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Abstract. We present a single-view voxel model prediction method that
uses generative adversarial networks. Our method utilizes correspon-
dences between 2D silhouettes and slices of a camera frustum to pre-
dict a voxel model of a scene with multiple object instances. We exploit
pyramid shaped voxel and a generator network with skip connections
between 2D and 3D feature maps. We collected two datasets VoxelCity
and VoxelHome to train our framework with 36,416 images of 28 scenes
with ground-truth 3D models, depth maps, and 6D object poses. We
made the datasets publicly available (http://www.zefirus.org/Z GAN).
We evaluate our framework on 3D shape datasets to show that it delivers
robust 3D scene reconstruction results that compete with and surpass
state-of-the-art in a scene reconstruction with multiple non-rigid objects.

Keywords: Conditional GAN · Voxel model · 6D pose estimation

1 Introduction

Does a voxel model with a shape 128 × 128 × 1 provide any information about
a 3D object? If the XY plane of the voxel model is normal to a camera optical
axis, the voxel model is similar to the object’s semantic segmentation.

Modern methods [27,34] demonstrate the state-of-art results on the task of
semantic segmentation. Although deep networks trained for segmentation pro-
vide the resolution of an input color image, the resolution of a voxel model
output produced by modern networks is lower than the resolution of an input
image [26,53,58,59,61].

We hypothesize that a pixel correspondence between an input color image
and slices of a voxel model can improve the quality of fine details in a voxel
output. The necessary correspondences are found using three interconnected
steps: (1) we provide an aligned voxel model for each color image, (2) we use
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Fig. 1. Results of our image-to-voxel translation based on generative adversarial net-
work (GAN) and frustum voxel model. Input color image (left). Ground truth frustum
voxel model slices colored as a depth map (middle). The voxel model output (right).
(Color figure online)

slices of a camera’s frustum to built the voxel space, (3) we use a generator
network with skip connections [27,46] to feed high-resolution image features to
3D deconvolutional layers of a generator network (Fig. 1).

It is challenging to predict a voxel model from a single color image. The
color-to-voxel model translation problem has received a lot of scholar attention in
recent time [9,17,26,44,48,53,58,59,61]. The trained models have demonstrated
state-of-the-art results on large datasets with 3D object annotations [33,60].
Main limitations of the existing models are a single object focused prediction
and limited generalization ability.

A research project has recently been started by the authors. The project is
focused on the development of a low-cost driver assistance system. We developed
two new 3D shape datasets VoxelCity and VoxelHome to train our framework.
The datasets include 36,416 images of 28 scenes with ground-truth 3D models,
depth maps, and 6D object poses.

The results of the trained Z-GAN model are encouraging. We experimented
with high-resolution voxel outputs of 128 × 128 × 128 and were able to predict
the shape of multiple objects accurately. We evaluated our Z-GAN model using
the Pascal 3D+ [60] and the IKEA [33] datasets. The comparison with the
state-of-the-art has demonstrated that the Z-GAN effectively outperforms modern
models in the number of reconstructed objects, the generalization ability, and
the resolution of the output voxel model. The Z-GAN model can be used in the
3D vision applications such as robot vision, 6D pose estimation, and 3D model
reconstruction.

The rest of the paper is organized as follows. Section 2 outlines modern
approaches to voxel model reconstruction. In Sect. 3 we describe the structure
of our VoxelCity and VoxelHome datasets. In Sect. 4 the developed conditional
Z-GAN model is presented. Section 5 presents the evaluation of baselines and the
developed model.



Image-to-Voxel Model Translation 603

1.1 Contributions

The key contributions of this paper are: (1) the conditional adversarial volu-
metric Z-GAN framework for the generation of a voxel model from a single-view
color image, (2) VoxelCity and VoxelHome datasets with 36,416 color images,
ground-truth voxel models, depth maps and camera orientations of 21 outdoor
and 7 indoor scenes, (3) an evaluation of baselines and our framework on 3D
shape datasets.

2 Related Work

Generative Adversarial Networks. Recently proposed Generative Adver-
sarial Networks (GANs) [18] provide a mapping from a random noise vector to
a domain of the desired outputs (e.g., images, voxel models). GANs are gaining
increasing attention in recent years. They provide encouraging results in tasks
like image-to-image translation [27] and voxel model generation [59].

