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Abstract. Estimating depth from a single image is a very challenging
and exciting topic in computer vision with implications in several appli-
cation domains. Recently proposed deep learning approaches achieve
outstanding results by tackling it as an image reconstruction task and
exploiting geometry constraints (e.g., epipolar geometry) to obtain super-
visory signals for training. Inspired by these works and compelling results
achieved by Generative Adversarial Network (GAN) on image recon-
struction and generation tasks, in this paper we propose to cast unsu-
pervised monocular depth estimation within a GAN paradigm. The gen-
erator network learns to infer depth from the reference image to gener-
ate a warped target image. At training time, the discriminator network
learns to distinguish between fake images generated by the generator
and target frames acquired with a stereo rig. To the best of our knowl-
edge, our proposal is the first successful attempt to tackle monocular
depth estimation with a GAN paradigm and the extensive evaluation on
CityScapes and KITTI datasets confirm that it enables to improve tra-
ditional approaches. Additionally, we highlight a major issue with data
deployed by a standard evaluation protocol widely used in this field and
fix this problem using a more reliable dataset recently made available by
the KITTI evaluation benchmark.

1 Introduction

Accurate depth estimation is of paramount importance for many computer vision
tasks and for this purpose active sensors, such as LIDARs or Time of Flight sen-
sors, are being extensively deployed in most practical applications. Nonetheless,
passive depth sensors based on conventional cameras have notable advantages
compared to active sensors. Thus, a significant amount of literature aims at tack-
ling depth estimation with standard imaging sensors. Most approaches reply on
multiple images acquired from different viewpoints to infer depth through binoc-
ular stereo, multi-view stereo, structure from motion and so on. Despite their
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effectiveness, all of them rely on the availability of multiple acquisitions of the
sensed environment (e.g., binocular stereo requires two synchronized images)
(Fig. 1).

)c()b()a(

Fig. 1. Estimated depth maps from single image. On top, frame from KITTI 2015
dataset, on bottom (a) detail from reference image (red rectangle), (b) depth predicted
by Godard et al. [13] and (c) by our GAN architecture. (Color figure online)

Monocular depth estimation represents an appealing alternative to overcome
such constraint and recent works in this field achieved excellent results leveraging
machine learning [6,13,21,24]. Early works tackled this problem in a supervised
manner [6,21,24] by training on a large amount of images with pixel-level depth
labels. However, is well known that gathering labeled data is not trivial and par-
ticularly expensive when dealing with depth measurements [11,12,30,38]. More
recent methods [13,54] aim to overcome this issue casting monocular depth esti-
mation as an image reconstruction problem. In [54] inferring camera ego-motion
in image sequences and in [13] leveraging a stereo setup. In both cases, difficult to
source labeled depth data are not required at all for training. The second method
yields much better results outperforming even supervised methods [6,21,24] by
a large margin.

Recently, Generative Adversarial Networks (GANs) [14] proved to be very
effective when dealing with high-level tasks such as image synthesis, style transfer
and more. In this framework, two architectures are trained to solve competitive
tasks. The first one, referred to as generator, produces a new image from a given
input (e.g., a synthetic frame from noise, an image with a transferred style,
etc.) while the second one called discriminator is trained to distinguish between
real images and those generated by the first network. The two models play a
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min-max game, with the generator trained to produce outputs good enough to
fool the discriminator and this latter network trained to not being fooled by the
generator.

Considering the methodology adopted by state-of-the-art methods for unsu-
pervised monocular depth estimation and the intrinsic ability of GANs to detect
inconsistencies in images, in this paper we propose to infer depth from monocular
images by means of a GAN architecture. Given a stereo pair, at training time,
our generator learns to produce meaningful depth representations, with respect
to left and right image, by exploiting the epipolar constraint to align the two
images. The warped images and the real ones are then forwarded to the discrim-
inator, trained to distinguish between the two cases. The rationale behind our
idea is that a generator producing accurate depth maps will also lead to better
reconstructed images, harder to be distinguished from original unwarped inputs.
At the same time, for the discriminator will be harder to be fooled, pushing the
generator to build more realistic warped images and thus more accurate depth
predictions.

