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Abstract. We propose a novel deep modular network architecture for
indoor scene depth estimation from single RGB images. The proposed
architecture consists of a main depth estimation network and two aux-
iliary semantic segmentation networks. Our insight is that semantic and
geometrical structures in a scene are strongly correlated, thus we utilize
global (i.e. room layout) and mid-level (i.e. objects in a room) seman-
tic structures to enhance depth estimation. The first auxiliary network,
or layout network, is responsible for room layout estimation to infer the
positions of walls, floor, and ceiling of a room. The second auxiliary net-
work, or object network, estimates per-pixel class labels of the objects
in a scene, such as furniture, to give mid-level semantic cues. Estimated
semantic structures are effectively fed into the depth estimation network
using newly proposed discriminator networks, which discern the relia-
bility of the estimated structures. The evaluation result shows that our
architecture achieves significant performance improvements over previ-
ous approaches on the standard NYU Depth v2 indoor scene dataset.
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1 Introduction

Depth estimation is one of the fundamental problems of 3D scene structure anal-
ysis in computer vision. Traditional approaches including structured lights [27],
time-of-flight [8], multi-view stereo [28], and structure from motion [3] have been
extensively studied for decades. Most of these approaches are built upon stereo
geometry and rely on reliable correspondences between multiple observations.

In contrast, depth estimation from a single RGB image is a relatively new
task and has been actively studied for the last decade. Without prior knowledge
or geometrical assumption, the problem is known as ill-posed, since numerous
real-world spaces may produce the same image measurement. Early studies tack-
led this problem using Markov Random Fields (MRF) to infer the depth values of
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image patches [25] or the planar parameters of superpixels [26]. Later, approaches
based on Conditional Random Fields (CRF) emerged [22,36]. More recently, the
task has enjoyed rapid progress [1,4,5,13,20,21,23,33,37] thanks to the recent
advances of deep architectures [16,31] and large-scale datasets [9,24,30]. With-
out a doubt, the deep architectures, especially Convolutional Neural Networks
(CNN), greatly contribute to the performance boost.

In this paper, we propose a novel deep modular network architecture for
monocular depth estimation of indoor scenes. Our insight is that semantic and
geometrical structures in a scene are strongly correlated, therefore, we use the
semantic structures to enhance depth prediction. Interestingly, while the insight
itself is not new [12], there are relatively few works [13,33] that use both deep
architectures and semantic structure analysis. We will show that the proposed
architecture, which effectively merges the semantic structure into the depth pre-
diction, clearly outperforms previous approaches on the standard NYU Depth
v2 benchmark dataset.

The proposed architecture is composed of a main depth estimation network
and two auxiliary semantic segmentation networks. The first auxiliary network,
or layout network, gives us the global (i.e. room layout) semantic structure of a
scene by inferring the positions of walls, floor, and ceiling. The second auxiliary
network, or object network, provides the mid-level (i.e. objects in a room) cues by
estimating per-pixel class labels of the objects. To effectively merge the estimated
structures into the depth estimation, we also introduce discriminator networks,
which discern the reliability of the estimated structures. Each semantic struc-
ture is weighted by the respective reliability score and this process reduces the
adverse effect on the depth estimation when the estimation quality of semantic
segmentation is insufficient.

To summarize, we present:

– A novel deep modular network architecture which considers global and mid-
level semantic structures.

– Discriminator networks to effectively merge the semantic structures into the
depth prediction.

– Significant performance improvements over previous methods on the standard
indoor depth estimation benchmark dataset.

2 Related Work

One of the first studies of single image depth estimation was done by Saxena
et al. [25]. This method used hand-crafted convolutional filters to extract a set of
texture features from an input image and solved the depth estimation problem
using Markov Random Fields (MRF). The authors later proposed Make3D [26]
to estimate 3D scene structure from a single image by inferring a set of planar
parameters for superpixels using MRF. This approach depends on the horizontal
consistency of the image and suffers from lack of versatility.

Instead of directly estimating depth, Hoiem et al. [12] assembled a simple 3D
model of a scene by classifying the regions in an image as a geometrical structure
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such as sky or ground, and indirectly estimating the depths of the image. Liu
et al. [19] used predicted semantic labels of a scene to guide depth estimation and
solved a simpler problem with MRF. Ladicky et al. [18] proposed a pixel-wise
classification model to jointly estimate the semantic labels and the depth of a
scene, and showed that semantic classification and depth estimation can benefit
each other.

