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Abstract. Semantic segmentation of fisheye images (e.g., from action-
cameras or smartphones) requires different training approaches and data
than those of rectilinear images obtained using central projection. The
shape of objects is distorted depending on the distance between the prin-
cipal point and the object position in the image. Therefore, classical
semantic segmentation approaches fall short in terms of performance
compared to rectilinear data. A potential solution to this problem is the
recording and annotation of a new dataset, however this is expensive and
tedious. In this study, an alternative approach that modifies the augmen-
tation stage of deep learning training to re-use rectilinear training data
is presented. In this way we obtain a considerably higher semantic seg-
mentation performance on the fisheye images: +18.3% intersection over
union (IoU) for action-camera test images, +8.3% IoU for artificially
generated fisheye data, and +18.0% IoU for challenging security scenes
acquired in bird’s eye view.
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1 Introduction

Semantic segmentation (SemSeg) of images is a research topic of increasing inter-
est. Several tasks, e.g. in the automotive domain [3], in action localization [13],
person re-identification [19], background modeling [16], and remote sensing [18]
address SemSeg in a pre-processing step before the actual domain-specific work
is conducted. Various SemSeg approaches incl. those from the knowledge-based
domain, graphical models, and machine learning have been published in recent
years, see the survey [17]. A large and representative amount of training data
is required before such approaches can be successfully applied to unseen data.
Obtaining this required level of training data is expensive and tedious, since all
images have to be annotated before conducting supervised learning.

We address a SemSeg procedure for ultra-wide-angle view images with fisheye
(FE) effects. FE lenses are used in the automotive, robotic, consumer, and secu-
rity domains to obtain a larger field of view with a single camera. Examples of
corresponding sensors are action-cameras, recently published smartphones, and
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security-cameras. As a drawback of using such lenses, rectilinearity in images is
not maintained and the projection depends heavily on the lens design. In partic-
ular, the ratio of pixels per degree for equidistant fisheye projection is constant,
whereas the ratio for central projection depends on the angle between the optical
axis and the ray of the observed image point in space. Therefore, object shape in
images obtained using FE lenses depends on the distance to the principal point
and the position in the image. Consequently, training material, e.g., from an
object located next to the principal point in image space will look different than
the same object located next to the image border. It is thus not recommended
for FE training to use rectilinear data since the model can then never learn the
FE peculiarities, especially those towards the image border.

Our approach for FE SemSeg (cf. Fig. 1) exploits the projection model under-
lying FE images and a publicly available dataset containing central projection
images and annotations (MS COCO [10]) and transforms those images and anno-
tations into FE geometry before training. Thus, the focus of our study is on
obtaining rectilinear dataset performance for FE images without ever having
seen an image actually captured in FE geometry during training and validation.
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Fig. 1. Our approach for FE SemSeg. Images and annotations using central projection
are augmented into FE images for training and validation with six degree of freedom.
Real FE images are used only for testing. Credit central projection images [10].

The rest of the paper is structured as follows: work related to this study
and the state of-the-art are discussed further in this section. The methods we
developed are described in Sect. 2, and the results of the experiments are reported
and discussed in Sect. 3. Finally, conclusions are provided in Sect. 4.

1.1 State-of-the-Art and Related Work

Three approaches can be designed for FE SemSeg. These are: (1) separate record-
ing, annotation (labeling), and training with a FE dataset using well-known Sem-
Seg approaches. However, this task is expensive and tedious, and is therefore not
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addressed in this paper. (2) Pre-training of a classifier (typically a deep learning
architecture would be employed today) on rectilinear data and re-training of the
last layers on a diverse amount of FE images and annotations. In this approach,
the effort related to generating data and creating annotations is much lower but
it is still tangible for the purpose of this study. (3) Although generic in nature,
a FE image can be re-projected (de-warped) into a rectilinear view, resulting in
an equivalent to an image taken by a virtual camera with central projection (cf.
Fig. 2). Here, a trade-off has to be found between image quality, field of view,
and de-warping artifacts. The outer FE image areas are frequently suppressed,
since squeezed FE regions cannot be de-warped with sufficient quality into a
rectilinear image. A SemSeg model pre-trained on rectilinear data can subse-
quently be run on the generated rectilinear data as long as de-warping artifacts
are acceptable.

