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Abstract. This document summarizes the 4th International Workshop
on Recovering 6D Object Pose which was organized in conjunction with
ECCV 2018 in Munich. The workshop featured four invited talks, oral
and poster presentations of accepted workshop papers, and an introduc-
tion of the BOP benchmark for 6D object pose estimation. The work-
shop was attended by 100+ people working on relevant topics in both
academia and industry who shared up-to-date advances and discussed
open problems.

1 Introduction

An accurate, fast and robust estimation of 6D object pose is of great importance
to many application fields such as robotic manipulation, augmented reality, scene
interpretation, and autonomous driving. In robotics, for example, the 6D object
pose facilitates spatial reasoning and allows an end-effector to act upon the
object. In an augmented reality scenario, object pose can be used to enhance
one’s perception of reality by augmenting objects with extra information such
as hints for assembly.

The introduction of consumer and industrial grade RGB-D sensors have
allowed for substantial improvement in 6D object pose estimation as these sen-
sors concurrently capture both the appearance and geometry of the scene. How-
ever, there still remain challenges to be addressed, including robustness against
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occlusion and clutter, scalability to multiple objects, and fast and reliable object
modelling, including capturing of reflectance properties. Extending contempo-
rary methods to work reliably and with sufficient execution speed in an indus-
trial setting is still an open problem. Many recent methods focus on specific rigid
objects, but pose estimation of deformable or articulated objects and of object
categories is also an important research direction.

Fig. 1. Estimation of 6D pose, i.e. 3D translation and 3D rotation, of a specific rigid
object. This task is considered in the BOP benchmark [25].

The field of 6D object pose estimation has gained more attention last years.
A big achievement for the field is the best paper award of ECCV 2018 given to
Martin Sundermeyer, Zoltan Marton, Maximilian Durner, Manuel Brucker, and
Rudolph Triebel for their work titled Implicit 3D Orientation Learning for 6D
Object Detection from RGB Images.

The 4th edition of the International Workshop on Recovering 6D Object
Pose [4]1 was organized in conjunction with ECCV 2018 and was attended by
100+ people from both academia and industry who shared up-to-date advances
and discussed open problems. Four invited speakers talked about their current
work (Sect. 2), the BOP benchmark for 6D object pose estimation was introduced
(Sect. 3), and the accepted workshop papers were presented.

The workshop covered the following topics: (a) 6D object pose estimation
(a.k.a. 3D object detection) and tracking, (b) 3D object modeling and recon-
struction, (c) surface representation and registration, (d) robustness to occlusion
and background clutter, (e) multiple object instance detection, (f) pose estima-
tion of non-rigid objects and object categories, (g) robotic grasping and grasp
affordances, and (h) object manipulation and interaction.

Many methods for 6D pose estimation of specific rigid objects (Fig. 1) have
been published recently, but were usually compared with only a few competitors
on a small subset of datasets. It had been therefore unclear which methods
perform well and in which scenarios. To capture the status quo of the field, we
organized the SIXD Challenge [5] at the 3rd workshop edition held at ICCV
2017 [3]. The results submitted to the challenge were published in the BOP
benchmark paper [25] and presented at the 4th workshop edition.

Papers submitted to the workshop were peer-reviewed. Out of 13 submis-
sions, the program committee accepted 10 papers which were introduced at the

1 The previous editions were held at ICCV 2015 [1], ECCV 2016 [2], and ICCV 2017 [3].
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workshop through oral and poster presentations. The best paper award was given
to Image-to-Voxel Model Translation with Conditional Adversarial Networks by
Vladimir Knyaz, Vladimir V. Kniaz, and Fabio Remondino.

2 Invited Talks

The invited talks were given by Federico Tombari from Technical University of
Munich, Kostas Bekris from Rutgers University, Bertram Drost from MVTec,
and Thibault Groueix from Ecole Nationale des Ponts et Chaussées. The talks
are summarized below and the slides are available on the workshop website [4].

