
RGB-D SLAM Based Incremental Cuboid
Modeling

Masashi Mishima1(B), Hideaki Uchiyama1, Diego Thomas1,
Rin-ichiro Taniguchi1, Rafael Roberto2, João Paulo Lima2,3,

and Veronica Teichrieb2

1 Kyushu University, Fukuoka, Japan
{mishima,uchiyama,thomas}@limu.ait.kyushu-u.ac.jp

rin@kyudai.jp
2 Universidade Federal de Pernambuco, Recife, Brazil

{rar3,jpsml,vt}@cin.ufpe.br
3 Universidade Federal Rural de Pernambuco, Recife, Brazil

http://limu.ait.kyushu-u.ac.jp/

Abstract. This paper present a framework for incremental 3D cuboid
modeling combined with RGB-D SLAM. While performing RGB-D
SLAM, planes are incrementally reconstructed from point clouds. Then,
cuboids are detected in the planes by analyzing the positional rela-
tionships between the planes; orthogonality, convexity, and proximity.
Finally, the position, pose and size of a cuboid are determined by com-
puting the intersection of three perpendicular planes. In addition, the
cuboid shapes are incrementally updated to suppress false detections
with sequential measurements. As an application of our framework, an
augmented reality based interactive cuboid modeling system is intro-
duced. In the evaluation at a cluttered environment, the precision and
recall of the cuboid detection are improved with our framework owing to
stable plane detection, compared with a batch based method.

Keywords: Geometric shape · Cuboid ·
Incrementally structural modeling · Point cloud

1 Introduction

Owing to the advance of visual odometry and simultaneous localization and
mapping (SLAM), the automated control of cars, drones and robots has been
achieved by generating a point cloud based map. Although the localization can
be performed by using the map, the map does not represent semantics in the envi-
ronment. For 3D scene understanding, it is important to convert a point cloud
into an object-level representation. Planes, cylinders and spheres are examples
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-11009-3 25) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2019
L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11129, pp. 414–429, 2019.
https://doi.org/10.1007/978-3-030-11009-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11009-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-11009-3_25
https://doi.org/10.1007/978-3-030-11009-3_25
https://doi.org/10.1007/978-3-030-11009-3_25


RGB-D SLAM Based Incremental Cuboid Modeling 415

of a parametric object representation. The recognition of such primitive shapes
is an important process for obstacle avoidance and object grasping [21].

A cuboid is also considered as an informative shape representation because
there exist many cuboids in our environment. For instance, delivery boxes used
in logistics and product packages in markets can be represented by cuboids. To
achieve automated robot manipulation in such environments, the techniques to
recognize cuboid objects are often required. In the literature, the cuboid detec-
tion has been performed by using an RGB image [1,6–8,26] or a point cloud
generated with an RGB-D image or LIDAR [5,9,10,13,16,18–20]. Generally,
these methods are based on an off-line batch processing such that the recogni-
tion is performed only with a single observation. Because of noisy observations,
they often suffer from both false positives and false negatives. To suppress the
false detections, an on-line sequential approach is investigated in our framework
because it can incorporate multiple observations with temporal filtering.

In this paper, we propose a framework for incremental cuboid modeling
combined with RGB-D SLAM. At every frame, planes are incrementally recon-
structed from points clouds acquired from an RGB-D SLAM based approach [17],
and used as input to our framework. Then, the planes are clustered to compose
a cuboid by analyzing three plane positional relationships; orthogonality, con-
vexity, and proximity. To accurately reconstruct a cuboid, a cluster of three
perpendicular planes is first selected, and their intersection is computed [4]. By
determining three perpendicular cuboid edges from both the intersection and
the normal vectors of each face, the width, height and depth are finally com-
puted. Since the plane parameters are incrementally updated [17], the positional
relationships are analyzed in every frame not only for newly-detected planes but
also for previously-detected cuboids. False detections can be suppressed with this
sequential processing such that a falsely-detected cuboid face can be replaced
with a correct one. Also, a new cuboid face can be assigned to a previously-
detected cuboid as a forth one. As another advantage of our incremental app-
roach, we introduce an interactive cuboid modeling system to assist users to
reconstruct cuboids with augmented reality (AR) based affordance. In the eval-
uation, the accuracy of our framework was quantitatively evaluated by using
some boxes with their ground truth sizes. Also, the comparison between a batch
based method and our incremental one was investigated to show the effectiveness
of our incremental approach at a cluttered environment. Finally, the computa-
tional cost was investigated to show that our framework can run in real time
at a room-scale environment. The contributions of our paper are summarized as
follows.