Single-Photo 3D Model Reconstruction. Accurate 3D reconstruction
is challenging if only a single color image is provided. This problem was
always of great interest for the research community [12,42,43] and in the last
years many new approaches were proposed based on the use of deep learn-
ing [9,17,26,44,48,53,58,59,61]. While a number of methods were proposed for
prediction of unobserved voxels from a single depth map [15,51,62–64], predic-
tion of the voxel model of a complex scene from a single color (RGB) image is
more ambiguous. Prior knowledge of 3D shape is required for the robust perfor-
mance of a single-image method. Hence, most of the methods split the problem
into two steps: object recognition and a 3D shape reconstruction. In [17] a deep
learning method for a single image voxel model reconstruction was proposed.
The method leverages an auto-encoder architecture for a voxel model predic-
tion. While the model has demonstrated promising results, the resolution of the
voxel model was limited to 20 × 20 × 20 elements. An approach that combines
single-view and multi-view reconstruction modes was proposed in [9]. In [44]
a new voxel decoder architecture was proposed that leverages voxel tube and
shape layers to increase the resulting voxel model resolution. A comparison of
surface-based and volumetric 3D model prediction is performed in [48].

3D shape synthesis from a latent space has received a lot of scholar attention
recently [7,17,59]. Wu et al. have proposed a GAN model [59] for a voxel model
generation (3D-GAN). The model was capable to predict voxel models with reso-
lution 64 × 64 × 64 from a randomly sampled noise vector. 3D-GAN was used for
a single-image 3D reconstruction using an approach proposed in [17]. While 3D
models produced by the 3D-GAN model provided more details compared to [17],
the generalization ability of the approach was insufficient to predict voxel models
of previously unseen 3D shapes.
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3D Shape Datasets. Multiple 3D shape datasets were designed [8,33,52,60]
for training deep models. Manual annotation was performed for the Pascal VOC
dataset [14] to align a set of CAD models with color photos. The extended
dataset was termed Pascal 3D+ [60]. While many models were trained using the
Pascal 3D+ dataset, it provides a coarse correspondence between a 3D model
and a photo. A large ShapeNet dataset [8] was collected to address the problems
of shape recognition and generative modeling. However, training for single photo
3D model reconstruction is possible only with synthetic data. Hinterstoisser
et al. have designed a large Linemod dataset [20] with aligned RGB-D data.
The dataset is focused on object recognition in the indoor setting. The
Linemod dataset was intensively used for training 6D pose estimation algo-
rithms [2,3,5,6,10,22,23,32,35,40,50,55]. In [21] a large dataset for 6D pose
estimation of texture-less objects was developed. An MVTec ITODD dataset [11]
addresses the challenging problem of 6D pose prediction in industrial application.

The 6D pose estimation has received a lot of scholar attention recently [2,3,5,
6,10,22,23,29,31,32,35,40,50,55]. Accurate estimation of camera pose relative
to an object is of primary importance in such fields as an autonomous driv-
ing [1,4,36,39] and Simultaneous Localization and Mapping (SLAM) [13,57].
However, most of the datasets contain 3D data as LIDAR range scans. As no
complete 3D shapes are provided in the existing datasets, they require an addi-
tional annotation for single-photo 3D reconstruction.

3 Dataset

We collected two new datasets VoxelCity and VoxelHome to train our Z-GAN
model. The primary motivation for the creation of new datasets was an absence
of large 3D shape datasets with pixel-level 3D object annotations. Annotations
provided in Pascal 3D+ dataset [60] present CAD models of abstract classes that
do not provide real silhouettes of 3D objects.

We capture multi-view images of scenes to generate our datasets (Sects. 3.2
and 3.3), composed of images, depth maps, reconstructed 3D models and ground-
truth 3D CAD models. We recover 6D camera poses for each image and textured
3D models using state-of-the-art SfM algorithms [30,38,41,54]. Then we man-
ually annotated all objects in a scene to provide multi-object 6D poses. The
SfM-based approach provides two benefits. Firstly, SfM models present real con-
figuration of objects in a scene that provides a pixel-level correspondence between
images and a 3D model (Fig. 2). Secondly, SfM provides a 6D camera pose for
each image. We made the datasets compliant with the SIXD Challenge dataset
format [24].