2.1 From 3D Descriptors to Monocular 6D Pose: What Have We
Learned? – Federico Tombari

While 6D rigid pose estimation has been an important research task for more
than twenty years, recently the design of new algorithms is more and more
focused on overcoming the limitations provided by real world applications, so
to bridge the gap between lab research and products. This translates to the
necessity to move on from the simplified scenario of estimating the pose of a
single object on a clutter-less planar surface, towards scenarios with high clutter
and occlusion [42]. At the same time, algorithms need to process input data at
a very high frame rate, so to reduce the latency of the output and avoid lagging,
provide accurate pose estimation (e.g. to reduce jitter during tracking) and cope
with resource-limited hardware architectures such as mobile phones or embedded
computers. This is particularly motivated by applications that already have a
strong market interest such as augmented reality, personal/industrial robotics
and autonomous driving. A disruptive technology that strongly influenced the
field of 6D rigid pose estimation in the past 5 years is deep learning. Hence, the
talk presented an overview of the current trends and results regarding the use of
deep learning for this task, in view of overcoming the aforementioned limitations.
In particular, it highlighted two main research directions where deep learning has
been leveraged to improve the state of the art: (i) the definition of 3D descriptors
for 3D data; (ii) 6D object pose estimation from RGB (or monocular) data.

As for the first aspect, we briefly went over the development of 3D descriptors
for unorganized 3D representations, starting from the handcrafted ones [41,46]
until the more recent “learned” ones. An important aspect regarding the influ-
ence of deep learning on this field is that certain 3D representations such as point
clouds and 3D meshes, frequently utilized for 6D rigid pose estimation tasks, are
not well suited to convolutions due to their intrinsic unorganized nature. Hence,
an important step in the direction of learning 3D features was the introduction
of methods such as PointNet [35] and [50], that, conversely to approaches such as
3D Match [52] and [29], can directly operate on point clouds or meshes without
the need to either voxelize or histogram the data. The recent global and fully-
convolutional architecture for point cloud processing and scene understanding
proposed in [40] was also introduced.



592 T. Hodaň et al.

As for the second research direction, the intuition of estimating the 6D pose
of an object based on monocular information relies on the fact that humans
can often have a rough idea of the pose of the objects in the surrounding 3D
space simply from monocular cues, provided that they are familiar with the
shape of the objects. Several works have recently explored this direction, which
were briefly introduced and compared in terms of characteristics. One distinctive
trait that differentiates such approaches is the type of output that the network
is trained to infer: from the 8 corners of the projected bounding box [36,45]
to the regression of the 6D pose [15,49] or the classification of the viewpoint
and in-plane rotations [27]. The method in [30] was also introduced, that pro-
poses to learn the 6D pose refinement from pairs of RGB patches using a CNN.
Finally, the extension of monocular 6D pose estimation to the autonomous driv-
ing domain was also discussed, by referencing recent directions such as [12,13].

In conclusion, deep learning appears as a powerful tool for 6D rigid pose esti-
mation, although seems still strongly limited by open issues such as generaliz-
ability, learning of geometric invariance and computational efficiency (especially
in a field where most applications need to deal with resource-limited hardware).
Monocular pose estimation can be promisingly carried out via deep learning,
although not yet as accurately as with a depth sensor, as also showcased by a
qualitative comparison on a real sequence between the two tracking approaches in
[30] (monocular) and [42] (RGB-D). Finally, deploying monocular 6D pose esti-
mation jointly with monocular semantic SLAM such as CNN-SLAM [43], which
also leverages deep learning to obtain dense semantic reconstruction, appears as
an interesting direction to explore towards full (i.e. semantic + geometry) scene
understanding from monocular data.

2.2 Towards Robust 6D Pose Estimation: Physics-Based Reasoning
and Data Efficiency – Kostas Bekris

Towards the objective of robust 6 DoF pose estimation at an accuracy and
speed level that allows robots to manipulate objects in their surroundings, this
talk focused on warehouses tasks, such as picking from bins, packing and sort-
ing. Warehouses can be seen as a stepping stone between the success story of
robotics in manufacturing and the vision of deploying robots in everyday human
environments. Warehouses involve a large variety of objects, which can appear
in general, unpredictable configurations, as well as cluttered scenes and tight
spaces, such as shelving units, which limit the observability of on-board sensors
and introduce occlusions. They allow, however, access to known object models,
which frequently correspond to standard geometric shapes, due to packaging.

