alleviate the drift problem. On the
other hand, we give only the first frame a high weight αL since the first stored
long-term memory (L1 = 1) is always ground truth. We note that the first stored
short-term memory might not be ground truth since short-term memory is often
reset, which is discussed in the next section.

We need to decide whether or not the re-detection process should be applied,
so we set a criterion to decide if the tracking result is reliable. To determine
whether the tracking result is reliable, we use the maximum value of the response
map y∗ = max(fM (S,L) ∗ f(x)). Let ȳ be the average maximum value of the
response maps calculated by the recent 40 reliable frames. We assume that the
tracking result is reliable if the ratio between y∗ and ȳ is higher than a predefined
threshold τ1 (=0.6) for comparison of the Siamese features, i.e.,

y∗/ȳ > τ1. (6)

If this criterion is satisfied, then the center position and target size are estimated
from the response map in the same manner as in SiamFC (e.g., upsampling for
accurate localization and searching over five scales). Thus, we can get the target
region ẑ from the above information. However, target estimation is postponed
to the re-detection step if it fails to satisfy the criterion, which is introduced in
the next section. The overall process of tracking is summarized in Algorithm1.

3.2 Re-detection

If the criterion of Eq. (6) is not satisfied, the tracking result is considered unre-
liable and eventually the re-detection step proceeds. We adopt a coarse-to-fine
strategy to detect the target in the entire image without the dependency of the
position estimated in the previous frame. Only the information in the long-term
store is employed to re-detect the target, and the short-term store is reset to
handle the drift problem.
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Algorithm 2. Re-detection
1: Input: Image I, long-term store L, P-Net f , S-Net g
2: Output: Estimated target ẑ, target existence flag
3: Short-term store S is reset
4: Get candidates using Eq. (7)
5: Select the one candidate using Eq. (8)
6: Estimated target ← ẑ
7: if (Satisfy Eq. (9) and Eq. (10) and Eq. (11)) then
8: Target existence flag ← 1
9: else

10: Target existence flag ← 0
11: end if

Firstly, we use the last layer (conv5) of the pre-trained VGGNet to collect the
coarse positions of the candidates which have similar semantic meanings with
the target in the entire image. This is denoted by g(·), and we call it S-Net. Let
I denote the entire image, which has a size of W × H × 3. The spatial size of the
output features g(I) is reduced to the size of W

16 × H
16 × 512 due to the existence

of pooling layers. Then, the semantic response maps are calculated as follows:

ys
i = g(zLi

) ∗ g(I), i = 1, . . . , NL. (7)

Since the spatial size of the features is smaller than that of the entire image,
we could not estimate the exact position from the semantic response map ys

i . So,
we only obtain the coarse searching regions xk of ND (=3) candidates with high
response values. After that, the best candidate is selected by P-Net as follows:

x = argmax
xk

(max(fL(L) ∗ f(xk))), k = 1, . . . , ND, (8)

where xk is the searching region of each candidate. Unlike searching for the
target over five scales, we change it to fifteen scales to effectively deal with
scale variations in the re-detection process. Eventually, the searching region x
of the best candidate is selected by Eq. (8), and then the target region ẑ of this
candidate is estimated from the maximum value of fL(L) ∗ f(x).

To determine whether the final candidate is the target, three criteria are
defined. The first is how the Siamese feature of the final candidate and that of
exemplar images in the long-term store are similar, which is expressed as follows:

max(fL(L) ∗ f(x))
∑NL

i=1 f(zLi
) ∗ f(zLi

)/NL

> τ2, (9)

where τ2 (=0.35) is a certain threshold for comparison of the Siamese features.
Short-term memory is not considered because it has been reset.

The second is related to the retrieval process occurring in ASMM [1]. We
use the Regional Maximum Activation of Convolutions (R-MAC) vector [31],
which has been proposed for image retrieval. The R-MAC feature vector h(·) is
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a compact representation of the CNN response map g(·) with semantic meaning.
It is robust to scale and translation due to sampling the response map at multiple
scales and aggregating the regional vectors. The second criterion based on the
semantic meaning regardless of position and size is described as follows:

1
NL

NL∑

i=1

〈h(g(zLi
)),h(g(z))〉 > τh, (10)

where 〈·, ·〉 denotes the cosine similarity between two vectors. τh (=0.6) is a
threshold for comparison of the R-MAC vectors, and we call it the R-MAC
threshold.