– A cuboid reconstruction is performed by searching three perpendicular planes
and computing the intersection of the planes.

– A framework for incremental cuboid modeling based on cuboid detection and
mapping is proposed.

– An application for AR based interactive cuboid modeling is presented.



416 M. Mishima et al.

2 Related Work

The cuboid detection has been investigated in semantic 3D scene understanding.
In this section, we review the literature from the aspects of devices used for the
detection.

Recognizing cuboids from a single RGB image has been proposed [1,3,6–
8,26]. Hedau et al. reconstructed a cuboid based room layout by using vanishing
points [6,7]. First, wall, ceiling and furniture contours were extracted from an
input image, and then vanishing points were estimated from orthogonal three
straight lines. Finally, a bounding box was aligned to a rectangular area to rec-
ognize a cuboid object. Del et al. proposed to use the Manhattan world property
such that many surfaces in a room were parallel to three principle ones [1].
This assumption is valid only when cuboids are placed on a floor and parallel
to walls. Xiao et al. proposed to first detect vertices on a cuboid based on his-
tograms of oriented gradients, and then detect a cuboid by finding connected
edges [26]. Hejrati and Ramanan investigated the performance of several feature
representations for categorizing cuboid objects [8]. Dwibedi et al. proposed a
deep learning based region proposal method for the cuboid detection [3]. Basi-
cally, the cuboid detection using a RGB image is an ill-posed problem, and the
accuracy is largely degraded under occlusions.

A point cloud acquired from RGB-D images or LIDAR has also been used
for the cuboid detection [5,9,10,13,15,16,18–20]. Shape descriptors for arbitrary
3D objects were proposed for object classification including cuboids [18–20]. For
indoor environments, the prior knowledge of a room layout was incorporated to
globally optimize the object arrangement including cuboids in the room [13,19].
To detect buildings as cuboids, a closed polyhedral model is searched from planes
detected in a point cloud [15]. An optimization based approach was proposed
by designing a cost function with surfaces, volumes and their layout to detect
cuboids in an RGB-D image [5,9,10]. Compared with the approach using a RGB
image, the one using a point cloud can provide the size and pose of a cuboid
in a scene. However, it still suffers from the false detections in the presence of
sensor noises and registration error. To improve the stability and accuracy of
the cuboid detection, we propose an incremental approach by fusing multiple
measurements captured from different viewpoints without using any constraint
on the object arrangement.

3 Overview

We start by explaining the main steps of our algorithm. First, a plane map, which
is composed of oriented planes, is incrementally generated from point clouds,
and used as input to our framework. This reconstruction process is based on
an existing method [17] that applies a shape detection method [22] to incoming
point clouds acquired from RGB-D SLAM [12]. This method can incrementally
reconstruct accurate parametric shapes including planes, and largely contribute
to our stable cuboid modeling.



RGB-D SLAM Based Incremental Cuboid Modeling 417

From the plane map, a cuboid map, which is composed of cuboids with posi-
tions, poses, and sizes, is generated. As described in Sect. 4, cuboid faces are
detected among a group of planes by cuboid check based on analyzing plane
positional relationships. A cuboid is a convex polyhedron comprising six quadri-
lateral faces. Also, the adjacent faces of a cuboid are perpendicularly connected.
By analyzing these relationships, cuboids can be detected. The procedure of the
cuboid detection is illustrated in Fig. 1. First, the orthogonality of all the pairs
of two planes in the plane map is investigated by brute force searching. Next, a
pair of two perpendicular planes is selected to search their third plane by using
the cross product of the two plane normals. Finally, the proximity between the
planes is checked. When a set of these three planes passes the cuboid check, the
planes are classified as composing a cuboid. By computing the intersection of
the planes, the position, pose, and size of a cuboid are determined.