In these setups, it is critical for a robot to both utilize physics-based reason-
ing to achieve 3D scene-level understanding as well as minimize the dependence
of solutions to excessive human labeling, which negatively impacts scalability.
With these priorities in mind, the talk highlighted a pipeline for robust 6D pose
estimation, which includes the following four steps: (1) semantic object segmen-
tation given physically realistic synthetic data, (2) pose hypothesis generation
through robust point registration, (3) pose improvement via consideration of
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physical constraints at the scene level, and (4) lifelong self-learning through
active physical interaction with objects.

Recently, deep learning methods, such as those employing Convolutional Neu-
ral Networks (CNN’s), have become popular for object detection [37,38] and pose
estimation [27,48], outperforming alternatives in most benchmarks. These results
are typically obtained by training CNN’s using datasets with a large number of
labeled images. Such datasets, however, need to be collected in a way that cap-
tures the intricacies of the environment the robot is deployed in, such as lighting
conditions, occlusion and clutter. This motivates the development of synthetic
dataset that can capture the known parameters of the environment and generate
data accordingly, while avoid overfitting to the unknown parameters.

The first component of the proposed pipeline is to use a physics engine in the
synthetic dataset generation pipeline [33]. The physics engine defines environ-
mental constraints on object placement, which naturally capture in the training
set, the distribution of object poses that can realistically appear during testing.
Furthermore, a physics engine is a convenient tool to parameterize the unknown
scene features, such as illumination. A randomization over such parameters is
very effective in avoiding overfitting to synthetic textures of objects.

Given semantic object segmentation, the problem of estimating the 6D object
poses involves geometric reasoning regarding the position and orientation of the
detected objects. Solutions that became popular in the context of the Amazon
Picking Challenge (APC) [14], use a Convolutional Neural Network (CNN) for
object segmentation [21,51] followed by a 3D model alignment step using point
cloud registration techniques [6,31]. The quality of the pose estimate, however,
can still suffer due to over-reliance on the learned models.

The second insight of the talk is that CNN output can be seen as a probability
for an object to be visible at each pixel. These segmentation probabilities can
then be used during the registration process to achieve robust and fast pose
estimation. This requires sampling a base of points on a point cloud segment,
such that all points on the base belong to the target object with high probability.
The resulting approach, denoted as “Stochastic Congruent Sets” (StoCS) [32],
builds a probabilistic graphical model given the obtained soft segmentation and
information from the pre-processed geometric object models. The pre-processing
corresponds to building a global model descriptor that expresses oriented point
pair features [18]. This geometric modeling, not only biases the base samples to
lie within the object bound, but is also used to constrain the search for finding
the congruent sets, which provides a substantial computational benefit.

The third key observation of the talk is to treat individual-object predictions
with some level of uncertainty and perform a global, scene-level optimization
process that takes object interactions into account [34]. This information arises
from physical properties, such as respecting gravity and friction as well as the
requirement that objects do not penetrate one another. In particular, a Monte
Carlo Tree Search (MCTS) process utilizes local detections to achieve scene-level
optimization. It generates multiple candidate poses per object and then searches
over the cartesian product of these individual object pose candidates to find the
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optimal scene hypothesis. The scene is evaluated according to a score defined in
terms of similarity of the rendered hypothesized scenes against input data. The
search performs constrained local optimization via physics correction and ICP
[6]. Through this physical reasoning, the resulting pose estimates for the objects
are of improved accuracy and by default consistent.

Once the system has access to an object detector and a pose estimation
process, it can already be deployed for the desired task. Nevertheless, as the
system performs its task, it also gets access to data in the operation domain,
which it did not have access to during training. This data could be very useful
in further improving the performance of the system but they are not labelled.

The fourth aspect of the talk is a solution for automatically labeling real
images acquired from multiple viewpoints using a robotic manipulator [33]. A
robotic manipulator autonomously collects multi-view images of real scenes and
labels them automatically using the object detector trained with the above
physics-based simulation tool. The key insight is the fact that the robot can
often find a good viewing angle that allows the detector to accurately label the
object and estimate its pose. The object’s predicted pose is then used to label
images of the same scene taken from more difficult and occluded views. The
transformations between different views are known because they are obtained
by moving the robotic manipulator. Overall, the data can be added to the exist-
ing synthetic dataset to re-train the model for better performance as part of a
lifelong, self-learning procedure.

