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Abstract. In this paper, we propose a framework for reconstructing a
compact geometric model from point clouds of building interiors. Geo-
metric reconstruction of indoor scenes is especially challenging due to
clutter in the scene, such as furniture and cabinets. The clutter may
(partially) hide the structural components of the interior. The proposed
framework is able to cope with this clutter by using a hypothesizing and
selection strategy, in which candidate faces are firstly generated by inter-
secting the extracted planar primitives. Secondly, an optimal subset of
candidate faces is selected by optimizing a binary labeling problem. We
formulate the selection problem as a continuous quadratic optimization
problem, allowing us to incorporate a cost function specifically for indoor
scenes. The obtained polygonal surface is not only 2-manifold but also
oriented, meaning that the surface normals of each polygon are consis-
tently oriented towards the interior. All adjacent and coplanar faces that
were selected, are merged into a single face in order to obtain a final
geometric model that is as compact as possible. This compact model
of the room uses less memory and allows for faster processing when
used in virtual reality applications. The method of Nan et al. was used
as a starting point for our proposed framework. Finally, as opposed to
other state-of-the-art interior modeling approaches, the only input that
is required, is the point cloud itself. We do not rely on viewpoint infor-
mation, nor do we assume constrained input environments with a 2.5D
or, more restrictively, a Manhattan-world structure. To demonstrate the
practical applicability of our proposed method, we performed various
experiments on actual scan data of building interiors.

1 Introduction

As we live in a 3D world, performing most of our activities in indoor environ-
ments, indoor scenes are familiar and essential in everyone’s life. In the virtual
world, 3D models of indoor scenes are used everywhere from 3D games to interior
design. With the fast development of various augmented and virtual applications,
the demand for realistic 3D indoor models is growing rapidly. However, obtaining
such 3D models is quite difficult and challenging as opposed to outdoor scene
modeling. The amount of clutter in outdoor scenes hiding the geometry of a
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L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11129, pp. 459–472, 2019.
https://doi.org/10.1007/978-3-030-11009-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11009-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-11009-3_28


460 I. Coudron et al.

Fig. 1. Overview of the proposed pipeline. First the planar primitives are extracted
from the pointcloud (Subsect. 3.1). Then candidate faces are generated (Subsect. 3.2).
Finally an optimal subset of candidate faces is selected (Subsect. 3.3).

Fig. 2. Example of clutter inside a room.

building is rather low compared to indoor scenes. In indoor scenes, the clut-
ter ranges from planar surfaces such as closets and furniture to highly irregular
objects such as plants. Therefore, it is often not relevant to apply outdoor recon-
struction algorithms to indoor scenes [2]. Nonetheless, we were able to adapt an
outdoor reconstruction algorithm for the robust geometric modelling of indoor
scenes (Fig. 2).

In this work, we focus on the reconstruction of a single room. We assume
each room has been scanned separately. Therefore, when processing a complete
building, each room will be processed sequentially. Hence, the problem of room
segmentation is not considered here. Our goal is to reconstruct the basic geom-
etry of the room from a point cloud obtained from a 3D consumer camera. The
fact that we work with consumer cameras imposes a few extra challenges. First
of all, the quality of the point clouds obtained with these scanners is often rather
noisy. Secondly, the use of these consumer cameras may result in pose estima-
tion errors during tracking which produce ghost-like double walls. Hence, the
reconstruction algorithm must be robust enough to be able to cope with these
imperfections. Furthermore, the scans contain a lot of clutter such as tables,
doors etc. These surfaces should be ignored as well, as we are only interested in
the outer geometry of the room as if it was an empty room. To obtain a compact
geometric model, we approximate the room by as few piecewise planar surfaces
as possible. A more compact model of the room uses less memory and allows for
faster processing when used in virtual reality applications.