Liu et al. [22] proposed a discrete-continuous Conditional Random Fields
(CRF) model to consider relationships between neighbouring superpixels. Zhuo
et al. [36] extended the CRF model to a hierarchical representation to model local
depth jointly with mid-level and global scene structures. These methods lack
generality in that they rely on nearest neighbour initialization from a training
set. Besides, all of the above techniques used hand-crafted features.

In recent years, methods based on deep neural networks have become suc-
cessful. Eigen et al. [5] proposed a robust depth estimation method using multi-
scale Convolutional Neural Networks (CNN), and later extended it to a network
structure that can also estimate the semantic labels and the surface orientation
of a scene [4]. Thanks to the learning capability of multi-scale CNN and the
availability of large-scale datasets, their latter work showed prominent perfor-
mance. There are several works that combine CNN with CRF based regulariza-
tion [20,21,33]. Liu et al. [20,21] tackled the problem with Deep Convolutional
Neural Fields which jointly learn CNN and continuous CRF. Wang et al. [33]
used two separate CNN to obtain regional and global potentials of a scene and
fed them into hierarchical CRF to jointly estimate the depth and the semantic
labels. Roy and Todorovic [23] showed that random forests can also be used as
a regularizer. While the majority of existing approaches trained the estimator
with supervised learning using metric depth, there are some works that used
relative depth [1,37] or semi/unsupervised learning [10,17].

In the literature, the method closest to our approach was proposed by Jafari
et al. [13]. They first performed depth prediction and semantic segmentation
using existing methods [4,29] and then merged them through a Joint Refinement
Network (JRN). Compared to [13], our architecture differs in two aspects. First,
in addition to the mid-level object semantics, we consider the room layout of
a scene as a global semantic structure for more consistent depth estimation.
Second, we propose simple yet effective discriminator networks, which discern
the reliability of the estimated structures, to further improve the performance.

3 Modular Network Architecture

This section presents the details of the proposed indoor scene depth estimation
architecture. Figure 1 shows an overview of the proposed method. Taking a single
RGB image as an input, we first estimate the global (i.e. room layout) and
the mid-level (i.e. objects in a room) semantic structures of a scene using two
separate semantic segmentation networks. The layout labels are estimated by the
layout network NL, and the object labels are estimated by the object network
NO. To treat the different number of classes in the same domain, we convert
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Fig. 1. Proposed depth estimation architecture. First, an input RGB image is fed into
two separate semantic segmentation networks NL and NO to estimate room layout
and object class labels, respectively. Then, discriminator networks DL and DO discern
the reliability of the estimated layout and object labels. Lastly, the depth estimation
network ND take the input image, two label images, and two reliability scores as inputs
to infer the final depth values.

the estimated labels to 3-channel label images using a predefined colour palette.
Then, the layout label image and the object label image are respectively fed into
the discriminator networks DO and DL which estimate the reliability scores of
these images; i.e. how real the estimated label images are. Before feeding the
layout label image into the depth estimation network, we apply edge extraction
and distance transform [7] to it. Lastly, the depth estimation network ND takes
the input image, two label images, and two reliability scores as inputs to infer
the final depth values. Each label image does not directly flow into ND, but is
weighted by the respective reliability score. This weighting process reduces the
adverse effect on the depth estimation when the estimation quality of semantic
segmentation is insufficient.

3.1 Semantic Segmentation

In the proposed method, two types of semantic segmentation are performed: (1)
room layout segmentation to estimate the positions of walls, floor, and ceiling
of a room and (2) object segmentation to recognize the items in a room such
as furniture (hereinafter referred to as layout estimation and object recognition,
respectively). We utilize Pyramid Scene Parsing Network (PSPNet) [35] for both
segmentations.

In the layout estimation, we train the layout network NL with five room
layout classes: Ceiling, Floor, Right Wall, Left Wall, and Front Wall. The trained
network infers dense labelling of the layout classes as depicted in Fig. 1.

Object recognition gives us a more detailed, mid-level semantic structure of
a scene. 11 object classes including Bed, Chair, Table, etc., are used to train the
object network NO. The estimated mid-level cues support the depth estimation
network to make object depths consistent. Figure 1 shows the estimated object
labels.
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Fig. 2. Structure of the discriminator network. It takes the estimated label image and
provides the reliability of the estimation in the interval [0, 1].