The third is designed to prevent the tracker from being confused by back-
ground objects with similar appearance. We extract the exemplar images
{zn

j }Nn
j=1 of Nn(=16) negative samples in the first frame, which are target-like

distractors chosen based on P-Net and S-Net. To prevent the target from acci-
dentally being classified as a negative sample, the negative samples are extracted
only in the first frame. The third criterion is computed as follows:

max(fL(L) ∗ f(x)) > max(f(zn
j ) ∗ f(x)), j = 1, . . . , Nn. (11)

According to the equation, the final candidate must be more similar to the
positive samples in the long-term store than all the negative samples.

If the final candidate satisfies these three criteria, we determine the candidate
as the target and proceed with the tracking process from the next frame. The
overall of the re-detection process is summarized in Algorithm 2.

3.3 Memory Management

According to the memory management in ASMM [1], only a limited amount of
the information can be held in the short-term store. Repeated memories among
them are moved to the long-term store, and they are reset in the short-term
store over time. Unlike the short-term store, memories in the long-term store
are maintained for a long time. In particular, the frequently used memory lasts
long, but the memory that is not used often is forgotten.

In this section, we model how memory information moves and disappears
from memory stores based on the above memory model. The memory man-
agement step proceeds only when the tracking result of the current frame is
reliable. Firstly, acceptable information from the sensory register is transferred
to the short-term store as Siamese features via the following criterion as follows:

max(fM (S,L) ∗ f(x))
∑NL

i=1 f(zLi
) ∗ f(zLi

)/NL

> τ3, (12)

where τ3 (=0.5) is a certain threshold. If the short-term store is full, the short-
term store is managed in the first in/first out manner during tracking since the
short-term store has a limited capacity of NS(=60). However, if the tracking
result is unreliable, all short-term memories disappear entirely.
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Algorithm 3. Memory management
1: Input: Estimated target ẑ, short-term store S, long-term store L
2: Output: Short-term store S, long-term store L
3: if (Satisfy Eq. (12)) then
4: z is transferred to the short-term store S
5: if (Satisfy Eq. (10) and Eq. (11)) then
6: z is transferred to the long-term store L
7: end if
8: end if

On the other hand, moving the short-term information to the long-term store
need to be treated more carefully. Therefore, the information is transferred only
when the criterion for Eq. (11) succeeds after Eq. (10) is satisfied consecutively
during 10 frames. At this time, both the Siamese and semantic features are
transferred to the long-term store. This is summarized in Algorithm 3.

In the end, we set the forgetting curve [7] for each long-term memory. If addi-
tional memory is entered after long-term memory capacity is full, the memory
with the smallest forgetting curve value disappears. However, we always keep
the first memory in the long-term store since it is the ground truth given in the
first frame. This forgetting curve is modeled as follows:

ci =

{
min(1, kcci), if 〈h(g(zLi

)),h(g(z))〉 > τh,

pi exp(−ai/hc), otherwise,
i = 2, . . . , NL, (13)

where ci denotes the forgetting curve of the i-th long-term memory, kc (>1)
represents the reinforcement parameter, and hc indicates the memory strength
parameter. ai is the age value that is initialized to 0 (ai = 0) if the above
condition is satisfied, otherwise it is increased by 1 (ai = ai + 1). pi is the
baseline of the forgetting curve, which has a value of 1 (pi = 1) when memory
is initially stored, but it is re-initialized to a reinforced value pi = min(1, kcci) if
the above condition is satisfied. In summary, when the newly entered memory is
similar to the existing stored memory, it means that the forgetting curve value
ci corresponding to the existing memory is strengthened by k times and the age
value ai is initialized. Otherwise, the age value ai is increased by 1, and the
forgetting curve value ci of that memory decreases depending on the age.

3.4 Tracking with MMLT

Our three main parts introduced in the previous sections are now integrated as
a long-term tracker, which is summarized in Algorithm 4. For the interaction
of these three parts, we designate two flags called tracking reliability and target
existence flag. Our tracker is initialized by transferring the ground truth informa-
tion given in the first frame to the short- and long-term stores. Unlike short-term
tracking, which only predicts the bounding box of the target, long-term track-
ing requires not only the bounding box prediction but also the confidence score
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Algorithm 4. MMLT
1: Input: Images I, target in the first frame ẑ1
2: Output: Estimated target ẑ, confidence score v
3: Initialization
4: Target existence flag & Tracking reliability flag ← 1
5: for t = 2, 3, . . . , N do
6: if (Target existence flag = 1) then
7: Forgetting curve ci management using Eq. (13)
8: Tracking (Algorithm 1)
9: if (Tracking reliability flag = 1) then