Our pipeline considers as input a 3D point cloud from a single room and
produces as output a lightweight watertight 2-manifold oriented mesh. It requires
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no further information such as viewpoints. An overview of the proposed pipeline
is shown in Fig. 1. Firstly, candidate faces are generated by intersecting the
extracted planar primitives. Secondly, an optimal subset of candidate faces is
selected. The selection of the optimal subset of candidate faces is in fact a binary
labeling problem, but we cast it as a continuous quadratic programming problem
in order to be able to incorporate an indoor specific cost function. The result
is a 2-manifold and oriented mesh that can compactly describe the outline of a
cluttered indoor scene even with slanted walls or sloped ceilings.

The remainder of this paper is organized as follows. In Sect. 2 we give an
overview of the current state-of-the-art in 3D interior reconstruction and geo-
metric modeling from point clouds. Next, in Sect. 3 we explain our proposed
pipeline. The results are discussed in Sect. 4. Finally, a conclusion and future
work is given in Sect. 5.

2 Related Work

Most of the research done on reconstructing building interiors from point clouds
follows a 2D approach. They either assume simple vertical walls [3,4,6] or, even
more stringent, a Manhattan world [5,7–9]. In either case, the final model is
produced by extruding a 2D floorplan with respect to the ceiling height. Some
of these methods are restricted to piecewise linear floorplans [5], while others are
able to capture rounded walls as well [7]. These assumptions limit the number
of real-world architectures that can be reconstructed significantly. Therefore,
more and more research is being done on interior reconstruction in 3D instead
of 2D. One of the most promising techniques, is the work of [2]. They first
determine whether the detected planar patches belong to permanent components
(e.g. walls, ceiling or floor) by reasoning on a graph-based scene representation.
Then the permanent components are used to build a 3D linear cell complex that
is partitioned into separate rooms through a multi-label energy minimization
formulation. However, this requires the prior knowledge of the scanning device
poses, which is not always available. Therefore, in our approach we do not want
to rely on this kind of prior knowledge.

In this paper, we want to create a geometric model of a scanned room. The
model must be simple while being powerful enough to explain the scanned point
cloud data. As interior rooms are mostly planar, we choose to fit a piecewise
planar model to the room. In literature, reconstructing piecewise planar models
from building exteriors is a well-studied problem [1,10,11]. However, methods
such as [11] do not result in a watertight mesh, which is in fact necessary for
correct shadow mapping in virtual reality. Furthermore, many of these meth-
ods ignore the problem of occlusions and missing regions due to clutter and
are therefore not suited for indoor scenes. However, classifying planar patches
as either clutter or structural components and simply removing them is not an
option. Sometimes the structural components are completely occluded by clut-
ter, so removing these planar patches would result in missing planes making it
impossible to reconstruct a closed surface. Therefore we choose not to remove
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the clutter and adapt the algorithm from [1] to better handle the clutter. The
main reason why this algorithm is not directly suited for indoor scenes, is that it
assumes that all points belong to a piecewise planar object. However, the indoor
scenes also contain clutter, which should be ignored as much as possible. Fur-
thermore, their hypothesis generator was not robust enough for indoor scenes.
In the next section we will explain how we adapted this algorithm.

3 Proposed Method

Our proposed method takes as input a point cloud of an entire room, including
furniture and other objects and outputs a piecewise planar model of the room.
As shown in Fig. 1, first the planar primitives are extracted from the pointcloud.
Then, candidate faces are generated. Finally, an optimal subset of candidate
faces is selected.

3.1 Plane Extraction

To detect planar primitives in the 3D point cloud, we use the standard RANSAC
based shape detection from [12]. As the computational cost of the algorithm is
relatively high for large point clouds, we first downsample the input cloud using
a voxelgrid filter at a resolution of 5 cm. The result from this RANSAC based
shape detection is a set of planar patches P = {pi}. Each patch pi consists of a
set of points which lie within a distance ε from the best fit plane through these
points.

One of the most common problems in indoor scene reconstruction from planar
patches is that some of the boundary walls are undetected due the presence of
clutter, door openings etc. Part of this problem can be alleviated by adding
the planes from the bounding box around the point cloud to the set of planar
patches. The bounding box planes are defined as the front, back, top, bottom
left and right side of the bounding box. If we cannot find a plane that is close
to the bounding box plane, the latter is added to the set of detected planes. By
adding these planes to the set, we can ensure that it is always possible to at
least generate a watertight mesh.