Fig. 2. De-warping of a FE image: Left to right: original FE image and rectilinear
de-warped images with decreasing focal length of the virtual camera. By increasing the
focal length of the virtual camera, the field of view decreases and information content
from the FE image is lost.

To the best of our knowledge there exists only one reference dealing directly
with FE SemSeg. This approach, which is related to the goal of our work is pub-
lished in [5]. In this work, the authors focus on finding a specialized architecture
for handling FE images. Due to a lack of FE images with provided SemSeg
annotations, images from Cityscapes dataset [3] are transformed into images
taken using a virtual FE camera exploiting a theoretical FE approximation. The
resulting FE images are classified pixel wise via a Convolutional Neural Network
(CNN) approach. Additionally Zoom Augmentation (one degree of freedom), by
varying the focal length of the virtual FE camera, is employed. Validation of real
FE data is not performed.

Our work differs fundamentally from the above described approach, since we
want to train a network, which achieves superior performance on FE images,
without the need of creating an expensive training dataset of annotated FE
images. Furthermore, we want to avoid de-warping and enable segmentation also
in the outer FE image area where de-warping cannot be performed. In contrast
to [5], we use six degrees of freedom (DoF) for augmentation, focus on obtaining
rectilinear SemSeg performance on FE images and our FE model is adapted for
real manufactured camera lenses.
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2 Methods

Our approach is based on the fact that a rectilinear image taken under central
projection and its corresponding annotation can be de-warped (transformed) to
a FE image by exploiting a commonly used projection model. Additionally, by
varying the exterior camera orientation (pose), various artificial (augmented)
FE images can be created which will look like a real camera image. After a
transformation into FE geometry, vignetting effects resulting in black areas,
which are typical for FE images, occur towards the corners and borders and also
for non-illuminated pixels caused by the augmentation. These pixels are masked
out (we call them “ignore pixels”), which means, that they will not be used for
parameter optimization in training and neither be evaluated in validation nor in
testing. Our augmentation contains six DoF (cf. Fig. 3 (c)-(h)); the resulting non-
illuminated pixel coordinates can be pre-computed for every augmented image.
In theory, we can extend our DoF using additional parameters describing the
interior camera orientation. However, in this paper, we use six parameters and
train exactly for the camera model that we will use for evaluation later (Note that
our FE augmentation differs from central projection augmentation (e.g. scaling
or shifting) since object shape is distorted differently with increasing distance
to the principal point. Using central projection, the shape itself is consistent
and, typically, only similarity transformation, flipping, and cropping are used
for augmentation [6]).

(a) rectilinear (b) fisheye (c) rotated (d) scaled (e) shifted (x)

(f) shifted
(x+y)

(g) paned (h) tilted (i) random

Fig. 3. DoF effects of augmentation. (a) Original rectilinear input image, (b): aug-
mented and centered FE image, (c): (b)+ rotated by 45◦, (d): (b)+ scaled, (e): (b)+
horizontally shifted, (f): (b)+ horizontally and vertically shifted, (g): (b)+ paned, (h):
(b)+ tilted, (i) 6 degrees of freedom randomly applied.

For the augmentation, we use the projection model introduced by Mei [11]
including his notation, which is an extension of [1,7]. As described in the fol-
lowing equations, up to a certain scale, points in 3D space can be transformed
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into a FE image and vice versa. We use this model to enable indirect coordinate
mapping of the rectilinear image and the related annotation via a look-up-table
(LUT). Bilinear interpolation for the image and nearest neighbor interpolation
for the annotation are used to keep values consistent. For every tuple consisting
of an image and its corresponding annotation, 25 randomly chosen augmen-
tations are created. Coordinates from a source image (rectilinear image) are
mapped to the destination image (FE) by applying the following transformation
(cf. Fig. 4), [11]1:

Fig. 4. Projection model from [11] (see footnote 1) adapted for this study

1. An image plane (rectilinear image) is located in the coordinate system (Cm),
whereby the exact position of the plane is varied due to the augmentation.
The plane is randomly rotated (three DoF) and shifted (three DoF) with
respect to the coordinate system origin and axes. This allows to move the
rectilinear image content to different locations in the FE image, depending
on the randomly chosen plane position and orientation.