2.3 Detecting Geometric Primitives in 3D Data – Bertram Drost

Even though methods based on (deep) learning lead to major advances in many
areas of computer vision over the last years, the top-performing methods for 6D
object detection are still hand-crafted, classic methods. This is evident from the
recent results on the BOP benchmark (Sect. 3).

Methods that currently perform best on BOP are based on a voting scheme
that can be interpreted as a meet-in-the-middle between RANSAC and a gen-
eralized Hough transform. The base method [18] uses a local parametrization
for the object pose, where an oriented scene point (reference point) is fixed and
assumed to be on the target object. The remaining local parameters are then
the point on the model surface that corresponds to the reference point and the
rotation around the normal vector, which combined represent three degrees of
freedom. The optimal local parameters are recovered using a voting scheme. For
this, the reference point is paired with neighboring scene points, and similar
point pairs on the model are searched using an efficient hashing scheme. Each
such match then casts a vote. While the base method shows good results for 3D
shapes with a distintive geometry, it has weaknesses for shapes that are sym-
metric of strongly self-similar. This is mostly because point pairs on such shapes
are no longer very discriminative. The voting thus finds all symmetric poses
simultaneously, which is both slower and less robust.

The talk presented a way of adapting the base method for geometric primitive
shapes - spheres, planes, cylinders, and to some extend cones. First, the local
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parameter space was reduced by removing duplicate entries due to symmetries.
For example, since a sphere is identical no matter the corresponding point on its
surface or the rotation around the normal, the local parameter space becomes
zero-dimensional, i.e. a single counter. Additionally, the local parameters can be
extended by shape parameters such as the radius of a sphere or cylinder, or the
opening angle of a cone. Second, instead of using a hashing scheme for matching
point pairs between scene and model, an explicit point pair matching can be
used thanks to the explicit nature of the geometric primitives. Those changes
make the method both faster and more robust for such geometric primitives,
while also allowing the recovery of shape parameters.

2.4 Parameteric Estimation of 3D Surfaces and Correspondences –
Thibault Groueix

Pose of a rigid object has 6 degrees of freedom and is well defined. A broader
class of objects are non-rigid shapes such as articulated robots or humans. Articu-
lated robots have an additional degree of freedom for each joint. Those additional
intrinsic parameters also have to be estimated. In this case, it is easy to manu-
ally design a parametrization with N degrees of freedom, where each parameter
naturally encodes the angle of a joint. Humans are much harder to parameterize
and doing it manually is hard. We propose to learn the parameterization [19].

To that end, we want to map each shape S of category C, represented as a
point cloud, to a parameter space. A relevant prior on deformable shapes is the
ability to find a neutral template, already encoding lots of general information
on humans. To learn a parameterization, we use autoencoder neural networks.
The encoder is a PointNet [35] and the decoder is a Shape Deformation Net-
work [19] that deforms the template by iteratively transforming each point on the
template to a point in 3D. Given correspondence annotation between a training
example and the template, the L2 distance between the generated and the input
point clouds is penalized. Annotation of correspondences is expensive and can be
avoided through an unsupervised reconstruction loss, the chamfer distance, and
a proper regularization. The parameterization is a mapping from the parameter
space to the point cloud space, and is given by the learned decoder.

At test time, the parameters associated with this parametrization can be
estimated using the encoder. We propose to use this estimate as an initialization
for a local exploration of the parameter space through gradient descent. The
learned parametrization is evaluated on the task of 3D correspondences on the
FAUST dataset [7] and achieves state-of-the-art-results. It also displays strong
robustness to holes and noise in the data.

The method is not limited to humans, but applies to any category of shape for
which a template can be found. For broader category without natural templates
such as chairs, or general furniture, the template can be replaced by a set a square
patches [20]. The assumption is that any object can be reconstruct through
the deformation of a set of patches. The proposed parametrization, Atlasnet,
is learned on Shapenet and applied for the task of Single View Reconstruction,
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leading to state-of-the-art results. This confirms that learning a parametrization
can be the key to extending 6D pose estimation beyond rigid objects.