3.1 3D Model Generation Using SfM

The multi-view image-based 3D reconstruction pipeline, generally called Struc-
ture from Motion (SfM), based on the integration of photogrammetric and com-
puter vision algorithms, has become in the last years a powerful and valuable
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Fig. 2. Comparison of an alignment of 3D models in the Pix3D (a) and our VoxelHome
(b) datasets and in the Pascal 3D+ (c) and our VoxelCity (d) datasets. Please note
that (a) and (c) do not provide perfect alignment of the contours.

approach for 3D modeling purposes. It generally ensures sufficient automation,
low cost, efficient results and ease of use, even for non-expert users. SfM now
successfully reconstructs scenes containing hundred thousands or even millions
of images [19,47]. Available online reconstruction services decoupled the user
from a powerful hardware that carried out the reconstructions, only requiring to
upload the images on a Cloud server [54]. Recently, online SfM methods demon-
strated that it is possible to add new images to existing 3D reconstructions and
build an incremental surface model [25,38]. We manually created 3D CAD mod-
els using the coarse 3D models reconstructed using SfM as a baseline. We use
the CAD models to generate the voxel models for network training.

3.2 VoxelCity

Our VoxelCity dataset includes 3D models of 21 scenes, composed of 18,836 color
images with reconstructed 3D models, ground-truth 3D CAD models, depth
maps and 6D poses of seven object classes: human, car, bicycle, truck, van.
Examples of 3D scenes and object pose annotations for various object classes
are presented in Fig. 3. Comparison to previous 3D shape datasets regarding
outdoor scenes is presented in Table 1.

Table 1. Comparison to previous outdoor 3D shape dataset. The type of data provided
is listed: dense (D), coarse (C).

Dataset #scene #image #class #3D model 6D pose P. cloud Depth

KITTI [16] × 15,001 3 × � × ×
Pascal 3D+ [60] × 30,364 12 77 � C C

CL [28] 6 12,000 × × � D ×
VoxelCity 21 18,836 7 38 � D D
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Fig. 3. Examples of color images with 6D pose annotations and ground truth dense
point clouds from our VoxelCity dataset. (Color figure online)

3.3 VoxelHome

Our VoxelHome dataset presents 3D models of 7 indoor scenes, composed of
17,580 color images with reconstructed 3D models, ground-truth 3D CAD mod-
els, depth maps and 6D poses of nine object classes: chair, table, armchair, sofa,
stool, cupboard, vase, washing machine, oven. Examples of 3D models and object
pose annotations for various object classes are presented in Fig. 4. We present
comparison to previous datasets regarding indoor scenes in Table 2.

Table 2. Comparison to previous outdoor 3D shape dataset. The type of data provided
is listed: dense (D), coarse (C).

Dataset #scene #image #class #3D model 6D pose P. cloud Depth

IKEA [33] × 759 7 219 � × ×
Linemod [20] 1 18,241 15 15 � × ×
T-LESS [21] 20 3 × 49, 000 26 30 � D D

7 scenes [49] 7 43,000 × × � D D

12 scenes [56] 12 246,673 × × � C C

VoxelHome 7 17,580 9 64 � D D

4 Method

The aim of the present research is to apply conditional generative adversarial
network to the color image-to-voxel model translation task. The straightforward
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Fig. 4. Examples of color images with 6D pose annotations and ground truth dense
point clouds from our VoxelHome dataset.

approach is to change the network output from an image to a voxel model.
However, the convergence of the training process is poor for such setting. We
hypothesize that the performance can be improved if the voxel model will be
aligned with the input image.

A depth map is an example of an aligned 3D representation of the color
image. While the depth map provides the 3D shape only for the visible surface
of objects, the voxel model encodes the complete 3D model of the scene. We use
assumptions made by [58] as the starting point for our 3D model representation.
To provide the aligned voxel model, we combine depth map representation with
a voxel grid. We term the resulting 3D model as a Frustum Voxel model (Fruxel
model).