In this paper, we report extensive experimental results on the KITTI 2015
dataset, which provides a large amount of unlabeled stereo images and thus it
is ideal for unsupervised training. Moreover, we highlight and fix inconsistencies
in the commonly adapted split of Eigen [6], replacing Velodyne measurements
with more accurate labels recently made available on KITTI [40]. Therefore, our
contribution is threefold:

– Our framework represents, to the best of our knowledge, the first method to
tackle monocular depth estimation within a GAN paradigm

– It outperforms traditional methods
– We propose a more reliable evaluation protocol for the split of Eigen et al.

[6].

2 Related Work

Depth estimation from images has a long history in computer vision. Most pop-
ular techniques rely on synchronized image pairs [39], multiple acquisitions from
different viewpoints [9], at different time frames [35] or in presence of illumina-
tion changes [45]. Although certainly relevant to our work, these methods are
not able to infer depth from a single image while recent methods casting depth
prediction as a learning task and applications of GANs to other fields are strictly
related to our proposal.

Learning-Based Stereo. Traditional binocular stereo algorithms perform a
subset of steps as defined in [39]. The matching cost computation phase is com-
mon to all approaches, encoding an initial similarity score between pixels on ref-
erence image, typically the left, and matching candidates on the target. The sem-
inal work by Zbontar and LeCun [50,51] computes matching costs using a CNN
trained on image patches and deploys such strategy inside a well-established
stereo pipeline [15] achieving outstanding results. In a follow-up work, Luo et al.
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[25] obtained more accurate matching representation casting the correspondence
search as a multi-class classification problem. A significant departure from this
strategy is represented by DispNet [29], a deep architecture aimed at regressing
per-pixel disparity assignments after an end-to-end training. These latter meth-
ods require a large amount of labeled images (i.e., stereo pairs with ground-truth
disparity) for training [29]. Other works proposed novel CNN-based architectures
inspired by traditional stereo pipeline as GC-Net [18] and CLR [31].

Supervised Monocular Depth Estimation. Single image depth estimation
is an ill-posed problem due to the lack of geometric constraints and thus it rep-
resents a much more challenging task compared to depth from stereo. Saxena
et al. [37] proposed Make3D, a patch-based model estimating 3D location and
orientation of local planes by means of a MRF framework. This technique suffers
in presence of thin structures and lack of global context information often useful
to obtain consistent depth estimations. Liu et al. [24] trained a CNN to tackle
monocular depth estimation, while Ladicky et al. [21] exploited semantic infor-
mation to obtain more accurate depth predictions. In [17] Karsch et al. achieved
more consistent predictions at testing time by copying entire depth images from
a training set. Eigen et al. [6] proposed a multi-scale CNN trained in supervised
manner to infer depth from a single image. Differently from [24], whose net-
work was trained to compute more robust data terms and pairwise terms, this
approach directly infers the final depth map from the input image. Following
[6] other works enabled more accurate estimations by means of CRF regulariza-
tion [23], casting the problem as a classification task [2], designing more robust
loss functions [22] or using scene priors for plane normals estimation [43]. Luo
et al. [26] formulated monocular depth estimation as a stereo matching prob-
lem in which the right view is generated by a view-synthesis network based on
Deep 3D [46]. Fu et al. [8] proposed a very effective depth discretization strategy
and a novel ordinal regression loss achieving state-of-the-art results on different
challenging benchmarks. Kumar et al. [4] demonstrated that recurrent neural
networks (RNNs) can learn spatio-temporally accurate monocular depth pre-
diction from video sequences. Atapour et al. [1] take advantage of style transfer
and adversarial training on synthetic data to predict depth maps from real-world
color images. Lastly, Ummenhofer et al. [41] proposed DeMoN, a deep model to
infer both depth and ego-motion from a pair of subsequent frames acquired by
a single camera. As for deep stereo models all these techniques require a large
amount of labeled data at training time to learn meaningful depth representation
from a single image.