To generate an accurate cuboid map, an incremental reconstruction process
is proposed, as described in Sect. 5. At every frame, the status of the planes in
the plane map is classified into planes assigned to cuboids and unassigned ones,
as illustrated in Fig. 2. The cuboid check is performed for the cuboids in the
cuboid map to check the positional relationships of the cuboid faces in every
frame because their parameters are incrementally updated [17], This process is
specifically referred to as cuboid update. For the unassigned planes, the cuboid
check with the cuboid faces in the cuboid map is first performed so that the faces
in the cuboid map can be replaced with new planes or an undetected cuboid
face such as a fourth plane can be assigned to a cuboid in the cuboid map.
Then, the cuboid detection is performed for the remaining unassigned planes.
This incremental process allows users to make modeling succeed with AR based
affordance.

2nd plane selection

3rd plane selection

Oriented planes

Cuboid

Cuboid parameter 
computation

Fig. 1. Cuboid detection. From oriented planes, two planes are first selected as a plane
pair by checking their positional relationships. Then, the third plane perpendicular to
the pair is searched by using the cross product of the two plane normals. Finally, the
cuboid shape parameters are computed from these three planes.



418 M. Mishima et al.

Unassigned planes

Cuboid check 
with cuboid map

Cuboid detection

Updated cuboid map

No

Yes

Assigned planes

Cuboid update

Fig. 2. Cuboid mapping. The status of the planes in the plane map is classified into
planes assigned to cuboids or not. For the assigned planes, the cuboid check is per-
formed for the cuboids in the map in every frame, as cuboid update. For the unassigned
planes, the cuboid check with the cuboids in the map is first performed, and then the
cuboid detection is performed if necessary.

4 Cuboid Detection

Next, we explain the detail of detecting a cuboid from planes. The first process
is to select two perpendicular planes by analyzing the positional relationships.
The second process is to search the third plane by using the cross product of
the two plane normals. After three perpendicular faces are determined, cuboid
shape parameters are also determined by computing the intersection of the three
planes.

4.1 Second Plane Selection

In this process, sets of two planes composing a cuboid are searched in a brute
force manner. An i-th plane in the plane map is parameterized with the center
of mass pi and the normal vector ni [17]. First, the inner products between a
target plane and all of the other planes are computed, as orthogonality check. A
plane is selected if the angle computed from the inner product is perpendicular
with an error tolerance (e.g. 5◦). However, the orthogonality is not sufficient for
the cuboid detection because there are two possibilities of the positional rela-
tionship between two planes; concave and convex. Also, a plane can be selected
even if it is far from the target plane and does not compose a cuboid in the
environment. Therefore, in the latter processes, these criteria are considered to
select an appropriate plane.

For the plane selected by the orthogonality check, the convexity with the
target plane is analyzed by using [25], as convexity check. If the relationship
between two planes is concave, they do not compose a cuboid because we assume
that only outer cuboid faces are captured. Since each plane has the center of mass
and the normal vector, the convexity can be computed from them. In Fig. 3, n1

and n2 are the normal vectors, and p1 and p2 are the centers, and α1 and α2

are the angles between a vector p1 − p2 and each normal vector n1 and n2,



RGB-D SLAM Based Incremental Cuboid Modeling 419

respectively. When α1 is smaller than α2, the relationship between two planes
is convex. Otherwise, the relationship is concave. Therefore, a plane is selected
when it satisfies this convex condition: α1 < α2.

After performing both orthogonality and convexity checks, there may be mul-
tiple candidates for the second plane of a cuboid. In this case, the plane closest
to the target plane is finally selected. The distance between each candidate and
the target plane is computed by using the center of mass, as proximity check.
All of these checks between two planes are referred to as cuboid check.

Fig. 3. Convexity check. The convexity is analyzed by using the centers of mass and
the normal vectors [25].

4.2 Third Plane Selection

From the two perpendicular planes, it is possible to infer a cuboid by using
the bounding box for both planes. However, the inference may be incorrect
because 3D edge regions of a cuboid cannot normally be degraded in depth
images. To accurately reconstruct a cuboid, three perpendicular planes are used
to determine cuboid shape parameters.