4.1 Frustum Voxel Model

The main idea of the fruxel model is to provide precise alignment of voxel slices
with contours of a color image. Such alignment can be achieved with a common
voxel model if the camera has an orthographic projection and its optical axis
coincides with the Z-axis of the voxel model (see Fig. 5, left). We generalize such
alignment to the perspective projection. As the camera frustum is no longer
corresponding to the cube voxel elements, we use sections of a pyramid.

Fruxel model representation provides multiple advantages. Firstly, each XY
slice of the model is aligned with some contours on a corresponding color photo
(some parts of them can be invisible). Secondly, a fruxel model encodes a shape
of both visible and invisible surfaces. Hence, unlike the depth map, it contains
complete information about the 3D shapes. In other words, the fruxel model is
similar to theatre scenery composed of flat screens with drawings of objects that
imitate perspective space. Please note, that while fruxel elements have different
dimensions in object space, all slices of the fruxel model have the same number
of fruxel elements (e.g., 128 × 128 × 1).

A fruxel model is characterized by a following set of parameters: {zn, zf , d, α},
where zn is a distance to a near clipping plane, zf is a distance to a far clipping
plane, d is the number of frustum slices, α is a field of view of a camera.

While fruxel model provides contour correspondence with a color image, its
interpretation by a human may be complicated. We consider fruxel models as a
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Fig. 5. Comparison between voxel model (left) and the proposed frustum voxel model
(right) with shape 64 × 64 × 64 fruxel elements.

special representation of a voxel model optimized for the training of conditional
adversarial networks. Nevertheless, a fruxel model can be converted into three
common data types: (1) voxel model, (2) depth map, (3) object annotation.

A voxel model can be produced from the fruxel model by scaling each con-
sequent layer slice by the coefficient k defined as follows:

k =
zn

zn + sz
, (1)

where sz = zf−zn
d is the size of the fruxel element along the Z-axis.

To generate a depth map P from the fruxel model, we multiply indices of the
frontmost non-empty elements by the step sz.

P (x, y) = argmaxi[Fi(x, y) = 1] · sz (2)

where P (x, y) is an element of a depth map, Fi(x, y) vector of elements in a
fruxel model at slice i.

An object annotation is equal to a product of all elements with given x, y
coordinates

A(x, y) =
d∏

i=0

F (x, y, i) (3)

We use boolean operations to generate the fruxel model from a 3D scene.
Firstly, we set the desired position of a virtual camera. After that, we find a
boolean intersection between the 3D scene and XY slices of the frustum space.
We render each intersection using white emission shader. We combine all slices in
a single 3D array with dimensions w×h×d, where w is the width, h is the height
of the color image, d is the number of slices. We term the resulting 3D array
as a fruxel model. We generate fruxel models for real photos using 3D models
generated with the structure-from-motion (SfM) algorithm. The SfM approach
provides an estimation of camera poses with respect to the reconstructed 3D
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model. We place the virtual camera in the estimated pose and render the slices
of the reconstructed model.

4.2 Conditional Adversarial Networks

Generative Adversarial Networks (GAN) generate a signal B̂ for a given random
noise vector z, G : z → B̂ [18,27]. Conditional GAN transforms an input image
A and the vector z to an output B̂, G : {A, z} → B̂. The input A can be
an image that is transformed by the generator network G. The discriminator
network D is trained to distinguish “real” signals from target domain B from the
“fakes” B̂ produced by the generator. Both networks are trained simultaneously.
Discriminator provides the adversarial loss that enforces the generator to produce
“fakes” B̂ that cannot be distinguished from “real” signal B.

We train a generator G : {A} → B̂ to synthesize a fruxel model B̂ ∈ R
w×h×d

conditioned by a color image A ∈ R
w×h×3.

4.3 Z-GAN Framework

We use pix2pix [27] framework as a starting point to develop our Z-GAN model.
We keep the encoder part of the generator unchanged. We change 2D convolution
kernels with 3D deconvolution kernels to encode a correlation between neighbor
slices along the Z-axis.

We keep the skip connections between the layers of the same depth that
was proposed in the U-net model [46]. We believe that skip connections help
to transfer high-frequency components of the input image to the high-frequency
components of the 3D shape. The resulting architecture of our Z-GAN model is
presented in Fig. 6.