Unsupervised Monocular Depth Estimation. Pertinent to our proposal
are some recent works concerned with view synthesis. Flynn et al. [7] proposed
DeepStereo, a deep architecture trained on images acquired by multiple cameras
in unsupervised manner to generate novel view points. Deep3D by Xie et al.
[46] generates corresponding target view from an input reference image in the
context of binocular stereo, by learning a distribution over all possible dispari-
ties for each pixel on the source frame and training their model with a recon-
struction loss. Similarly, Garg et al. [10] trained a network for monocular depth
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Fig. 2. Proposed adversarial model. Given a single input frame, depth maps are pro-
duced by a Generator (blue) and used to warp images. Discriminator (gray) process
both raw and warped images, trying to classify the former as real and the latter as
fake. The generator is pushed to improve depth prediction to provide a more realistic
warping to fool the discriminator. At the same time the discriminator learns to improve
its ability to perform this task. (Color figure online)

estimation using a reconstruction loss over a stereo pair. To make their model
fully differentiable they used Taylor approximation to make their loss linear,
resulting in a more challenging objective to optimize. Godard et al. [13] over-
come this problem by using a bilinear sampling [16] to generate images from
depth prediction. At training time, this model learns to predict depth for both
images in a stereo pair thus enabling to enforce a left-right consistency constraint
as supervisory signal. A simple post-processing step allows to refine depth predic-
tion. This approach was extended by including additional temporal information
[52] and by training with semi-supervised data [20,48]. While previous method
requires rectified stereo pairs for training, Zhou et al. [54] proposed to train a
model to infer depth from unconstrained video sequences by computing a recon-
struction loss between subsequent frames and predicting, at the same time, the
relative pose between them. This strategy removes the requirement of stereo
pairs for training but produces a less accurate depth estimation. Wang et al.
[42] proposed a simple normalization strategy that circumvent problems in the
scale sensitivity of the depth regularization terms employed during training and
empirically demonstrated that the incorporation of a differentiable implemen-
tation of Direct Visual Odometry (DVO) improves previous monocular depth
performance [54]. Mahjourian et al. [27] used a novel approximate ICP based
loss to jointly learn depth and camera motion for rigid scenes, while Yin et al.
[47] proposed a learning framework for jointly training monocular depth, optical
flow and camera motion from video. [52]. Concurrently with our work, Poggi
et al. [32] deployed a thin model for depth estimation on CPU and proposed a
trinocular paradigm [33] to improve unsupervised approaches based on stereo
supervision, while Ramirez et al. [49] proposed a semi-superised framework for
joint depth and semantic estimation.

Generative Adversarial Networks. GANs [14] recently gained popularity by
enabling to cast computer vision problems as a competitive task between two
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networks. Such methodology achieved impressive performance for image general-
ization [5,34], editing [55] and representation learning [28,34] tasks. More recent
applications include text-to-image [36,53] and image-to-image [56] translations.

3 Method Overview

In this section we describe our adversarial framework for unsupervised monocular
depth estimation. State-of-the-art approaches rely on single network to accom-
plish this task. In contrast, at the core of our strategy there is a novel loss func-
tion based on a two players min-max game between two adversarial networks,
as shown in Fig. 2. This is done by using both a generative and a discriminative
model competing on two different tasks, each one aimed at prevailing the other.
This section discusses the geometry of the problem and how it is used to take
advantages of 2D photometric constraints with a generative adversarial approach
in a totally unsupervised manner. We refer to our framework as MonoGAN.