10: Memory management (Algorithm 3)
11: end if
12: end if
13: if (Target existence flag = 0) or (Tracking reliability flag = 0) then
14: Re-detection (Algorithm 2)
15: end if
16: Compute the confidence score on the estimated target using Eq. (14)
17: end for

assignment to the estimated bounding box. The confidence score should be high
if the target is present and vice versa. Thus, we assign the confidence score
differently depending on whether the target exists or not as follows:

v =

{
1

NL

∑NL

i=1〈h(g(zLi
)),h(g(z))〉, if target existence flag = 1,

αv

NL

∑NL

i=1〈h(g(zLi
)),h(g(z))〉, otherwise.

(14)

Since αv = max(fL(L)∗f(x))
∑NL

i=1 f(zLi
)∗f(zLi

)/NL

is always smaller than 1, the confidence score

is assigned a small value when the target does not exist.

4 Experimental Results

4.1 Dataset

We experimented with a long-term tracking dataset, called LTB35 [24], to com-
pare the proposed MMLT to other trackers. The LTB35 dataset is officially
used in the VOT2018 long-term challenge [19] and has the following characteris-
tics: It contains a total of 146,847 frames with more than 1,000 frames for each
sequence of 35 categories. Two sequences (following and liverRun) are even more
than 10,000 frames. The number of frames in each sequence is much longer than
the previous short-term datasets [20,29,33], which makes the task challenging.
In addition, since the target disappears for an average of about 12.4 times, a
re-detection process is considered to be particularly important. The resolution
of the sequences is between 1280×720 and 290×217, and the size of the target is
different for each image and continuously changes over time. The target of each
sequence is annotated with an axis-aligned bounding-box, and various objects
are categorized such as persons, animals, and vehicles.
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Table 1. The maximum F-score for each tracker.

Method Type Maximum F-score

MMLT LT1 0.52

FCLT [23] LT1 0.48

SiamFC [2] ST1 0.40

ECO [3] ST1 0.35

ECOhc [3] ST1 0.33

CSRDCF [22] ST0 0.33

CREST [30] ST0 0.33

PTAV [8] LT0 0.31

BACF [11] ST0 0.31

MUSTER [14] LT1 0.29

KCF [13] ST0 0.27

TLD [17] LT1 0.27

SRDCF [5] ST0 0.26

LCT [25] LT0 0.25

CMT [28] LT1 0.22

4.2 Evaluation Protocol

The proposed MMLT was evaluated by the evaluation protocol of the VOT2018
long-term challenge [19], which tracks a target from the first frame to the end
of the sequence without re-sets. This evaluation protocol was automatically per-
formed by the VOT toolkit [19], which automatically computed the highest
F-score for each sequence based on a detection-like precision-recall plot by using
confidence scores assigned to bounding boxes of the target. The experiments were
performed using MATLAB R2017a on a system with Intel(R) core(TM) i7-4770
3.40 GHz processor and a single NVIDIA GTX 1080 Ti with 11 GB RAM.

4.3 The VOT-LT2018 Benchmark

We compared the tracking performance of our MMLT to that of various trackers
based on the maximum F-score. Table 1 shows the maximum F-scores of the
state-of-the-art trackers which have been reported in the LTB35 dataset paper
[24]. Evaluated trackers are separated into four categories as follows: short-term
tracker (ST0), short-term tracker with conservative updating (ST1), pseudo long-
term tracker (LT0), and re-detecting long-term tracker (LT1). The following
taxonomy has been introduced explicitly in [24].

The proposed MMLT algorithm can be classified as the re-detecting long-
term tracker (LT1) since our tracker judges tracking failure and performs target
re-detection. FCLT [23], which is also the re-detecting long-term tracker (LT1),
achieved the highest performance among the existing methods. However, we
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achieved an F-score of 0.52 on the LTB35 dataset, which is 0.04 higher than the
performance of the state-of-the-art algorithm. Other long-term trackers, how-
ever, produced lower performance than existing short-term trackers. This indi-
cates how important and careful the process of re-detection or updating the
visual model should be.