To check if a plane is close to a bounding box plane, we use the algorithm
proposed in [10]. First we compute the angles between the detected planes and
the bounding box planes. Then, starting from the plane with the smallest angle,
we test if two conditions are met. On the one hand, the angle between the planes
must be lower than some threshold θt. On the other hand, more than a specified
number of points nt must lie on the bounding box plane. If these two conditions
are met we identify the detected plane as the corresponding bounding box plane.
If not, we add the bounding box plane to the set. In our experiments we chose
θt = 10◦ and nt = 20%|pi| where |pi| denotes the number of inliers of the planar
patch pi.
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3.2 Candidate Face Generation

As explained by Nan et al., the hypothesis generator of [1] might introduce
degenerate faces due to the limit of floating point precision. A face is called
degenerate when one or more of its edges is no longer connected to an adjacent
face. This degeneracy usually makes the manifold and watertight constraints
impossible to be satisfied. When applying their hypothesis generator on our
indoor scenes it became apparent that this is indeed a problem. Therefore, we
implemented a new hypothesis generator that is able to cope with the limitations
of floating point precision and does not suffer from these degeneracies.

From the previous step, we were able to identify each of our bounding box
planes. These planes are used to build an initial polyhedron. As this polyhedron
is always convex, the subsequent slicing of the polyhedron with the detected
planes will again result in convex polyhedrons. To dynamically slice a convex
polyhedron, we make use of the Sutherland-Hodgman clipping routine [13]. This
routine is quite simple and very efficient. Furthermore, it can be extended to
account for numerical robustness (see Fig. 3).

The two adjustments that are required to make the algorithm numerically
robust are the following. First of all, the intersection point calculated from point
A to point B will be slightly different than the calculation from point B to point A
due to the limited precision of floating points. In order to avoid numerical issues
because of this, we have to compute the intersection in a consistent manner.
This is achieved by ordering the two points lexicographically: first x-coordinates
are compared, if they are equal, y-coordinates are compared. Secondly, another
source of numerical issues arises when checking if a point lies in front or behind
the plane. Therefore we slice the plane with so-called thick planes. When a vertex
of the polygon lies within a certain distance of the plane, it is as if the plane cut
the polygon at this vertex.

Fig. 3. Clipping a convex polygon by a plane.

To construct all candidate faces, we slice the polyhedron subsequently with
each of the detected planes. Each face of the polyhedron is cut by the plane
using the previously mentioned clipping routine. The result is a collection of faces



464 I. Coudron et al.

belonging to the polyhedron on the positive side of the cutting plane and a set of
faces belonging to the negative side. The cross section from this cut is added to
both the front and back polyhedron. Each of the polyhedrons that is constructed
as a result of this cut, will be subsequently cut by the next detected plane. In the
end, we obtain a collection of polyhedrons that represent the candidate faces.

As opposed to the hypothesis generator from [1], we also do no longer have
the problem of generating long and very thin candidate faces. By changing the
distance to determine if a vertex is on the plane, we can control how long the
smallest edge will minimally be. Furthermore, Finally, we do not create any
degenerate faces. A face is degenerate when it contains an edge that is not con-
nected to any other face. Selecting such a face can never lead to a manifold mesh
and is therefore considered redundant. Adding these faces to the optimization
problem, makes the problem size unnecessary larger.

A comparison between a set of candidate faces generated by the method
in [1] and ours is shown in Fig. 4. From left to right right this image shows
the input cloud, the candidate faces generated by [1], the reconstructed model
from their hypothesis, the candidate faces generated by our algorithm and the
reconstructed model from our hypothesis. As we can see in the first row of this
figure, the top and front plane were not detected by the RANSAC approach as
the number of inliers was too low. With our hypothesizing strategy we were able
to cope with these missing planes. As apposed to [1] we do not only rely on the
planes detected by RANSAC, but we start from a bounding volume which we
subsequently slice with the detected planes. Therefore an approximation of these
missing planes is added automatically to the candidate set. In Fig. 4(b) a circle is
drawn around a face that was incorrectly cut, resulting in a reconstructed model
that is not able to capture the actual geometry of the room.