2. Points from the image plane are projected onto a unit sphere,

(
#»

X)Fm
→ (

#»

XS)Fm
=

#»

X

|| #»

X|| = (XS , YS , ZS). (1)

3. The points are then changed to a new reference frame centered at
#»

Cp =
(0, 0, ξ), where ξ is a lens depending parameter (cf. [11]),

(
#   »

XS)Fm
→ (

#   »

XS)Fp
= (XS , YS , ZS + ξ). (2)

1 http://www.robots.ox.ac.uk/∼cmei/articles/projection model.pdf.

http://www.robots.ox.ac.uk/~cmei/articles/projection_model.pdf
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4. The points are then projected onto the normalized image plane (πmu
). The

coordinates on the normalized image plane are given by:

#»mu = (
XS

ZS + ξ
,

YS

ZS + ξ
, 1). (3)

5. Radial and tangential distortions are added with the distortion model intro-
duced by Brown [2] with three radial and two tangential coefficients. The
coordinates on the distortion affected image plane (πmd

) are then:

#»md = #»mu + D( #»mu,V), (4)

where D describes the coordinate depending distortion with the distortion
coefficients V.

6. The final projection involves a generalized camera projection matrix K (with
the generalized focal length f , (u0, v0) as the principal point, s as the skew,
and r as the aspect ratio). The coordinates on the fisheye image plane (πp)
are finally:

#»p = K · #»md. (5)

In our study, we used the interior calibration parameters (ξ, u0, v0, f , s, r,
V) obtained from the target FE camera based on [15].

For the actual augmentation, the inverse transformation is implemented to
enable indirect mapping (see above).

3 Experimental Evaluation

In this section, the results of experiments to investigate the described method
are reported. The goals of the experiments can be divided into three parts and
are summarized in Table 1:

Table 1. Structure of this section

Section Goal

3.1 Training and validation

- Baseline: Training on public MSCOCO dataset separately with (w/A)
and without (wo/A) rectilinear augmentation

- Training on the same dataset with FE augmentation (w/FEA)

3.2 Testing on FE images (consumer-camera images)

- Testing the models trained in Sect. 3.1 on real and artificially generated
FE images

3.3 Re-training and testing on FE images (security-camera images)

- Re-training and testing the models trained in Sect. 3.1 with 400
security-camera images using central projection to obtain domain
adaptation

(the public dataset does not contain a security-camera pose)
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Semantic Segmentation Methodology: We choose the commonly used archi-
tecture from the Visual Geometry Group, VGG16 [14], to create baseline results
against which we evaluate our experiments. The feature extractor is initialized
with weights, which we obtain by pre-training on the ImageNet Dataset [4].
To output a semantic segmentation the last two fully connected layers are con-
verted into fully convolutional layers and skip layers are introduced up to FCN8s
as described in [12]. We freeze the weights from all layers prior to the originally
fully connected layers and therefore only re-train the last layers of the network.
Training is run with a batch size of five samples, using the adaptive optimizer
ADAM [9].

While there are several other approaches, which potentially deliver better
results on SemSeg, the scope of this work is to introduce and evaluate a method
for improving SemSeg on FE images compared to a SemSeg output from a net-
work, which is solely trained on rectilinear images. For this purpose the absolute
accuracy and thus the choice of deep learning network architecture is seen as
less important.

Key Performance Indicator: We optimize our network with the cross entropy
loss and evaluate the resulting SemSeg image with the intersection over union
(IoU) as used in many SemSeg benchmarks, e.g. the Cityscapes Dataset [3].
Furthermore, we report the average IoU, which is the average IoU over all class
IoUs and the F1-score, followed by the true positive and true negative rates.