First, the normalized normal vectors for all of the planes in the plane map
are indexed by using a kd-tree, as a plane normal space for fast approximated
nearest neighbor searching. Then, the cross product of the two perpendicular
planes is computed, and is used as a query to the kd-tree to search the third
plane of a cuboid. In other words, planes orthogonal to both of the two planes are
searched in the space. By using the radius search in the kd-tree with a threshold
(e.g. 0.1 for L2 norm between two vectors), the candidates for the third plane
are retrieved. Then, the convexity with each of the two planes is checked for each
candidate. Finally, the third plane is selected from the candidates according to
the proximity check.

4.3 Cuboid Parameter Estimation

To reconstruct an accurate cuboid shape, the shape parameters are computed
from the three perpendicular planes. In our framework, the parameters are the



420 M. Mishima et al.

origin vertex position, three edge directions from the origin, and their lengths.
In Fig. 4, πi is an ith plane, ni is the normal vector of πi, and pi is the center
of mass, and po is the intersection of the three perpendicular planes. First, po

is computed by using [4] as follows.

po =
(p1 · n1)(n2 × n3)

(n1 × n2) · n3
+

(p2 · n2)(n3 × n1)
(n1 × n2) · n3

+
(p3 · n3)(n1 × n2)

(n1 × n2) · n3
(1)

The intersection can be used as the origin of a cuboid to describe the shape
parameters. After determining the intersection, the edge directions from the
intersection can automatically be determined because they correspond to the
plane normal vectors.

To determine the size of a cuboid, the length of each edge is computed by
projecting the points on a plane onto the edge as

length = max
i

{(xi − po) · n} (2)

where n is the normalized edge direction vector, and xi is an ith point in the
plane. This equation represents that the points on the plane sharing the edge
are projected onto the edge, and the furthest point from the intersection on the
edge is selected to compute the length. Since each edge is shared by two planes,
the average of two lengths is used as a final result. It should be noted that the
plane numbers i can be arbitrary determined for the three perpendicular planes.

Fig. 4. Cuboid parameter estimation. The intersection of three perpendicular planes
is first computed by using the centers of mass and the plane normal vectors. Edges of
a cuboid are then determined by using the plane normal vectors. The width, height
and depth are finally computed from the point projection from a plane to an edge.

5 Cuboid Mapping

In the plane map, the status of planes can be divided into two categories; planes
assigned to one of the cuboids in the cuboid map, and the rest. The first category
is referred to as assigned planes, and the other is unassigned planes. When a new
plane appears in the plane map, it is first considered as an unassigned plane.
As illustrated in Fig. 2, the process for each plane is different according to the
status. In this section, we explain the detail of the cuboid mapping.



RGB-D SLAM Based Incremental Cuboid Modeling 421

5.1 Cuboid Update

To reduce the false detections, the cuboid check is performed for the cuboid
faces in the cuboid map. While capturing only a part of a plane, a cuboid may
be wrongly detected as a false positive or a false negative at a time due to the
incomplete measurement. Therefore, in every frame, the cuboid check is applied
to the cuboids in the map, and cuboid shapes are updated such that some cuboids
disappear or others are refined.

This cuboid update is useful for the visual feedback to users. Normally, users
do not understand the best way to capture a scene and when to finish capturing
it. By using an incremental approach, false positives and false negatives are visu-
alized in an on-line manner. This helps users to complete the modeling because
they can understand the progress.

As an alternative approach, it is possible to apply a batch based method to a
point cloud in every frame. However, the computational cost at a frame increases
according to the size of the point cloud. Also, it is redundant to search cuboids
in the map in every frame because the detection result at a frame can be useful
at the next frame. In terms of the computational efficiency, the incremental
approach is appropriate for on-line systems.

5.2 Cuboid Check with Cuboid Map

The unassigned planes in the plain map contain both newly-detected planes and
previously-detected planes that are not assigned to the cuboids. For those planes,
the cuboid check with respect to all the cuboids in the map is first performed.
A cuboid face in the map can be replaced with an unassigned plane when an
unassigned plane passes the cuboid check, its normal vector is the same as the
cuboid face one, and it is more proximate than the cuboid face. Also, the plane
is assigned to the cuboid if it passes the cuboid check, and it corresponds to a
missing face in the cuboid. After this process, the cuboid shape parameters are
updated.