To treat different numbers of classes in the same domain, we convert the
estimated labels to 3-channel label images using a predefined colour palette.

3.2 Reliability Estimation

Since most CNN architectures assume that all of the input information is equally
reliable, the input signals are not weighted. Rather, their reliability, or the
amount of influence, is implicitly learned in the network. However, in the pro-
posed modular architecture, where the layout estimation and the object recog-
nition results are received as inputs, their quality may affect the final depth
estimation result. Therefore, instead of implicit learning, we perform explicit
weighting to reduce the influence of erroneous results.

We propose a reliability estimation network, which takes the estimated label
image and provides the reliability of the estimation. The proposed reliability
estimation network is inspired by the discriminator of Generative Adversarial
Networks (GAN) [11] which discerns a given instance as being fake or real. Thus,
we refer to this network as discriminator network. Figure 2 shows the network
structure. We built it upon the AlexNet [16] with some modifications. We reduce
the dimensions of the first two fully connected layers to 2,048 and set the output
dimension to 1. The output reliability is activated by a sigmoid function.

The discriminator network is trained to output a value 1 for the ground truth
label image and 0 for the estimated label image. We denote a training example as
{l, l̂}, where l denotes the estimated label image and l̂ denotes the corresponding
ground truth label image. We define the loss function Ldis for the discriminator
network as follows:

Ldis = − 1
m

m∑

i=1

{
log(D(li)) + log(1 − D(l̂i))

}
(1)

where m is the mini-batch size, i is the index of each label image in the mini-
batch, and D(·) is the reliability in the interval [0, 1] estimated by the discrim-
inator network. Note that the two discriminator networks DL and DO in the
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Fig. 3. Structure of the depth estimation network. Each scale takes different semantic
information as the inputs. The layout label image is fed into Scale 1 and 2, and the
object recognition label image is given to Scale 2 and 3. The layout label image produces
the global semantic structure of a scene, while the object recognition label image gives
the mid-level semantic structure.

proposed architecture are individually trained with the results of the layout esti-
mation and the object recognition, respectively.

3.3 Extension of Depth Estimation Network

Taking the original image, two label images, and their reliabilities as inputs, our
depth estimation network ND infers the detailed depth of a cluttered indoor
scene. Figure 3 shows a conceptual diagram of the network structure. Our net-
work is based on the multi-scale CNN [4] and is extended to consider semantic
structures. Through preliminary experiments, we found that preprocessing the
layout estimation label image before feeding it to the depth network yields better
performance. Specifically, we apply edge extraction and distance transform [7]
to the label image. For ease of notation, we refer to the transformed layout esti-
mation label image and the object recognition label image as global semantics
and mid-level semantics, respectively.

Scale 1. The first scale provides a coarse global set of features over the entire
image region by processing low-level image features with convolutional layers fol-
lowed by two fully connected layers which introduce global relations. To enhance
the global consistency of the depth prediction, we feed both the global semantics
and the RGB image to this scale. The two input signals are separately mapped
to feature spaces by the dedicated input convolutional layers. Then, the global
semantics is weighted by multiplication with the estimated reliability score. The
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two feature maps are fused by element-wise summation and are processed by 11
convolutional layers and two fully connected layers. The output feature vector of
the last layer is reshaped to 1/16 of the spatial size of the inputs, then bilinearly
upsampled to 1/4 the scale.

Scale 2. As the scale increases, the network captures a more detailed scene
structure. In the second scale, the network produces a depth prediction at mid-
level resolution by combining feature maps from a narrower view of the image
along with the global features provided by Scale 1. This scale takes as inputs
both the global and the mid-level semantics in addition to the RGB image, and
acts as the bridge between the global and the mid-level structures. The last
convolutional layer outputs a coarse depth prediction of spatial resolution 74 ×
55. The predicted depth is upsampled to 148 × 110 and fed to the later stage of
Scale 3.

Scale 3. The third scale further refines the prediction to a higher resolution. To
recover the detailed structure of a scene, we feed both the mid-level semantics
and the RGB image to this final scale. After merging the two input signals,
we concatenate the output from Scale 2 with the feature maps to incorporate
multi-scale information. The final output is a depth prediction of size 148× 110.