3 BOP: Benchmark for 6D Object Pose Estimation

The BOP benchmark considers the task of 6D pose estimation of a rigid object
from a single RGB-D input image, when the training data consists of a texture-
mapped 3D object model or images of the object in known 6D poses. The bench-
mark comprises of: (i) eight datasets [8,16,22,23,39,44] in a unified format that
cover different practical scenarios, including two new datasets focusing on vary-
ing lighting conditions, (ii) an evaluation methodology with a pose-error function
that deals with pose ambiguities, (iii) an evaluation of 15 diverse recent meth-
ods that captures the state of the art, and (iv) an online evaluation system at
bop.felk.cvut.cz that is open for continuous submission of new results.

The evaluation shows that methods based on point-pair features [18,47],
introduced in 2010, currently perform best. They outperform template match-
ing methods [26], learning-based methods [8,9,28,44] and methods based on 3D
local features [10,11]. Occlusion is a big challenge for current methods, as shown
by scores dropping swiftly already at low levels of occlusion. As another impor-
tant future research directions, our analysis identified robustness against object
symmetries and similarities, varying lighting conditions, and noisy depth images.

3.1 Future Plans

Various possible extensions of the BOP benchmark regarding datasets, prob-
lem statement and evaluation metrics were discussed at the workshop and are
summarized in the following paragraphs.

The benchmark was started with the simple task of 6D localization of a
single instance of a single object. This task allowed to evaluate most of the
recent methods out of the box and is a common denominator of the other 6D
localization variants – a single instance of multiple objects, multiple instances of
a single object, and multiple instances of multiple objects. The plan is to move
step by step and add the more complicated variants to the online evaluation
system in the near future, as well as the 6D detection task, where no prior
information about the object presence is provided [24]. Note that while it is easy
to extend the evaluation to other tasks, it is non-trivial to extend the methods.

The plan is also to keep adding new datasets, e.g. [17], and for every new
dataset to reserve a set of test images for which the ground-truth annotation will
be private. The datasets that are currently included in BOP are fully public.

Another topic of discussion were the pose-error functions. In the BOP bench-
mark, 6D pose estimates are evaluated using the Visible Surface Discrepancy
(VSD) which measures misalignment of the visible part of the object surface.
One limitation of the current version of VSD is that it does not consider color.
The same holds for the other pose-error functions commonly used in the liter-
ature [24]. While the alignment of color texture is less relevant for a number

http://bop.felk.cvut.cz
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of robotic applications, it may be important for augmented-reality applications.
The plan is to fix this limitation in a new version of VSD with an extended pixel-
wise test checking not only the distance of the object surface but also its color.
We are open to other feedback and discussion about the evaluation methodology.

4 Conclusions

This document summarized the 4th International Workshop on Recovering 6D
Object Pose which was organized at ECCV 2018 and featured four invited talks,
oral and poster presentations of accepted workshop papers, and an introduction
of the BOP benchmark for 6D object pose estimation.

An accurate, fast and robust method for 6D object pose estimation is still
in need, as is evident from the current scores on the BOP benchmark [25]. We
would like to encourage authors of relevant methods to keep submitting results
to the online evaluation system at bop.felk.cvut.cz. We will present snapshots
of the leaderboards at the next workshop editions, which are planned for the
upcoming major conferences.
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10. Buch, A.G., Petersen, H.G., Krüger, N.: Local shape feature fusion for improved
matching, pose estimation and 3D object recognition. SpringerPlus 5, 297 (2016)

11. Buch, A.G., Kiforenko, L., Kraft, D.: Rotational subgroup voting and pose clus-
tering for robust 3D object recognition. In: ICCV (2017)

12. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D
object detection for autonomous driving. In: CVPR (2016)

http://bop.felk.cvut.cz
https://labicvl.github.io/3DPose-2015.html
https://labicvl.github.io/R6D
http://cmp.felk.cvut.cz/sixd/workshop_2017/
http://cmp.felk.cvut.cz/sixd/workshop_2018/
http://cmp.felk.cvut.cz/sixd/challenge_2017/
https://doi.org/10.1007/978-3-319-10605-2_35


598 T. Hodaň et al.
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