We have selected several trackers to analyze the qualitative results with our
tracker, which are visualized in Fig. 2. The tracking results for a total of seven
sequences are arranged in descending order for the number of target disappear-
ances. The best performer among short-term trackers, ECO [3], tracked the
target well even though the viewpoint and scale changed significantly in the
Car sequence. The correlation filter-based trackers like ECO present a strong
advantage in the sequences where the target object does not disappear from the
image. On the other hand, SiamFC [2], one of the famous CNN-based short-term
trackers, did not adapt as well as ECO to visual appearance variation because
an online updating module was not implemented.

Fig. 2. Qualitative results of the proposed MMLT, ECO [3], SiamFC [2], and TLD [17]
in representative frames of challenging seven sequences. Sequences are sorted based on
the number of target disappearances, which are indicated by the number in parentheses.



112 H. Lee et al.

In the remaining six sequences in Fig. 2, ECO has easily drifted to other
objects or background because it did not deal with the process of overcoming
the disappearance of the target. SiamFC often detected objects in the Yamaha
sequence where the background clutter was relatively small and the target was
noticeable compared to the background. TLD has often succeeded in detect-
ing the target in the Carchase sequence where the target often disappears but
performance was not as good. In short, all of the existing trackers solved the
problem only in some attributes and their performance degraded significantly in
challenging problems involving complex attributes.

On the other hand, the proposed MMLT achieved robust tracking perfor-
mance even in challenging sequences where the target frequently disappears and
the visual appearance of the object changes significantly. In particular, in the
Bird sequence, all previous algorithms completely failed to detect and track the
target, whereas the proposed MMLT method obtained better performance by the
reliable re-detection procedure and online updating manner based on ASMM.
We also achieved F-scores of 0.50, 0.44, 0.40, and 0.51 for Following, Yamaha,
Longboard, and Skiing sequences, respectively. Therefore, the proposed MMLT
proved to be a robust long-term tracker compared to the existing methods. The
following results demonstrated that MMLT is a more robust long-term tracker
than conventional methods. In the end, the average execution speed of MMLT
in the long-term experiment provided by the VOT toolkit [19] achieved 6.15 fps.

4.4 Performance Analysis of Detailed Algorithms

To analyze the sub-algorithms of the proposed MMLT in detail, we created sev-
eral versions. The maximum F-score for each sequence was calculated, which is
summarized in Fig. 3. All sequences are ordered based on how much the pro-
posed final version is superior to the other versions, i.e., the final version in the
Car16 sequence was the most superior to the other versions.

Various versions are distinguished based on whether to perform the online
updating and re-detection processes. The leftmost version of each sequence is a
version that does not perform both the re-detection and update procedures, and
it is identical to the existing SiamFC [2] except for the confidence scoring method
and specific parameters. We set this version as a baseline and transformed the
update process into three ways as follows: always update with the same weights,
always update with an exponential forgetting scheme, and update only when
confident. The performance of the last version was the best among the three
versions, which was notable in the sequences with large appearance changes of
the target such as Nissan, Car1, and Cat2.

However, the four versions described above were difficult to detect the target
if the tracking object disappeared frequently or for a long period. The main
reason for the problem is that the searching range of the Siamese model is
limited. Therefore, we applied only the re-detection procedure without updating
to verify the performance of re-detection. The performance has greatly improved
by the ability to re-detect the target even if the tracker misses the target due to
full occlusion and camera motion changes. In the end, the final version further
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improved performance by adding an online update process and the results were
remarkable in Car16, Group2, LiverRun, Longboard, Carchase, Person14, and
skiing sequences.
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Fig. 3. The maximum F-score for various versions of the proposed MMLT. All
sequences are listed based on the order in which the performance of the proposed
final version is superior to that of the other versions.

5 Conclusion

In this paper, we have proposed a memory model based on the Siamese network
for long-term tracking (MMLT). Memory stores in MMLT are divided into short-
and long-term stores depending on each characteristic. The tracking process is
operated by taking a weighted sum of the features in both the short- and long-
term stores. On the other hand, in the re-detection, only the information in the
long-term store is utilized, and the target is detected in the entire image by
adopting a coarse-to-fine strategy. As such, memory stores play a crucial role
in the tracking and re-detection parts, and the short- and long-term stores are
managed differently. The short-term memory is managed in the first in/first
out manner, and the forgetting curve is employed for managing the long-term
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memory. Regional Maximum Activations of Convolutions (R-MAC) is applied to
determine the existence of the target and to compute the confidence score. The
experimental results on the long-term tracking benchmark show that MMLT
achieves state-of-the-art performance.
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