(b) Training Z-GAN(a) Testing Z-GAN

Input color 
image

Ground truth 
output

Output fruxel 
model

LossDeep network

A BG1

B

L1(B,B) + D

A BG1

Fig. 6. Z-GAN framework.
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4.4 Volumetric Generator

The main idea of our volumetric generator G is to use the correspondence
between silhouettes in a color image and slices of a fruxel model. We used the U-
Net generator [46] as a starting point to develop our model. The original U-Net
generator leverages skip connections between convolutional and deconvolutional
layers of the same depth to transfer fine details from the source to the target
domain effectively.

We added two contributions to the original U-Net model. Firstly, we replaced
the 2D deconvolutional filters with 3D deconvolutional filters. Secondly, we mod-
ified the skip connections to provide the correspondence between shapes of 2D
and 3D features. The outputs of 2D convolutional filters in the left (encoder)
side of Z-Net generator are F2D ∈ R

w×h×c tensors, where w, h is the width and
the height of a feature map and c is the number of channels. The output of
3D deconvolutional filters in the right (decoder) side are F3D ∈ R

w×h×d×c ten-
sors. We use d copies of each channel of F2D to fill the third dimension of F3D.
We term this operation as “copy inflate”. The architecture of the generator is
presented in Fig. 7.
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Fig. 7. The architecture of the generator.

4.5 Volumetric Discriminator

We modify the PatchGAN discriminator [27] to process the 3D slices efficiently.
The original PatchGAN discriminator is based on the assumption of the marko-
vian independence of the local image patches. Therefore the discriminator penal-
izes the image structure only at the scale of local patches.
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The PatchGAN discriminator consists of a stack of convolutional layers with
a constant kernel size. The stride of each layer is balanced with a kernel size
in such way that the layer output size remains corresponding to the size of the
input image. In other words, each convolutional layer takes the input with the
size equal to the size of the input color image and produces a feature map. The
sequential application of the convolutions with constant kernel size increases the
“aperture” of the discriminator. For example, sequential application of seven
convolutional layers results in the feature “aperture” of 140 pixels.

Our Z-Patch discriminator has a similar structure to the PatchGAN discrim-
inator [27]. We replaced all 2D convolutional layers with 3D convolutional layers
to process 3D shapes.

5 Evaluation

We evaluate baseline models and our Z-GAN framework on a task of generation
of a voxel model from a single-view color image. We use two 3D shape datasets
for the evaluation: Pascal 3D+ [60] and Pix3D [52]. All datasets include real
images with 6D object poses.

We use two metrics to provide a quantitative evaluation of 3D object recon-
struction quality: (i) an Intersection over Union (IoU) metric to measure a dif-
ference between a ground-truth 3D model and an output of a method and (ii)
a surface distance metric similar to [45] to evaluate an accuracy of camera pose
estimation for the 3D-R2N2 and our Z-GAN models. We also provide images of
resulting voxel models for qualitative evaluation.

5.1 Baselines

We compare our model with three baselines: 3D-R2N2 [9,48], TL-network [17],
and MarrNet [58]. To the best of our knowledge, there are no baselines to date
capable of predicting voxel models of multiple objects from a single image.
TL-network and MarrNet perform object-centered [48] prediction of voxel mod-
els with resolutions of 20 × 20 × 20 and 128 × 128 × 128. 3D-R2N2 provides a
view-centered prediction with resolution 32×32×32. Our Z-GAN model predicts
a view-centered fruxel model with resolution 128 × 128 × 128.

5.2 Training Details

Our Z-GAN framework was trained on the VoxelCity and VoxelHome datasets
using PyTorch library [37]. We use VoxelCity dataset for the evaluation on Pascal
3D+ with fruxel model parameters {zn = 2, zf = 12, d = 128, α = 40◦}. For the
evaluation on Pix3D dataset, we train our model on the VoxelHome dataset with
fruxel model parameters {zn = 0.5, zf = 5.5, d = 128, α = 40◦}. The training
was performed using the NVIDIA 1080 Ti GPU and took 11 h for G, D. For
network optimization, we use minibatch SGD with an Adam solver. We set the
learning rate to 0.0002 with momentum parameters β1 = 0.5, β2 = 0.999 similar
to [27].
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5.3 3D Reconstruction on Pascal 3D+