3.3 Optimal Face Selection

Energy Terms. Each face fi is described by two variables xi and xir. The
subscript r stands for reverse, meaning that we either select the face in its counter
clockwise orientation (i.e. xi = 1) or its clockwise or reversed orientation (i.e.
xir = 1). If the face is not selected, both variables must be zero. Our objective
function consists of three energy terms: data selection, model complexity and
interior coverage.

First of all the data selection term evaluates how many of the points, that
belong to the planar patches, are selected:

Ed = − 1
|P |

N∑

i=1

(xi + xir) · inliers(fi), (1)

where P is the total number of inliers from the detected planar patches and
inliers(fi) is the number of inliers in face fi and N is the total number of faces
that was generated. This term favourizes selecting as many faces where we found
planar patches as possible. However, these planar patches also contain clutter
such as closets, tables, doors etc. The data fitting term will try to select the
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(a) Missing planes.

(b) Degenerate clipping.

Fig. 4. A comparison between the candidate face generated by [1] and our hypothesis
generator. From left to right right: the input cloud, the candidate faces generated by
[1], the reconstructed model from their hypothesis, the candidate faces generated by
our algorithm and the reconstructed model from our hypothesis.

faces containing these objects as well. Therefore, we need to define some other
energy terms to counterbalance this effect.

The second energy term we define, is a measure for the complexity of the
resulting model. Selecting faces corresponding to clutter often results in gaps or
protrusions. Therefore, we define the complexity of the model as the number of
boundary edges that were selected. An edge is a boundary edge if the two faces
adjacent to this edge do not lie on the same plane. The less boundary edges are
selected, the simpler the model will be. Hence, this term discourages selecting
the faces corresponding to clutter as that introduces more boundary edges. The
complexity term can be written as follows:

Ec =
1

|E|
N∑

i=1

N∑

j=1,i �=j

(xi + xir)(xj + xjr) · corner(fi, fj), (2)

where E is the total number of edges and corner(fi, fj) indicates whether the
edge formed by the faces fi and fj is a boundary edge (i.e. corner(fi, fj) = 1)
or not. However, in indoor scenes this is not sufficient because the clutter often
occludes the actual room structure. As a result, the faces corresponding to the
underlying structure do not contain any inliers while the clutter does. And so
the first energy term will still dominate.
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We define a third energy term, namely the interior coverage, that tries to
compensate for the fact that the clutter results in missing data. In indoor scenes,
we want as many points on the inside of the obtained model. So the uncovered
regions (i.e. regions with more points on the outside than on the inside) should
be as low as possible. To measure the coverage of a face fi we first project all
the points that lie in front onto fi. Hence for xi we project the points on the
positive side of the supporting plane onto fi and for xir we project the points on
the negative side onto fi. Then, we calculate the 2D alpha shape [14] from the
projected points. The alpha shape creates a bounding area that envelops the set
of projected 2D points. By changing the alpha parameter, you can manipulate
the alpha shape object to tighten or loosen the fit around the points to create a
non convex region. The alpha shape provides a good measure for the coverage of
the candidate face by the projected points. So even if a face fi from a structural
component has no inliers due to occlusion, there will be a lot of points in front
of it. Therefore, it can still provide a high coverage and gets a higher chance at
being selected as well.

Ei = − 1
|area(M)|

N∑

i=1

xi · (area(fi) − areaP (fi))

+xir · (area(fi) − areaN (fi)), (3)

where area(M), area(fi), areaP (fi) and areaN (fi) denote the surface areas of
the bounding box, a candidate face fi, and the area of the alphashape mesh
constructed from the points on the positive or negative side of fi respectively.