Test Images: Since training and testing material is limited in the FE domain,
especially in the SemSeg domain, we create and annotate three datasets for our
study. MSCOCO-FE (Sect. 3.2) constitutes 37,504 images and annotations from
the original MSCOCO [10] dataset, which we transform to 937,600 artificially
generated FE images with pre-defined interior orientation parameters. GoPro-FE
(Sect. 3.2) constitutes 50 real images taken using a GoPro Hero 4 full frame,
ultra-wide-angle view FE camera (4000 × 3000 pixels resolution, down-sampled
to 640 × 480 pixels). The dataset consists of persons, animals, cars, bicycles,
and furniture. The interior orientation of this camera is used for MSCOCO-
FE; a bundle adjustment based on [15] is used to determine these parameters.
However, since the GoPro camera does not have a fixed focal length, we use
the averaged camera parameters for our projection model and do not consider
variations. Security-Dome (Sect. 3.3) constitutes 12 challenging real FE images
(640 × 640 pixels) taken using a circular FE security-camera in bird’s eye view
pose. While being a dataset with only a small number of images, each image
comprises a lot of information with 25–55 persons being present per image.

Augmentation: Performances between networks where augmentation was used
during training can not be fairly compared to networks trained without aug-
mentation. By using augmentation during training, a bigger variability is intro-
duced to the training data and if correctly used, it will be beneficial for the
network. Therefore, we not only implemented a FE augmented training as used
in Sect. 3.1, but also an augmentation for the rectilinear images. By applying this
to our baseline experiment trained on rectilinear images without augmentations
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(wo/A), we get a model trained on rectilinear images with augmentations (w/A),
which can be better compared to our FE augmented model (w/FEA). This
augmentation on the baseline experiment are arbitrary combinations of simi-
larity transformations like translation (2D) or flipping. For both augmentation
approaches (baseline and FE), the angle of rotation (see Fig. 3(c)) is limited to
−20◦ < α < +20◦, because the shape of objects in the test set is expected to be
in this range.

3.1 Training and Validation

Training Data: Microsoft COCO (MSCOCO) [10], is a diverse dataset con-
taining consumer-camera images collected from the Flickr website. The dataset
provides 80 object classes and one background class for instance-based SemSeg.
The official test set of the dataset is not published and evaluation is only pos-
sible by submitting to the evaluation servers. Due to our final goal of training
networks specialized for FE images such an evaluation is not of interest. Instead,
we reduce the class set to the classes, which are relevant for the FE test dataset
and subdivide the validation set of the publicly available dataset including anno-
tations into a customized validation and test set. We remap the 80 to 16 coarser
classes2 for non-instance-based SemSeg. Training is performed based on 82,783
images, 3,000 images for validation, and 37,504 images for testing (the original
MSCOCO validation image size minus our used validation images). As we do not
carry out instance-based SemSeg, we do not apply the official evaluation metric,
which is the average precision and average recall on instance-based segmenta-
tion, but use the IoU evaluation following the Cityscapes [3] evaluation protocol
instead, because we are primarily interested in the impact of our method on FE
images. Furthermore, all images are normalized by subtraction of the mean and
division by the standard deviation.

Validation Procedure: The standard procedure is to only apply augmenta-
tions during training and to leave the validation images untouched to measure
the improvements in every subsequent epoch. For rectilinear augmentations this
is reasonable, because the validation set consists of real images. However, in our
case, we are not searching for the best performance on real images. Instead, we
want to validate the performance on virtual FE images, where all transforma-
tions from rectilinear images represent a ‘real’ FE image on its own. Therefore,
we perform random FE transformations also on the validation images. Due to
reasons of comparability we do the same for the experiment using rectilinear
augmentations.

Validation Results: In Fig. 5 the average IoU as a function of the training
epochs on the validation data for the different training strategies is shown, where

2 Background, person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic
light, furniture, animal, bagpack, handbag, and suitcase.
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we choose an epoch size of 8000 images. Because of the reduction to 16 classes, we
have to deal with an over-representation of the background class in the MSCOCO
dataset, which is why training tends to get stuck in a local minimum resulting
in background as the only output. To overcome this issue, we carry out training
and validation for the first 100 epochs using the original training and validation
images (without augmentation) and subsequently use the resulting weights to
initialize the networks of the augmentation based experiments. Another option
would have been to introduce class weights.