We train the network using the loss function motivated by [4]. We denote
training examples as {Y, Ŷ }, where Y denotes the predicted depth map and Ŷ
denotes the ground truth depth map. Putting d = Y − Ŷ to be their difference,
the loss function Ldepth is defined as:

Ldepth(D̂,D∗) =
1
n

∑

i

d2i − 1
2n2

(
∑

i

di

)2

+
1
n

∑

i

[
(∇xdi)2 + (∇ydi)2

]
(2)

where n represents the total number of valid pixels in the image (we mask out
the pixels where the ground truth is missing), i represents the pixel index, and
∇xdi and ∇ydi are the image gradients of the difference in the horizontal and
vertical directions. We convolve a simple 1 × 3 filter to calculate ∇xdi and use
its transposed version to calculate ∇ydi.

4 Experiments

We evaluate our depth estimation architecture on the standard NYU Depth v2
indoor scene depth estimation dataset [30] which contains 654 test images. We
compare our architecture with the published results of recent methods [4,5,13,
20,23,33]. For quantitative evaluation, we report the following commonly used
metrics:

– Absolute relative difference (abs rel): 1
n

∑
i

|yi−ŷi|
yi

– Squared relative difference (sqr rel): 1
n

∑
i

‖yi−ŷi‖2

yi
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– RMSE (rms(linear)):
√

1
n

∑
i ‖yi − ŷi‖2

– RMSE in log space (rms(log)):
√

1
n

∑
i ‖log(yi) − log(ŷi)‖2

– Average log10 error (log10): 1
n

∑
i |log10(yi) − log10(ŷi)|

– Threshold: % of yi s.t. max
(

yi

ŷi
, ŷi

yi

)
= δ < thr, where thr ∈

{
1.25, 1.252, 1.253

}

where yi is the predicted depth value of a pixel i, ŷi is the ground truth depth,
and n is the total number of pixels. The next subsection describes training
procedures and datasets used to train the network modules.

4.1 Implementation Details

Layout Estimation. We train the layout estimation network NL with the
LSUN layout estimation dataset [34], which contains 4,000 indoor images. Fol-
lowing the procedure of [2], we assign dense semantic layout labels to the images
and train the network as a standard semantic segmentation task. Since the
dataset contains images of various sizes, we apply bicubic interpolation to resize
the images to 321 × 321 pixels. We utilize the PSPNet model [35] and initialize
its parameters using pre-trained weights (trained with the Pascal VOC2012 [6])
which is publicly available1. We set the base learning rate for the SGD solver to
0.0001 and apply polynomial decay of power 0.9 to this rate at each iteration
during the whole training. Momentum and weight decay rate are set to 0.9 and
0.0001, respectively. Due to physical memory limitations on our graphics card,
we set the mini-batch size to 2.

Object Recognition. We use almost the same set-up as for the layout
estimation, except for training dataset. We train the object recognition net-
work NO with 5,285 training images from SUN RGB-D semantic segmentation
dataset [32]. We apply no resizing to this dataset and feed the original 640×480
images to the network. We modify the standard 37 object categories by map-
ping to 13 categories [4] and removing duplicated layout classes (i.e. Wall, Floor,
Ceiling). In addition, we add a ‘background’ class and assign the above removed
categories to this class. This results in 11 classes. To improve the segmentation
quality, we use a fully-connected CRF [15] for post-processing.

Reliability Estimation. We train two discriminator networks DL and DO

using the LSUN dataset [34] and the SUN RGB-D dataset [32], respectively. We
use the same training procedure for DL and DO. For ease of notation, we omit the
subscripts in the following explanation. First, we acquire estimation results from
a training set of the dataset using the trained semantic segmentation network N .
The estimated labels and the corresponding ground truth labels are colourised
using a predefined colour palette. Then, we assign a label 0 for the estimated label
image and 1 for the ground truth label image. Finally, we train the discriminator

1 https://github.com/hszhao/PSPNet.

https://github.com/hszhao/PSPNet
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Table 1. Quantitative comparison against previous approaches on the NYU Depth v2
dataset.