Optimization. By minimizing a weighted sum of the above mentioned energy
terms, we can find the optimal subset of candidate faces. Remember that for
the selection of each face fi we defined two variables xi and xir. They indicate
in which orientation the face is selected. As we can select only one orientation,
these variables are mutually exclusive. The mutual exclusion can be enforced by
adding an extra term to the objective function, namely xixir. This term drives
the solution towards either one or both variables of being zero. The objective
function is thereby formulated as follows:

E = λd · Ed + λc · Ec + λi · Ei +
N∑

i=1

xixir

with 0 � xi, xir � 1 (4)

By defining two variables per face, we can ensure that the reconstructed
model will have a consistent orientation. The orientation of two adjacent faces
is consistent if the two vertices of the common edge are in the opposite direction
(see Fig. 5). Note that the vertices of each edge are lexicographically ordered.
So for each face fi, adjacent to an edge ej , we can determine its direction with
respect to this edge. For this, we define a function sign(xi, ej) and sign(xir, ej)
as follows:
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sign(xi, ej) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ej and corresponding edge in xj

have the same direction
−1 if ej and corresponding edge in xj

have opposite directions

(5)

sign(xir, ej) = −sign(xi, ej) (6)

Fig. 5. Consistent ordering of the faces among an edge.

To ensure each edge will have consistently oriented faces, we define the fol-
lowing constraint:

∀ej :
∑

fi∈N (ej)

sign(xi, ej) · xi + sign(xir, ej) · xir = 0, (7)

This constraint implies that when a face is selected with the edge in one direction,
another face should be selected with the edge in the opposite direction.

To guarantee that the reconstructed model is 2-manifold either two or no
faces must be selected. Therefore we define an additional constraint for each
edge:

∀ej :
∑

fi∈N (ej)

xi + xir � 2 (8)

Thus the final optimization problem for selecting the best subset of candidate
faces can be formulated as follows:

min
xi,xir

λd · Ed + λc · Ec + λi · Ei +
N∑

i=1

xixir (9)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∑
fi∈N (ej)

sign(xi, ej) · xi+
sign(xir, ej) · xir = 0∑

fi∈N (ej)
xi + xir � 2

0 � xi, xir � 1

(10)

To obtain the final selection of candidate faces, we round the variables xi and
xir to the nearest integer. This is necessary because we are solving a continuous
relaxation of the binary labeling problem. Therefore, the outcome will be close to
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0 or 1 but not exactly. Each face for which either xi and xir is 1 will be selected.
The union of the selected faces comprises the final polygonal reconstruction.

Our method distinguishes from [1] in two aspects. Firstly, we implemented
a hypothesis generator that is more robust for indoor scenes as explained the
previous subsection. Secondly, our energy terms are able to better handle the
missing or erroneous data as a result of occlusions and clutter in indoor scenes.
A comparison between a reconstructed model obtained using the optimization
problem of [1] and ours is shown in Fig. 6. As we can see despite the heavy
clutter, our method is still able to detect the outer geometry of the room.

Fig. 6. Comparison between the optimization problem as defined in [1] and ours. From
left to right: the cluttered indoor scene, the extracted planar primitives, the model
reconstructed by [1], the model reconstructed by our method

4 Results

Our algorithm is implemented in C++ using the free Edition of the ALGLIB
library for solving the quadratic optimization problem. To detect the planar
primitives and construct the alpha shape meshes, we used the CGAL library
[14]. We tested our pipeline on a set of 4 different real-world datasets from
building interiors. All test were performed on a DELL XPS with an Intel Core
i7 (1.8 GHz), 8 GB DDR3 RAM. Processing times for all models are given in
Table 1 and vary from about 30 s to about 5 min for the complete pipeline. Note
that our algorithm uses the free edition of ALGLIB and therefore runs on a
single core. The planar primitive extraction is obtained using the RANSAC
implementation in CGAL. For this we used the default parameter settings. The
energy minimization depends on the weights λd, λc and λi that we fixed to 0.2,
0.3 and 0.3 respectively, which was determined empirically.

Table 1. Information on the environment (no. rooms) and overall processing time.