3.1 Generator Model for Monocular Depth Estimation

The main goal of our framework is to estimate an accurate depth map from a sin-
gle image without relying on hard to find ground-truth depth labels for training.
For this purpose, we can model this problem as a domain transfer task: given an
input image x, we want to obtain a new representation y = G(x) in the depth
domain. In other contexts, GAN models have been successfully deployed for
image-to-image translation [56]. For our purpose a generator network, depicted
in blue in Fig. 2, is trained to learn a transfer function G : I → D mapping
an input image from I to D, respectively, the RGB and the depth domain. To
do so, it is common practice to train the generator with loss signals enforcing
structure consistency across the two domains to preserve object shapes, spatial
consistency, etc. Similarly, this can be done for our specific goal by exploiting
view synthesis. That is, projecting RGB images into 3D domain according to
estimated depth and then back-projecting to new synthesized view for which
we need a real image to compare with. To make it possible, for each training
sample at least two images from different points of view are required to enable
the image reconstruction process described so far. In literature, this strategy is
used by other unsupervised techniques for monocular depth estimation, exploit-
ing both unconstrained sequences [54] or stereo imagery [13]. In this latter case,
given two images il and ir acquired by a stereo setup, the generator estimates
inverse depth (i.e., disparity) dl used to obtain a synthesized image ĩl by warp-
ing ir with bilinear sampler function [16] being it fully differentiable and thus
enabling end-to-end training. If dl is accurate, shapes and structures are pre-
served after warping, while an inaccurate estimation would lead to distortion
artifacts as shown on the right of Fig. 3. This process is totally unsupervised
with respect to the D domain and thus it does not require at all ground-truth
labels at training time. Moreover, by estimating a second output dr, representing
the inverse mapping from il to ir, allows to use additional supervisory signals by
enforcing consistency in the D domain (i.e., Left-Right consistency constraint).
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3.2 Discriminator Model

To successfully accomplish domain transfer, GANs rely on a second network
trained to distinguish images produced by the generator from those belong-
ing to the target domain, respectively fake and real samples. We follow the
same principle using the gray model in Fig. 2, but acting differently from other
approaches. In particular, to discriminate synthesized images from real ones we
need a large amount of samples in the target domain. While for traditional
domain transfer applications this does not represent an issue (requiring images
without annotation), this becomes a limitation when depth is the target domain
being ground-truth label difficult to source in this circumstance. To overcome
this limitation, we train a discriminator to work on the RGB domain to tell
original input images from synthesized ones. Indeed, if estimated disparity by
the generator is not accurate, the warping process would reproduce distortion
artifacts easily detectable by the discriminator. On the other hand, an accu-
rate depth prediction would lead to a reprojected image harder to be recognized
from a real one. Figure 3 shows, on the left, an example of real image and,
on the right, a warped one synthesized according to an inaccurate depth esti-
mation. For instance, by looking at the tree, we can easily tell the real image
from the warped one. By training the discriminator on this task, the genera-
tor is constantly forced to produce more accurate depth maps thus leading to
a more realistic reconstructed image in order to fool it. At the same time the
discriminator is constantly pushed to improve its ability to tell real images from
synthesized ones. Our proposal aims at such virtuous behavior by properly mod-
eling the adversarial contribution of the two networks as described in detail in
the next section.

4 Adversarial Formulation

To train the framework outlined so far in end-to-end manner we define an objec-
tive function L(G,D) sum of two terms, a LGAN expressing the min-max game
between generator G and discriminator D:

LGAN = min
G

max
D

V (G,D) =Ei0∼I [log(D(i0))]

+Ei1∼Ĩ
[log (1 − D(i1))] (1)

with i0 and i1 belonging, respectively, to real images I and fake images Ĩ domains
being the latter obtained by bilinear warping according to depth estimated by
G and a data term Ldata resulting in:

L(G,D) = LGAN + Ldata (2)

According to this formulation, generator G and discriminator D are trained to
minimize loss functions LG and LD:

LG = Ldata + αadvEi0,i1∼Ĩ
[log (D(i1))] (3)
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Fig. 3. Example of real (top) and warped (bottom) image according to an estimated
depth. We can clearly notice how inaccurate predictions lead to warping artifacts on
the reprojected frame (e.g., distorted trees) not perceivable elsewhere.

LD = −1
2
Ei0∼I log(D(i0)) − 1

2
Ei1∼Ĩ log(1 − D(i1)) (4)

To give an intuition, G is trained to minimize the loss from data term and the
probability that D will classify a warped image i1 ∼ Ĩ as fake. This second contri-
bution is weighted according to αadv factor, hyper-parameter of our framework.
Consistently, D is trained to classify a raw image i0 ∼ I as real and a warped
one as fake. Despite our framework processes a transfer from I to depth domain
D, we highlight how in the proposed adversarial formulation the discriminator
does not process any sample from domain D, neither fake nor real. Thus it does
not require any ground-truth depth map and perfectly fits with an unsupervised
monocular depth estimation paradigm.