Fig. 5. Average IoU as function of training epoch. Training is performed on rectilinear
data (rd) and artificially (augmented) generated FE data (fed). (Color figure online)

The red curve in Fig. 5 shows the IoU for the rectilinear training without aug-
mentation (wo/A), the blue curve shows the IoU for rectilinear augmentation
(w/A). The drop in IoU percentage (red vs. blue curve) results in the difference
between training and validation images caused by the augmentation introduced
after 100 epochs. On average, both models obtain around 42% IoU during the
last epochs on the respective validation data. While the baseline model without
augmentation converges after approximately 70 epochs, the training incorporat-
ing augmentation needs considerably longer to converge. This is not surprising if
taking into account that here, in contrast to the standard procedure, the valida-
tion images are also augmented. The black curve shows the IoU of the approach
presented in this work, using augmented FE images. After around 300 epochs,
no significant improvement is noted for both augmentation-based models. In our
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experiment the FE augmented model and the rectilinear augmented model even-
tually end up at roughly the same performance. This shows that regardless of
the different augmentations, the model performances does not seem to differ as
long as the same type of transformations are used in training and validation.

3.2 Testing on FE Images

In this section, we evaluate our SemSeg performance on real fisheye images for
models trained with rectilinear images against models trained with our aug-
mented FE images and present qualitative and quantitative results.

Qualitative Evaluation: Figure 6 shows examples for the two models (w/A
and w/FEA) trained on MSCOCO deployed on our new dataset (GoPro-FE).
The images obtained using the baseline approach suffer from mis-classifications
in the outer image area. Since this model is not trained on FE images, the number
of incorrectly segmented pixels rises with increasing distance to the principal
point due to stronger FE effects. Images segmented from the model trained with

Fig. 6. Qualitative results on images randomly picked from our dataset. Odd line num-
bers show the result with the best rectilinear model; even line numbers correspond to
the results for the model trained with our FE model and augmentation. Class visu-
alization: person - red, animal - orange, car - blue, furniture - white. (Color figure
online)
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our approach show improved results in particular in the outer image areas (1st
and 2nd line, 1st image from the right). In the image showing the furniture (3rd
and 4th line, 2nd image from the right) the result of explicitly learned FE effects
can be observed for the curved couch and the zebra image in the back.

Quantitative Evaluation: Table 2 shows the quantitative results for our 50
real FE test images (GoPro-FE). Our model considerably outperforms the two
baseline models (+18.3% IoU) while using the same raw training material as the
baseline with augmentation. All classes are better classified by our approach, evi-
denced by an F1-score of +18.8%, a true positive rate of +27.8%, and a true
negative rate of +7.7%. The large margin compared to the baseline is not sur-
prising since the baseline model is not trained for FE data. Notably, we observe
that we can use rectilinear images plus augmentation to obtain much higher IoU
on FE images.

Table 2. Quantitative evaluation on our own FE dataset. � indicates not countable.

# instances Baseline wo/A Baseline w/A Ours w/FEA

IoU (average) 175 33.9 37.3 55.6

Background � 90.5 90.3 94.7

Person 49 51.0 59.8 75.5

Bicycle 28 12.1 13.9 27.6

Car 75 30.0 29.8 45.4

Sitting furniture 6 0.0 4.9 39.1

Animal 17 19.9 25.1 51.1

F1 175 42.8 50.0 68.8

True positive rate 175 31.4 34.2 62.0

True negative rate 175 89.0 87.9 95.6

Evaluation on Artificial FE Images: In this section, we report the perfor-
mance for the FE SemSeg obtained for images that are from the same domain
than the ones used during training (MSCOCO-FE), but not used for training
and validation. We use artificially generated images since the test material is
limited. To do so we also transform the MSCOCO test dataset, which is split
(original validation dataset minus the 3,000 images that we only use for our val-
idation), into FE geometry. We transform all of the 37,504 images and the label
images each to 25 randomly generated FE image versions using the projection
model introduced in Sect. 2, resulting in 937,600 test images.

Figure 7 shows four example images from MSCOCO augmented to FE
images, whereas Table 3 lists the SemSeg results. The results show that our
augmentation is very powerful. We obtain +8.3% more IoU than the other two
tested approaches on the same test images with our augmentation. Using the
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(a) Original#1 (b) Original#2 (c) Original#3 (d) Original#4

(e) Augmented#1 (f) Augmented#2 (g) Augmented#3 (h) Augmented#4

Fig. 7. Four randomly picked original images from the MSCOCO dataset and corre-
sponding fisheye images.