Qualitative Evaluation. We show results of single-view voxel model gener-
ation in Fig. 8. We use three object classes: car, bicycle, human. We selected
2,762 images from Pascal 3D+ image sets with a field of view similar to our
trained model. We manually annotated the images with human 3D models from
the ShapeNet dataset [8]. The qualitative evaluation demonstrates that models
predicted by TL-network and MarrNet models have limited resolution and do
not demonstrate new details compared to ground-truth models from the training
set. While 3D-R2N2 shows more diversity in the output, it is capable of predict-
ing only a single object in a scene. Our Z-GAN model produces voxel models of
the whole scene with multiple object instances.

Input Ground Truth TL-network MarrNet 3D-R2N2 Z-GAN

C
ar

B
ic
y
cl
e

Fig. 8. An example of 3D reconstruction using TL-network,MarrNet,3D-R2N2 and Z-GAN

on Pascal 3D+ [60] dataset and considering three object classes: car, bicycle, human.

Quantitative Evaluation. We evaluate the results of the proposed Z-GAN
method in terms of IoU and surface distance in Tables 3 and 4.

Table 3. Intersection over union met-
ric for different object classes for Pascal
3D+ images.

Method Object class
Car Bicycle Mean

TL-network [17] 0.301 0.117 0.209
MarrNet [58] 0.321 0.156 0.239
3D-R2N2 [48] 0.582 0.212 0.397

Z-GAN 0.612 0.398 0.505

Table 4. Surface distance metric [45]
for different object classes for Pascal
3D+ images.

Method Object class
Car Bicycle Mean

3D-R2N2 [48] 0.151 0.701 0.426

Z-GAN 0.091 0.356 0.224
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5.4 3D Reconstruction on Pix3D

Qualitative Evaluation. Evaluation results of single-view voxel model gen-
eration are presented in Fig. 9. We use two object classes: chair and table. We
selected 1,512 images from Pix3D image sets with a field of view similar to our
model trained on VoxelHome dataset. We made the following conclusions from
the qualitative evaluation. Firstly, TL-network predicts the object as the voxel
model from the training set. While MarrNet tries to imitate the shape of the
object in the input, it is confused on images with multiple objects. 3D-R2N2
reconstructs view-centered object voxel model but the resolution of the model
is not enough to show details of multiple objects. Results of our Z-GAN model
demonstrate fine object details and correct poses of multiple objects.

Input Ground Truth TL-network MarrNet 3D-R2N2 Z-GAN

Fig. 9. Example of 3D reconstructions using the Pix3D dataset.

Quantitative Evaluation. We evaluate the results of the proposed Z-GAN
method in terms of IoU and surface distance in Tables 5 and 6.

Table 5. Intersection over union met-
ric for different object classes for Pix3D
images.

Method Object class
Chair Table Mean

TL-network [17] 0.190 0.211 0.201
MarrNet [58] 0.241 0.376 0.309
3D-R2N2 [48] 0.289 0.251 0.270

Z-GAN 0.461 0.612 0.536

Table 6. Surface distance metric [45]
for different object classes for Pix3D
images.

Method Object class
Chair Table Mean

3D-R2N2 [48] 0.201 0.691 0.446

Z-GAN 0.121 0.467 0.294

6 Conclusions

The paper presented a new approach based on conditional generative adversarial
networks capable of prediction of a voxel model from a single image. We showed
that conditional adversarial volumetric networks can generate voxel models of
complex scenes with multiple objects. We demonstrated that skip connections
between 2D convolutional and 3D deconvolutional layers facilitate reconstruction
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of fine details. Furthermore, models utilizing skip connections require less train-
ing parameters for high-quality reconstruction of cluttered scenes with multiple
3D shapes of different classes.

We developed a new Z-GAN framework for translation of a single color image
to a voxel model of a scene. We collected two datasets VoxelCity and VoxelHome
to train our model. Datasets include fine-grade scene models, color images, depth
maps and 6D object poses. We evaluated baselines and our model on multiple
3D shape datasets to show that it achieves and surpasses the state-of-the-art in
terms of the number of reconstructed objects and their details.
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