4.1 Data Term Loss

We define the data term Ldata part of the generator loss function LG as follows:

Ldata = βap(Lap) + βds(Lds) + βlr(Llr) (5)

where the loss consists in the weighted sum of three terms. The first one, namely
appearence term, measures the reconstruction error between warped image Ĩ and
real one I by means of SSIM [44] and L1 difference of the two

Lap =
1
N

∑

i,j

γ
1 − SSIM(Ii,j , Ĩi,j)

2
+ (1 − γ)||Ii,j − Ĩi,j ||1 (6)
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The second term is a smoothness constraint that penalizes large disparity dif-
ferences between neighboring pixels along the x and y directions unless a strong
intensity gradients in the reference image I occurs

Lds =
1
N

∑

i,j

|δxdi,j |e−||δxIi,j || + |δydi,j |e−||δyIij || (7)

Finally, by building the generator to output a second disparity map dr, we
can add the term proposed in [13] as third supervision signal, enforcing left-right
consistency between the predicted disparity maps, dl and dr, for left and right
images:

Ll
lr =

1
N

∑

i,j

|dl
i,j − dr

i,j+dl
i,j

| (8)

Moreover, estimating dr also enables to compute the three terms for both images
in a training stereo pair.
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Fig. 4. Analysis of hyper-parameters αadv and k of our GAN model, on x axis αadv,
on y axis an evaluation metric. (a) Abs Rel, (b) Sq Rel and (c) RMSE metrics (lower
is better). (d) δ < 1.25, (e) δ < 1.252, (f) δ < 1.253 metrics (higher is better). Inter-
polation is used for visualization purpose only. We can notice how our proposal using
a weight αadv of 0.0001 and a step k of 5 achieves the best performance with all
metrics.

5 Experimental Results

In this section we assess the performance of our proposal with respect to litera-
ture. Firstly, we describe implementation details of our model outlining the archi-
tecture of generator and discriminator networks. Then, we describe the training
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protocols followed during our experiments reporting an exhaustive comparison
on KITTI 2015 stereo dataset [30] with state-of-the-art method [13]. This eval-
uation clearly highlights how the adversarial formulation proposed is beneficial
when tackling this unsupervised monocular depth estimation. Moreover, we com-
pare our proposal with other frameworks known in literature, both supervised
and unsupervised, on the split of data used by Eigen et al. [6]. In this latter
case we provide experimental results on the standard Eigen split as well as on
a similar one made of more reliable data. This evaluation highlights once again
the effectiveness of our proposal.

Table 1. Results on KITTI stereo 2015 [30]. We compare MonoGAN with [13] using
different training schedules, respectively only KITTI sequences (K), only CityScapes
(CS) and both sequentially (CS + K). Adversarial contribution always improves the
results. We indicate with pp results obtained after applying the final post-processing
step proposed in [13].

Proposed method Lower is better Higher is better
Exp. Method Dataset Abs Rel Sq Rel RMSE RMSE log D1-all δ <1.25 δ < 1.252 δ < 1.253

i) Godard et al. [13] K 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975
MonoGAN K 0.119 1.239 5.998 0.212 29.864 0.846 0.940 0.976

ii) Godard et al. [13] CS 0.699 10.060 14.445 0.542 94.757 0.053 0.326 0.862
MonoGAN CS 0.668 9.488 14.051 0.526 94.092 0.063 0.394 0.876

iii) Godard et al. [13] CS+K 0.104 1.070 5.417 0.188 25.523 0.875 0.956 0.983
MonoGAN CS+K 0.102 1.023 5.390 0.185 25.081 0.878 0.958 0.984

iv) Godard et al. [13] + pp CS+K 0.100 0.934 5.141 0.178 25.077 0.878 0.961 0.986
MonoGAN + pp CS+K 0.098 0.908 5.164 0.177 23.999 0.879 0.961 0.986

5.1 Implementation Details

For our GAN model, we deploy a VGG-based generator as in [13] counting 31
million parameters. We designed the discriminator in a similar way but, since
the task of the discriminator is easier compared to the one tackled by the gen-
erator, we reduced the amount of feature maps extracted by each layer by a
factor of two to obtain a less complex architecture. In fact, it counts about 8
million parameters, bringing the total number of variables of the overall frame-
work to 39 million at training time. At test time, the discriminator is no longer
required, restoring the same network configuration of [13] and thus the same
computational efficiency.