Table 3. Quantitative evaluation on an artificially generated FE test set. The used
augmented test dataset constitutes 937,600 images.

Baseline wo/A (↑) Baseline w/A(↑) Ours w/FEA (↑)

IoU (average) 34.0 34.7 43.0

Background 90.1 89.9 92.9

Person 65.1 58.9 73.1

Bicycle 23.5 24.7 30.2

Car 24.4 30.5 35.2

Motorcycle 36.8 48.1 48.9

Airplane 33.3 34.8 43.5

Bus 48.5 48.4 66.4

Train 46.8 44.4 63.1

Truck 28.0 26.3 41.1

Boat 15.3 18.2 22.8

Traffic light 22.5 25.4 31.2

Furniture 24.6 19.7 26.4

Animal 64.9 57.8 75.3

Bagpack 0.0 6.6 16.0

Handbag 4.1 1.9 0.0

Suitcase 16.2 19.6 23.2

F1-score 46.5 48.0 56.1

True positive rate 42.2 42.9 52.1

True negative rate 97.8 97.5 98.5
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proposed method, all classes, except the handbag class, are considerably better
classified in comparison to using the baseline approaches. The class handbag
is the class with the lowest number of pixels, and therefore an adequate train-
ing of this class is challenging. Moreover, our true positive rate is +9.2% and
F1-score +8.1% higher than those obtained for the other two approaches. It is
also noticeable, that the two baseline models show almost identical performance.
This indicates, that it is not sufficient to add variability by any arbitrary aug-
mentation. To gain performance on the target images, it is crucial to choose
augmentations which suit the camera model. We will underline this further in
Sect. 3.3.

3.3 Testing on FE Images in the Security-Camera Domain

In this Section, we show that it is crucial to choose the correct underlying cam-
era model when applying our FE augmentation method. Therefore, we evaluate
our approach on our Security-Dome test dataset, which consists of challeng-
ing real dome security-camera images. Compared to the GoPro-FE dataset, the
FE effect is much stronger and we are dealing with a bird’s eye view. First, to
create our baseline experiment, we evaluate the baseline model (w/A) and the
model trained with FE-augmentations (w/FEA) on the Security-Dome dataset.
As expected, the w/FEA model achieved higher performance, but especially fac-
ing some issues towards the borders of the image. Since not having many persons
captured from the bird’s eye view in the MSCOCO dataset, we decided to use
an already annotated dataset Security-Recti which consists of 400 rectilinear
images also from the security domain. To evaluate the importance of correct
augmentation, we now re-train our w/FEA model for 100 epochs with the same
FE-augmentation as used for the GoPro and a FE-augmentation, which uses
the transformation parameters from the dome security-camera. For completion,
we also re-trained the w/A-model with the Security-Recti images. In Table 4,
the high impact of the augmentations can be observed. With the baseline app-
roach for rectilinear images an IoU of 17.4% is achieved, while the use of our

Table 4. Measures for class person in the challenging Security-Dome dataset.

Class person w/A w/A w/FEA w/FEA w/FEA

+re-train +re-train +re-train

(GoPro) (GoPro) (Sec.-Cam.)

Baseline Baseline (Wrong cam.) (Wrong cam.) (Correct cam.)

IoU 15.1 17.4 20.4 27.1 35.4

F1-score 26.2 29.7 35.2 42.6 52.3

True positive
rate

16.4 19.5 22.3 29.0 38.2

True negative
rate

99.0 98.7 99.1 99.2 99.2
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FE-augmentation method is already giving a 10% gain even with the parameters
for the GoPro-camera. Now applying the correct augmentation, the performance
reaches 35.4% IoU. This is quite impressive on the Security-Dome with its very
strong distortions and extreme viewpoint considering that not a single image
from this domain was was recorded and annotated. Qualitative results can be
seen in Fig. 8.

(a) Baseline#1 (b) Ours#1 (c) Baseline#2 (d) Ours#2

Fig. 8. SemSeg for FE images. Two input images are segmented with w/A (Baseline)
and with w/FEA (Ours) both re-trained on Security-Recti.