Method Error (lower is better) Accuracy (higher is better)

abs rel sqr rel rms(linear) rms(log) log10 δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [5] 0.215 0.212 0.907 0.285 - 0.611 0.887 0.971

Joint HCRF [33] 0.220 0.210 0.745 0.262 0.094 0.605 0.890 0.970

Liu et al. [20] 0.230 - 0.824 - 0.095 0.614 0.883 0.971

Eigen and Fergus [4] 0.158 0.121 0.641 0.214 - 0.769 0.950 0.988

Roy and Todorovic [23] 0.187 - 0.744 - 0.078 - - -

Jafari et al. [13] 0.157 0.123 0.673 0.216 0.068 0.762 0.948 0.988

Ours 0.151 0.107 0.601 0.203 0.061 0.801 0.969 0.992

Ours w/o Disc. 0.163 0.127 0.631 0.207 0.064 0.794 0.963 0.991

Objects+Disc. 0.155 0.119 0.619 0.202 0.065 0.780 0.961 0.992

Layout+Disc. 0.151 0.112 0.643 0.202 0.071 0.778 0.959 0.992

Distance trans.+Disc. 0.161 0.121 0.626 0.206 0.063 0.774 0.959 0.991

D using the loss function defined in Eq. 1. We use Adam optimizer [14] and set
the learning rate to 10−10.

Depth Estimation. Following [4,5], we train our depth estimation network
ND using the raw distribution of the NYU Depth v2 dataset [30] which contains
many additional images. We extract 16K synchronized RGB-depth image pairs
using the toolbox provided by the authors2. We downsample the RGB images
from 640 × 480 to 320 × 240 pixels. The ground truth depth maps are converted
into log space and resized to the network output size 148 × 110. We train the
network using the SGD solver with mini-batches of size 8. Learning rate and
Momentum are set to 10−6 and 0.9, respectively. Note that, our training is done
by end-to-end learning instead of the incremental learning in [4].

4.2 Results on the NYU Depth v2

Table 1 shows the quantitative comparison of the proposed architecture against
previous approaches on the NYU Depth v2 dataset [30]. The proposed architec-
ture shows the best performance in most metrics. Comparing to the baseline [4],
which our architecture is built upon, we achieve consistent improvements in
all metrics. To evaluate the proposed architecture in detail, we conduct exper-
iments with several settings. As shown in Table 1, using the object recognition
(Objects + Disc.) has positive impacts on all metrics. Interestingly, in the individ-
ual case, using the layout estimation without distance transform (Layout + Disc.)
performs better than the distance transformed layout (Distance trans. + Disc.).
However, we found that the distance transformed layout provides better results
when it is integrated into the whole architecture. More importantly, one can see
the discriminator networks play an important role in our architecture (Ours w/o
Disc.). These results validate the effectiveness of our modular architecture.

2 https://cs.nyu.edu/∼silberman/datasets/nyu depth v2.html.

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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(a) RGB Image

(b) Ground Truth and Colour Coding (unit in metres)

(c) Eigen and Fergus [4]

(d) Proposed Architecture

Fig. 4. Depth estimation results for the NYU Depth v2 dataset. We show the depth
maps in upper rows and the corresponding error maps in lower rows.

Figure 4 presents the qualitative comparison between the proposed architec-
ture and the prediction of [4]. For detailed comparison, we also visualize the
errors in the depth maps. In addition to the quantitative performance improve-
ments, we found that the proposed architecture is more robust to the appearance
changes inside objects. In the second scene from the left, the sticky notes pasted
on a computer change its appearance and [4] produces large estimation error.
In contrast, our architecture consistently estimates the depth inside the object.
A similar effect appears in the centre of the fourth scene from the left, where a
shadow changes the appearance of a wall.

One drawback of our architecture is “blur effect” in object boundaries. The
visualized results show that feeding the object recognition label image into the
depth estimation contributes to the accuracy improvement. Nevertheless, the
object boundaries become unclear due to imperfect segmentation results. The
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layout estimation has similar effects. Although it improves the global consistency
of the prediction, it smooths out the local object boundaries.

5 Conclusions

We have proposed a novel deep modular network architecture for monocular
depth estimation of indoor scenes. Two auxiliary semantic segmentation net-
works give us the global (i.e. room layout) and the mid-level (i.e. objects in a
room) semantic structure to enhance depth prediction. Inspired by GAN, we
have introduced discriminator networks, which discern the reliability of the esti-
mated semantic structures. Each semantic structure is weighted by the respective
reliability score, and this process reduces the adverse effect on the depth esti-
mation when the estimation quality of semantic segmentation is insufficient. We
evaluated the proposed architecture on the NYUD Depth v2 benchmark dataset
and showed significant performance improvements over previous approaches.
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