For a fair comparison, we tune hyper-parameters such as learning rate or
weights applied to loss terms to match those in [13], trained with a multi-scale
data term while the adversarial contribution is computed at full resolution only.
Being the task of D easier compared to depth estimation performed by G, we
interleave the updates applied to the two. To this aim we introduce a further
hyper-parameter k as the ratio between the number of training iterations per-
formed on G and those on D, in addition to αadv. In other words, discrimina-
tor weights are updated only every k updates of the generator. We will report
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Table 2. Results for unsupervised techniques on the original Eigen et al. [6] split based
on raw Velodyne data.

Proposed method Lower is better Higher is better
Method cap Dataset Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

Zhou et al. [54] 80 m CS+K 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Mahjourian et al. [27] 80 m CS+K 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Yin et al. [47] 80 m CS+K 0.153 1.328 5.737 0.232 0.802 0.934 0.972
Wang et al. [42] 80 m CS+K 0.148 1.187 5.496 0.226 0.812 0.938 0.975

Poggi et al. [32] (200) 80 m CS+K 0.146 1.291 5.907 0.245 0.801 0.926 0.967
Godard et al. [13] 80 m CS+K 0.124 1.076 5.311 0.219 0.847 0.942 0.973

MonoGAN 80 m CS+K 0.124 1.055 5.289 0.220 0.847 0.942 0.973
Godard et al. [13] + pp 80 m CS+K 0.118 0.923 5.015 0.210 0.854 0.947 0.976

MonoGAN + pp 80 m CS+K 0.118 0.908 4.978 0.210 0.855 0.948 0.976
Garg et al. [10] 50 m K 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Zhou et al. [54] 50 m CS+K 0.190 1.436 4.975 0.258 0.735 0.915 0.968

Mahjourian et al. [27] 50 m CS+K 0.151 0.949 4.383 0.227 0.802 0.935 0.974
Poggi et al. [32] (200) 50 m CS+K 0.138 0.937 4.488 0.230 0.815 0.934 0.972
Godard et al. [13] 50 m CS+K 0.117 0.762 3.972 0.206 0.860 0.948 0.976

MonoGAN 50 m CS+K 0.118 0.761 3.995 0.208 0.860 0.949 0.976
Godard et al. [13] + pp 50 m CS+K 0.112 0.680 3.810 0.198 0.866 0.953 0.979

MonoGAN + pp 50 m CS+K 0.112 0.673 3.804 0.198 0.868 0.953 0.979

evaluations for different values of parameter k. To jointly train both generator
and discriminator we use two instances of Adam optimizer [19], with β1 = 0.9,
β2 = 0.99 and ε = 10−8. The learning rate is the same for both instances: it is set
at λ = 10−4 for the first 30 epochs and then halved each 10 epochs. Number of
epochs is set to 50 as for [13]. Training data are extracted from both KITTI raw
sequences [30] and CityScapes dataset [3] providing respectively about 29000
and 23000 stereo pairs, these latter samples are cropped to remove lower part
of the image frames (depicting a portion of the car used for acquisition) as in
[13]. Moreover, as in [13] we perform data augmentation by randomly flipping
input images horizontally and applying the following transformations: random
gamma correction in [0.8, 1.2], additive brightness in [0.5, 2.0], and color shifts
in [0.8, 1.2] for each channel separately. The same procedure is applied before
forwarding images to both generator and discriminator.