For the remaining unassigned planes, the cuboid detection is performed, as
described in Sect. 4. After a set of three perpendicular planes is detected, a new
cuboid is generated and inserted into the cuboid map.

6 Interactive Cuboid Modeling

Since 3D modeling using a camera is not an easy task for non-experts, interactive
techniques have been proposed [24]. For instance, the result of the 3D modeling
can be easily modified on user interfaces [23,27]. Also, the incompleteness of the
modeling is visualized by showing a 2D slide of a point cloud for modeling a
room [2] or showing an example for modeling an object [11]. Here, we introduce
a simple but effective affordance for modeling a cuboid.

As illustrated in Fig. 5, the points on planes are overlaid with some colors.
Blue regions and yellow ones represent detected cuboids as completed ones and



422 M. Mishima et al.

two perpendicular planes as incomplete ones, respectively. In other words, the
color represents the modeling progress. To model a cuboid, the user’s task is to
find yellow regions and then capture the remaining plane where colored points
are not overlaid, as illustrated in Fig. 5a. This corresponds to the instruction
for the users. Since the users are induced to capture the remaining plane from
the visualization, this interaction can be regarded as AR based affordance. After
the user successfully captures the cuboid, the color of the cuboid becomes blue,
as illustrated in Fig. 5b. Owing to the incremental approach, it is possible to
develop this type of interactive modeling systems.

Fig. 5. Interactive cuboid modeling. Yellow regions and blue ones represent incom-
plete and completed, respectively. A box is represented by yellow in (a), and the color
becomes blue in (b) after the user completely captures it. (Color figure online)

7 Evaluation

To evaluate the performance of our proposed framework, we first prepared RGB-
D image sequences capturing multiple boxes as our dataset because only a
dataset for single views was developed in the literature [26] and there is no
dataset with RGB-D sequences containing cuboid ground truth annotations.
For the camera, a Kinect V1 sensor was used, and therefore the boxes were set
up in the indoor environments. The size of each box was measured by a ruler as
a ground truth.

For the evaluation criterion, the accuracy of each estimated cuboid shape was
investigated by comparing the result with its ground truth. To investigate the
effectiveness of our proposed method, a batch based cuboid detection in a point
cloud was implemented as a benchmarking method, and its result was compared
with our result. Finally, the computational cost of each process was measured.

7.1 Cuboid Shape Estimation

As illustrated in Fig. 6, three scenes were designed such that four cuboids with
different sizes were arranged on a table and also other objects were placed as



RGB-D SLAM Based Incremental Cuboid Modeling 423

obstacles. In the Scene 1, the cuboids were rotated to face to the same direction.
In the Scene 2, the cuboids were rotated not to face to the same direction except
for the top face. In the Scene 3, two cuboids were inclined onto a cuboid. In
all the scene, one cuboid was placed far from the table. In Fig. 6, the first col-
umn represents an example image of each scene, the second one does the shape
map [17] drawn with different colors per cuboid, and the third one does our
cuboid map. At each scene, an RGB-D image sequence was freely captured from
one side of the table by moving around the table.

In this experiment, all of the cuboids were successfully detected regardless of
the cuboid arrangements with some occlusions, and their shape parameters were
also computed. The estimated size of each cuboid at each scene was described
in Table 1. The error of cuboid 2 was larger than others because this cuboid was
located at the furthest position from the table. This results from the accuracy
degradation of depth images. Also, the shape of cuboid 2 was not completely
measured because an obstacle hid the cuboid 2. In this case, the accuracy was
largely decreased. For other cuboids, the error variance was relatively small.