4 Conclusion

Training data for fisheye (FE) semantic segmentation is limited and recording
and annotation for supervised learning is expensive and tedious. Additionally,
much more training data is required than for rectilinear data, since, depending
on the employed lens, the shape of objects varies with the position of the object
in the image. We presented an approach to re-use rectilinear training material
to enable semantic segmentation on FE images obtained from action cameras,
smartphones or security cameras. In particular, we introduce rectlinear-to-FE
transformations to the augmentation stage in training. Additional annotations
or specially tailored deep learning architectures are not necessary. On average
our approach is +18.3% IoU (trained on MSCOCO) better on real full-frame
fisheye images (n = 50 images) and +8.3% IoU better on artificially generated
FE images (n = 937,600 images) when using the same raw training material as
the baseline with rectilinear augmentations. Furthermore, we obtained +18.0%
IoU on a new, very challenging dome security-camera dataset (circular FE)
where the camera is mounted in bird’s eye view.

One further effect, which we realized was that in our experiment the FE aug-
mented model and the rectilinear augmented model eventually end up roughly
at the same performance on the respective dataset. This shows that regardless
of the different augmentations, the model performance does not seem to differ
as long as the same type of transformation is used in training and validation.

In the future, we will increase the DoF for augmentation and investigate, how
the deep learning model architecture can be tailored for further improvements
on FE SemSeg. Another direction, we want to explore is the use of Generative
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Adversarial Networks (GANs) [8] to do semantic segmentation on FE images:
instead of employing an explicit sensor model (see Eqs. (1) to (5)) we want to
train a GAN with the aim to transform arbitrary FE images to rectilinear images
and the segmentation back to the FE image. The segmentation network is then
only trained with the original training set of rectilinear images. We will compare
obtained segmentation performance with our FE augmented model.
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J.G.: A review on deep learning techniques applied to semantic segmentation.
CoRR abs/1704.06857 (2017)

7. Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and
practical implications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 445–
461. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45053-X 29

8. Goodfellow, I.J., et al.: Generative adversarial networks. CoRR abs/1406.2661
(2014)

9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

11. Mei, C.: Couplage vision omnidirectionnelle et télémétrie laser pour la navigation
en robotique/laser-augmented omnidirectional vision for 3D localisation and map-
ping. Ph.D. thesis, INRIA Sophia Antipolis, Project-team ARobAS (2007)

12. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. CoRR abs/1605.06211 (2016)

13. Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.: CDC: convolutional-
de-convolutional networks for precise temporal action localization in untrimmed
videos. CoRR abs/1703.01515 (2017)

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

15. Strauß, T., Ziegler, J., Beck, J.: Calibrating multiple cameras with non-overlapping
views using coded checkerboard targets. In: ITSC, pp. 2623–2628. IEEE (2014)

http://www.close-range.com/docs/Decentering_Distortion_of_Lenses_Brown_1966_may_444-462.pdf
http://www.close-range.com/docs/Decentering_Distortion_of_Lenses_Brown_1966_may_444-462.pdf
https://doi.org/10.1007/3-540-45053-X_29
https://doi.org/10.1007/978-3-319-10602-1_48


196 G. Blott et al.

16. Su, T.-F., Chen, Y.-L., Lai, S.-H.: Over-segmentation based background modeling
and foreground detection with shadow removal by using hierarchical MRFs. In:
Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp.
535–546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-
7 42

17. Thoma, M.: A survey of semantic segmentation. CoRR abs/1602.06541 (2016)
18. Wei, X., Guo, Y., Gao, X., Yan, M., Sun, X.: A new semantic segmentation model

for remote sensing images. In: IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 1776–1779. IEEE (2017)

19. Yang, Y., Yang, J., Yan, J., Liao, S., Yi, D., Li, S.Z.: Salient color names for person
re-identification. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8689, pp. 536–551. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10590-1 35

https://doi.org/10.1007/978-3-642-19318-7_42
https://doi.org/10.1007/978-3-642-19318-7_42
https://doi.org/10.1007/978-3-319-10590-1_35
https://doi.org/10.1007/978-3-319-10590-1_35

	Semantic Segmentation of Fisheye Images
	1 Introduction
	1.1 State-of-the-Art and Related Work

	2 Methods
	3 Experimental Evaluation
	3.1 Training and Validation
	3.2 Testing on FE Images
	3.3 Testing on FE Images in the Security-Camera Domain

	4 Conclusion
	References