5.2 Hyper-parameters Analysis

As mentioned before, our GAN model introduces two additional hyper-
parameters: the weight αadv applied to the adversarial loss acting on the gen-
erator and the iteration interval k between subsequent updating applied to the
discriminator. Figure 4 reports an analysis aimed at finding the best configura-
tion (αadv, k). On each plot, we report an evaluation metric used to measure
accuracy in the field of monocular depth estimation (e.g., in [13]) as a func-
tion of both αadv and k. Respectively, on top we report from left to right Abs
Rel, Sq Rel and RMSE (lower scores are better), on bottom δ < 125, δ < 1252

and δ < 1253 (higher scores are better). These results were obtained training
MonoGAN on the 29000 KITTI stereo images [30], with αadv set to 0.01, 0.001
and 0.0001 and k to 1, 5 and 10, for a total of 9 models trained and evaluated
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in Fig. 4. We can notice how the configuration αadv = 0.0001 and k = 5 achieves
the best performance with all evaluated metrics. According to this analysis we
use these hyper-parameters in the next experiments, unless otherwise stated. It
is worth to note that despite the much smaller magnitude of αadv compared to
weights αap, αds and αlr in data term (5), its contribution will affect significantly
depth estimation accuracy as reported in the remainder.

)b()a(

Fig. 5. Qualitative comparison between (a) reprojected raw Velodyne points as done
in the original Eigen split for results reported in Table 2 and (b) reprojected ground-
truth labels filtered according to [40], available on the KITTI website, deployed for our
additional experiments reported in Table 3. Warmer colors encode closer points.

5.3 Evaluation on KITTI Dataset

Table 1 reports experimental results on the KITTI 2015 stereo dataset. For this
evaluation, 200 images with provided ground-truth disparity from KITTI 2015
stereo dataset are used for validation, as proposed in [13]. We report results for
different training schedules: running 50 epochs on data from KITTI only (K),
from CityScapes only (CS) and 50 epochs on CityScapes followed by 50 on KITTI
(CS + K). We compare our proposal to state-of-the-art method for unsupervised
monocular depth estimation proposed by Godard et al. [13] reporting for this
method the outcome of the evaluation available in the original paper. Table 1
is divided into four main sections, representing four different experiments. In
particular, (i) compares MonoGAN with [13] when both trained on K. We can
observe how our framework significantly outperforms the competitor on all met-
rics. Experiment (ii) concerns the two models trained on CityScapes data [3] and
evaluated on KITTI stereo images, thus measuring the generalization capability
across different environments. In particular, CityScapes and KITTI images differ
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Table 3. Results for MonoGAN and Godard et al. [13] on 93.5% of Eigen et al. [6] split
using accurate ground-truth labels [40] recently made available by KITTI evaluation
benchmark.

Proposed method Lower is better Higher is better
Method cap Dataset Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

Godard et al. [13] 80 m CS+K 0.097 0.728 4.279 0.151 0.898 0.973 0.991
MonoGAN 80 m CS+K 0.096 0.699 4.236 0.150 0.899 0.974 0.992

Godard et al. [13] + pp 80 m CS+K 0.092 0.596 3.977 0.145 0.902 0.975 0.992
MonoGAN + pp 80 m CS+K 0.090 0.566 3.911 0.143 0.906 0.977 0.993
Godard et al. [13] 50 m CS+K 0.095 0.607 4.100 0.149 0.896 0.975 0.992

MonoGAN 50 m CS+K 0.094 0.600 4.110 0.148 0.897 0.976 0.993
Godard et al. [13] + pp 50 m CS+K 0.091 0.544 3.996 0.145 0.899 0.976 0.993