Table 1. Estimated cuboid lengths (cm)

Cuboid 1 Depth Width Height Cuboid 2 Depth Width Height

Ground truth 16.0 22.5 10.5 Ground truth 46.6 49.8 41.0

Scene1 16.8 23.5 9.8 Scene1 46.9 50.3 34.1

Scene2 16.8 23.1 9.6 Scene2 40.9 50.7 36.5

Scene3 16.3 24.6 9.8 Scene3 39.8 47.1 31.2

Cuboid 3 Depth Width Height Cuboid 4 Depth Width Height

Ground truth 9.8 9.8 19.7 Ground truth 7.9 16.0 21.8

Scene1 10.3 10.7 19.2 Scene1 7.0 17.2 21.3

Scene2 10.7 11.4 19.4 Scene2 7.4 19.4 21.9

Scene3 9.9 10.5 19.3 Scene3 7.2 16.7 21.2

7.2 Cuboid Detection at a Cluttered Environment

To show the effectiveness of our incremental approach, a batch based approach
was implemented as follow. A RGB-D SLAM system [12] was applied to an
RGB-D image sequence to generate a full point cloud in a scene. Next, a shape
detection method [22] was applied to the point cloud to detect planes in the
scene. Since each plane normal vector cannot be uniquely determined, two planes
having opposite normal vectors were generated from one plane. Then, the cuboid
detection in Sect. 4 was applied to all the oriented planes to detect cuboids.

For this experiment, a challenging scene was designed, as illustrated in Fig. 7.
In this scene, 19 cuboids were randomly arranged, and many other objects were



424 M. Mishima et al.

Fig. 6. Cuboid shape estimation at various scenes. Three datasets were designed to
investigate the accuracy of estimated cuboid shapes according to the arrangement.
The first, the second, and their columns represent a scene, its shape map [17], and its
cuboid map, respectively. The size of each cuboid was measured by a ruler as ground
truth. (Color figure online)

also placed as a cluttered environment. The scene was captured by freely moving
around the scene. It should be noted that our visual guidance system was not
used to capture the dataset.

The performance of the method was evaluated in terms of precision and recall
based on false positives, false negatives and true positives, as described in Table 2.
Also, the results of cuboid maps were illustrated in Fig. 7. In the batch based
approach, there were more false positives and false negatives, compared with our
approach. Since the point cloud from RGB-D SLAM was noisy due to registration
error, several false positive and false negative planes were detected. Also, the
ambiguity of plane normals caused the wrong clustering of three perpendicular
planes. In our approach, cuboids were correctly detected because most of the
planes were accurately modeled by avoiding the influence of error accumulation
in ICP based D-SLAM [17]. However, the false negatives still occurred in our
approach due to the incomplete measurement of the cuboids. Therefore, our AR
based guidance system is helpful to complete the modeling.



RGB-D SLAM Based Incremental Cuboid Modeling 425

Fig. 7. Comparison between a batch based approach with our incremental one. For (a)
a scene reconstructed by [12], we applied a batch based cuboid detection to the scene,
and had (b) the result. Compared to (c) our result, there were many false positives and
false negatives because of noisy point cloud reconstruction. The detail of the accuracy
is presented in Table 2.

Table 2. Performance of cuboid detection

Batch Ours

Precision 0.64 0.92

Recall 0.37 0.63

Batch Positive Negative

True 7 -

False 4 12

Ours Positive Negative

True 12 -

False 1 7

7.3 Computational Cost

The computational cost was measured at the Scene 1 in Fig. 6a with 3.70 GHz
of Intel (R) Xeon (R) CPU E 5-1620 v2, as illustrated in Fig. 8. In [17], the
computational cost required for RGB-D SLAM and plane reconstruction was
within 100-ms on average. Compared to [17], we focused on measuring the cost
for the 3D cuboid modeling. In the cuboid detection, the costs of detecting three
planes and computing shape parameters were separately measured. In the figure,
the orange dots represent the time when a new cuboid is detected.

The shape parameter estimation needed most computational cost, especially
in the process of the point projection to a line to compute edge lengths. The cost
of detecting three planes gradually increased according to the number of planes
in the map because planes can be detected from not only cuboids but also non-
cuboids such as walls. In this case, the cuboid check was applied to the planes
from non-cuboids in every frame. Therefore, this process affected the increase
of the cost. Overall, the cost of our framework at a room-scale environment was
sufficient for running with RGB-D SLAM.