Dataset #rooms Processing time

House1 15 27 s

House2 17 313 s

Appartment1 12 38 s

House3 12 186 s
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In Fig. 9 we show the output of our algorithm on 3 different datasets. The
experiments show the advantages of our method. We were able to reconstruct
the outer geometry of the rooms despite the clutter and missing or erroneous
data. For example, if we take a closer look at the dining room from Appartment1
(see Fig. 7), we can see that the point cloud suffers from an extreme case of what
we call a ghost-like double wall. Despite the erroneous data our method is able
to correctly estimate the actual geometry of the room.

Fig. 7. A closeup from the dining room of Appartment1. The reconstructed model is
shown in green. Despite the erroneous data the method is able to correctly estimate
the geometry of the room. (Color figure online)

Fig. 8. A closeup from the bedroom on the second floor of House1. Due to a planar
patch that was not detected, our method fails to reconstruct the correct geometry.

However, our method also has its limitations. We rely on the detection of
planar patches from the structural components of the room to reconstruct its
outer geometry. As we cannot guarantee that all planar surfaces are correctly
extracted, our method will fail to correctly reconstruct the geometry in such
cases as can be seen in Fig. 8. In this point cloud, the points that were not
assigned to any planar patch are marked yellow. As we can see, there was no
planar patch detected near the door of the bedroom. Therefore, our method was
not able to correctly reconstruct the outer geometry of the room.
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Fig. 9. Our method applied on different real life datasets: House1, House2 and Appart-
ment1 respectively. From top to bottom: the cluttered indoor scenes, the model recon-
structed by our method

In Fig. 10 we show a direct comparison between our method and the method
from [1]. While their method is able to reconstruct most of the rooms, our method
better describes the actual outer geometry. For example, in the close up from
the living room, we can see that the method from Nan et al. Tries to overfit the
clutter. The same problem was seen in the kitchen. Furthermore, some of the
rooms were only constructed partially or not at all as a result of their non-robust
hypothesis generator.

Fig. 10. Comparison between the results produced by our method and [1] on House4.
From left to right: the cluttered indoor scenes, the model reconstructed by our method,
the model reconstructed by [1]
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5 Conclusion and Future Work

In this paper, we proposed a framework for reconstructing a lightweight polygo-
nal surface of building interiors from cluttered point clouds. The method uses a
hypothesis and selection strategy, in which candidate faces are firstly generated
by intersecting the extracted planar primitives. Secondly, an optimal subset of
candidate faces is selected by optimizing a binary linear programming problem.
In this paper, we adapted the pipeline from [1] to make it more suitable for
indoor scenes. As a first step, we implemented a hypothesis generator that is
more numerically robust. Secondly, we reformulated the selection problem as
a continuous quadratic optimization problem. The reformulation allowed us to
incorporate a different cost function relevant for indoor scenes. Furthermore, the
obtained polygonal surface is not only 2-manifold but also oriented, meaning that
the surface normal of each polygon is consistently oriented towards the interior.
This is especially interesting for rendering, where the shading depends on the
correct orientation of the normals. Finally, as opposed to other state-of-the-art
interior modeling approaches, the only input that is required, is the point cloud
itself. We do not rely on viewpoint information, nor do we assume constrained
input environments with a 2.5D or, more restrictively, a Manhattan-world struc-
ture.

The main limitation of our approach is that some planar surfaces that define
the outer geometry of the room might still be undetected. In future work, we
would like to explore the possibility to make the detection of planar surfaces
more robust. Since the scenes were captured using an RGBD sensor, we can use
the RGB images to detect lines as well. Next we can apply a RANSAC based
method to detect planar surfaces from these line segments. The is especially
suited for the missing planes due to windows or door openings which result in
missing data in the depth images. To be able to better compare the results of the
different reconstructions quantitavely, we will define a new metric based on the
Intersection over Union. For the groundtruth mesh as well as the reconstructed
mesh, we can create an occupancy grid in which each voxel is 1 if it is inside
the mesh or 0 when it is on the outside. The Intersection over Union of both
occupancy grids provides a good measure of the similarity of the reconstruction.
If the reconstructed mesh is the same as the groundtruth mesh, the IoU will
be 1.
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