MonoGAN + pp 50 m CS+K 0.089 0.522 3.958 0.143 0.902 0.978 0.994

not only in terms of scene contents but also for the camera setup. We can notice
that MonoGAN better generalizes when dealing with different data. In (iii), we
train both models on CityScapes first and then on KITTI, showing that Mono-
GAN better benefits from using different datasets at training time compared
to [13] thus confirming the positive trend outlined in the previous experiments.
Finally, in (iv) we test the network trained in (iii) refining the results with the
same post-processing step described in [13]. It consists in predicting depth for
both original and horizontally flipped input image, then taking 5% right-most
pixels from the first and 5% left-most from the second, while averaging the
two predictions for remaining pixels. With such post-processing, excluding one
case out of 6 (i.e., with the RMSE metric) MonoGAN has better or equivalent
performance compared to [13]. Overall, the evaluation on KITTI 2015 dataset
highlights the effectiveness of the proposed GAN paradigm. In experiments (iii)
and (iv), we exploited adversarial loss only during the second part of the training
(i.e., on K) thus starting from the same model of [13] trained as in experiment
(ii), with the aim to assess how the discriminator improves the performance of
a pre-trained model. Moreover, when fine-tuning we find beneficial to change
the αadv weight, similarly to traditional learning rate decimation techniques. In
particular, we increased the adversarial weight αadv from 0.0001 to 0.001 after
150k iterations (out of 181k total).

5.4 Evaluation on Eigen Split

We report additional experiments conducted on the split of data proposed by
Eigen et al. in [6]. This validation set is made of 697 depth maps obtained by
projecting 3D points inferred by a Velodyne laser into the left image of the
acquired stereo pairs in 29 out of 61 scenes. The remaining 32 scenes are used
to extract 22600 training samples. We compare to other monocular depth esti-
mation framework following the same protocol proposed in [13] using the same
crop dimensions and parameters.

Table 2 reports a detailed comparison of unsupervised methods. On top, we
evaluated depth maps up to a maximum distance of 80 m. We can observe how
MonoGAN performs on par or better than Godard et al. [13] outperforming it
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in terms of Sq Rel and RMSE errors and δ < 1.25, δ < 1.252 metrics. On the
bottom of the table, we evaluate up to 50 m maximum distance to compare with
Garg et al. [10]. This evaluation substantially confirms the previous trend. As for
experiments on KITTI 2015 stereo dataset, we find out that increasing by a factor
10 the adversarial weight αadv from 0.0001 to 0.001 after 150k iterations out of
181k total increases the accuracy of MonoGAN. Apparently, the margin between
MonoGAN and [13] is much lower on this evaluation data. However, as already
pointed out in [13] and [40], depth data obtained through Velodyne projection
are affected by errors introduced by the rotation of the sensor, the motion of
the vehicle and surrounding objects and also incorrect depth readings due to
occlusion at object boundaries. Therefore, to better assess the performance of
our proposal with respect to state-of-the-art we also considered the same split of
images with more accurate ground-truth labels made available by Uhrig et al. [40]
and now officially distributed as depth ground-truth maps by KITTI benchmark.
These maps are obtained by filtering Velodyne data with disparity obtained
by the Semi Global Matching algorithm [15] so as to remove outliers from the
original measurements. Figure 5 shows a qualitative comparison between depth
labels from raw Velodyne data reprojected into the left image, deployed in the
original Eigen split, and labels provided by [40], deployed for our additional
evaluation. Comparing (a) and (b) to the reference image at the top we can easily
notice in (a) several outliers close to the tree trunk border not detectable in (b).
Unfortunately, accurate ground-truth maps provided by [40] are not available for
45 images of the original Eigen split. Therefore, the number of testing images
is reduced from 697 to 652. However, at the expense of a very small reduction
of validation samples (i.e., 6.5%) we get much more reliable ground-truth data
according to [40]. With such accurate data, Table 3 reports a comparison between
[13] and MonoGAN with and without post-processing, thresholding at 80 and
50 m as for previous experiment on standard Eigen split. From Table 3 we can
notice how with all metrics, excluding one case, MonoGAN on this more reliable
dataset outperforms [13] confirming the trend already reported in Table 1 on the
accurate KITTI 2015 benchmark.

6 Conclusions

In this paper, we proposed to tackle monocular depth estimation as an image gen-
eration task by means of a Generative Adversarial Networks paradigm. Exploit-
ing at training time stereo images, the generator learns to infer depth from the
reference image and from this data to generate a warped target image. The
discriminator is trained to distinguish between real images and fake ones gener-
ated by the generator. Extensive experimental results confirm that our proposal
outperforms known techniques for unsupervised monocular depth estimation.
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