426 M. Mishima et al.

0

5

10

15

20

25

30

35

40

45

0

1

2

3

4

5

6

7

8

9

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

N
um

be
r o

f p
la

ne
s

Co
m

pu
ta

tio
na

l c
os

t[
m

s]

Frame number

Detection of three planes Shape parameter estimation

Cuboid Mapping Total

Number of planes

Fig. 8. Computational cost. The orange dots represent the time when a new cuboid is
detected. The cost of shape parameter estimation is larger than others. The detection
of three planes represents the sum of both 2nd and 3rd plane detections in Sect. 4.
This cost increased as time passes because the number of unassigned planes increased.
(Color figure online)

7.4 Limitation

As illustrated in Fig. 9, the cuboid detection using three perpendicular planes
sometimes failed when boxes were stacked. Basically, the detection accuracy
depends on the quality of the plane map. For instance, two stacked boxes can
be detected as one cuboid when they are aligned. Since the faces of the two

Fig. 9. Limitation. At the first row, two stacked boxes are detected as one cuboid when
they are aligned. At the second row, even when two stacked boxes are not aligned,
the lower box is not detected because the top face of the lower box is not sufficiently
captured as a plane. The accuracy of the cuboid detection can be degraded when boxes
are stacked according to the arrangement.



RGB-D SLAM Based Incremental Cuboid Modeling 427

boxes compose a plane, they are detected as one plane. By using an image
based segmentation, two boxes can be separately detected. In another case, the
lower box cannot be detected even when two stacked boxes are not aligned
because the top face of the lower box is still hidden by the upper box. Since
three perpendicular planes are required to detect a cuboid in our framework,
the detection fails.

8 Conclusions

We presented a framework for generating a cuboid map in an incremental man-
ner. In this approach, a cuboid is first detected by analyzing the positional
relationship between oriented planes. Then, it is incrementally updated to sup-
press false detections. An interactive cuboid modeling system was designed to
assist the users to reconstruct cuboids.

The evaluation demonstrated that the cuboid modeling with our approach
was more accurate than a batch-based method. Also, our method successfully
detected the cuboids regardless of their arrangements. However, three perpendic-
ular planes are required to be captured to compute the cuboid shape parameters,
as our limitation.

In the future work, the performance of our framework with additional vari-
ous scenes is investigated. Also, image features from RGB images will be inte-
grated into our framework to increase the accuracy and robustness of the cuboid
detection. Since the point cloud is obtained by RTAB-MAP [12] which is rel-
atively inaccurate in terms of reconstruction quality compared with a TSDF
based fusion method such as KinectFusion [14]. Our system should be combined
with technique to improve the accuracy for primitive shape reconstruction qual-
ity. Additionally, the comparison of the state of the art will be done for display
the advantage of our proposed method.

Acknowledgment. This work is supported by JSPS KAKENHI Grant Number
JP17H01768.

References

1. Del Pero, L., Guan, J., Brau, E., Schlecht, J., Barnard, K.: Sampling bedrooms.
In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2009–2016. IEEE (2011)

2. Du, H., et al.: Interactive 3D modeling of indoor environments with a consumer
depth camera. In: Proceedings of the 13th International Conference on Ubiquitous
Computing, pp. 75–84. ACM (2011)

3. Dwibedi, D., Malisiewicz, T., Badrinarayanan, V., Rabinovich, A.: Deep cuboid
detection: beyond 2D bounding boxes. arXiv preprint arXiv:1611.10010 (2016)

4. Goldman, R.: Intersection of three planes. In: Graphics Gems, p. 305. Academic
Press Professional, Inc. (1990)

5. Hashemifar, Z.S., Lee, K.W., Napp, N., Dantu, K.: Consistent cuboid detection
for semantic mapping. In: 2017 IEEE 11th International Conference on Semantic
Computing (ICSC), pp. 526–531. IEEE (2017)

http://arxiv.org/abs/1611.10010


428 M. Mishima et al.

6. Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered
rooms. In: 2009 IEEE 12th International Conference on Computer Vision, pp.
1849–1856. IEEE (2009)

7. Hedau, V., Hoiem, D., Forsyth, D.: Thinking inside the box: using appearance
models and context based on room geometry. In: Daniilidis, K., Maragos, P., Para-
gios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 224–237. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15567-3 17

8. Hejrati, M., Ramanan, D.: Categorizing cubes: revisiting pose normalization. In:
2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp.
1–9. IEEE (2016)

9. Jiang, H., Xiao, J.: A linear approach to matching cuboids in RGBD images. In:
2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2171–2178. IEEE (2013)

10. Khan, S.H., He, X., Bannamoun, M., Sohel, F., Togneri, R.: Separating objects
and clutter in indoor scenes. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4603–4611 (2015)

11. Kim, Y.M., Mitra, N.J., Huang, Q., Guibas, L.: Guided real-time scanning of indoor
objects. In: Computer Graphics Forum, vol. 32, pp. 177–186. Wiley Online Library
(2013)

12. Labbé, M., Michaud, F.: Online global loop closure detection for large-scale multi-
session graph-based SLAM. In: 2014 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2014), pp. 2661–2666. IEEE (2014)

13. Lin, D., Fidler, S., Urtasun, R.: Holistic scene understanding for 3D object detec-
tion with RGBD cameras. In: 2013 IEEE International Conference on Computer
Vision (ICCV), pp. 1417–1424. IEEE (2013)

14. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and track-
ing. In: 2011 10th IEEE International Symposium on Mixed and Augmented Real-
ity (ISMAR), pp. 127–136. IEEE (2011)

15. Nguatem, W., Drauschke, M., Mayer, H.: Finding cuboid-based building mod-
els in point clouds. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
XXXIX-B, 149–154 (2012). https://doi.org/10.5194/isprsarchives-XXXIX-B3-
149-2012

16. Nguyen, T., Reitmayr, G., Schmalstieg, D.: Structural modeling from depth images.
IEEE Trans. Vis. Comput. Graph. 21(11), 1230–1240 (2015)

17. Olivier, N., et al.: Live structural modeling using RGB-D SLAM. In: ICRA, pp.
6352–6358 (2018)

18. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM
Trans. Graph. (TOG) 21(4), 807–832 (2002)

19. Ren, Z., Sudderth, E.B.: Three-dimensional object detection and layout prediction
using clouds of oriented gradients. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1525–1533 (2016)

20. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3D point
cloud based object maps for household environments. Robot. Auton. Syst. 56(11),
927–941 (2008)

21. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision.
Int. J. Robot. Res. 27(2), 157–173 (2008)

22. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detec-
tion. In: Computer Graphics Forum, vol. 26, pp. 214–226. Wiley Online Library
(2007)

https://doi.org/10.1007/978-3-642-15567-3_17
https://doi.org/10.5194/isprsarchives-XXXIX-B3-149-2012
https://doi.org/10.5194/isprsarchives-XXXIX-B3-149-2012


RGB-D SLAM Based Incremental Cuboid Modeling 429

23. Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., Guo, B.: An interactive approach to
semantic modeling of indoor scenes with an RGBD camera. ACM Trans. Graph.
(TOG) 31(6), 136 (2012)

24. Sinha, S.N., Steedly, D., Szeliski, R., Agrawala, M., Pollefeys, M.: Interactive 3D
architectural modeling from unordered photo collections. In: ACM Transactions
on Graphics (TOG), vol. 27, p. 159. ACM (2008)

25. Stein, S.C., Wörgötter, F., Schoeler, M., Papon, J., Kulvicius, T.: Convexity based
object partitioning for robot applications. In: 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 3213–3220. IEEE (2014)

26. Xiao, J., Russell, B., Torralba, A.: Localizing 3D cuboids in single-view images. In:
Advances in Neural Information Processing Systems, pp. 746–754 (2012)

27. Zhang, Y., Luo, C., Liu, J.: Walk&sketch: create floor plans with an RGB-D cam-
era. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp.
461–470. ACM (2012)


	RGB-D SLAM Based Incremental Cuboid Modeling
	1 Introduction
	2 Related Work
	3 Overview
	4 Cuboid Detection
	4.1 Second Plane Selection
	4.2 Third Plane Selection
	4.3 Cuboid Parameter Estimation

	5 Cuboid Mapping
	5.1 Cuboid Update
	5.2 Cuboid Check with Cuboid Map

	6 Interactive Cuboid Modeling
	7 Evaluation
	7.1 Cuboid Shape Estimation
	7.2 Cuboid Detection at a Cluttered Environment
	7.3 Computational Cost
	7.4 Limitation

	8 Conclusions
	References




