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Abstract. Nowadays, with the development of sensor techniques and
the growth in a number of volcanic monitoring systems, more and more
data about volcanic sensor signals are gathered. This results in a need
for mining these data to study the mechanism of the volcanic eruption.
This paper focuses on Volcano Activity Recognition (VAR) where the
inputs are multiple sensor data obtained from the volcanic monitoring
system in the form of time series. And the output of this research is the
volcano status which is either explosive or not explosive. It is hard even
for experts to extract handcrafted features from these time series. To
solve this problem, we propose a deep neural network architecture called
VolNet which adapts Convolutional Neural Network for each time series
to extract non-handcrafted feature representation which is considered
powerful to discriminate between classes. By taking advantages of VolNet
as a building block, we propose a simple but effective fusion model called
Deep Modular Multimodal Fusion (DMMF) which adapts data grouping
as the guidance to design the architecture of fusion model. Different from
conventional multimodal fusion where the features are concatenated all
at once at the fusion step, DMMF fuses relevant modalities in different
modules separately in a hierarchical fashion. We conducted extensive
experiments to demonstrate the effectiveness of VolNet and DMMF on
the volcanic sensor datasets obtained from Sakurajima volcano, which are
the biggest volcanic sensor datasets in Japan. The experiments showed
that DMMF outperformed the current state-of-the-art fusion model with
the increase of F-score up to 1.9% on average.

Keywords: Multimodal fusion · Volcano Activity Recognition
Time series · Convolutional Neural Network

1 Introduction

Volcanic eruption causes severe damage to human and society, hence it is one of
the main concerns of many people in the world, especially to volcano experts.
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Fig. 1. The overview of Volcano Activity Recognition (VAR). The volcanic monitoring
system (left) includes sensors to obtain the signals in the form of time series (right).
The goal is to build an explosive eruption classifier. The input is raw time series, and
the output in this research is the status of the volcano that is either explosive or not
explosive.

A popular method for volcano research is to analyze sensor signals obtained from
the volcanic monitoring system. Multiple sensors are deployed in this system
and each sensor is responsible for measuring a specific type of data. Examples
of volcanic sensor data are ground deformation, ground surface vibration, and
gas emission. These data are represented in the form of time series whose values
are numeric and are recorded periodically in real time. As there are correlations
between these time series data and volcanic eruption, the data are very valuable
for the mining of volcano activities [1]. Because the data is gathered continuously
in real time, the amount of data is increasing in size. This opens an opportunity
for both volcano and machine learning researchers to mine the data in large scale.
Our main focus in this paper is Volcano Activity Recognition (VAR). VAR is
the task of classifying time series sensor data into multiple categories of volcano
activity. Figure 1 shows the overall structure of VAR. In this paper, we classify
the two most important statues of a volcano: explosive and not explosive. If the
classification is successful, this research can give an insight to the mechanism of
the eruption. In the context of this paper, the eruption means explosive eruption.

VAR can be solved using raw sensor signal, but the features extracted from
this raw data could have more potential in terms of class discrimination than the
raw data itself [2]. However, handcrafted feature extraction is time-consuming
and is hard to decide even for volcano experts. Recently, deep learning with many
layers of nonlinear processing for automatic feature extraction has proven to be
effective in many applications such as image classification, speech recognition,
and human activity recognition [5]. In this research, we propose a deep neural
network architecture called VolNet which adapts Convolutional Neural Network
(CNN), a particular type of deep learning model, for VAR on a single sensor.
VolNet with its deep architecture is able to learn a hierarchy of abstract features
automatically, and then use these features for the classification task. Based on
the VolNet, we extend the model to multimodal fusion which takes into account
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all related sensors for this task. This is important because the eruption is con-
trolled by many different factors which are measured by different sensors. In
our context of multimodal fusion, one type of data obtained from a sensor is
called as a modality. Recent multiple sensor fusion models fuse the features of
all modalities at once and then feed them to the classifier [6–8]. In this paper,
we call this “one-time fusion”. This way of fusion ignores the properties of each
modality and treats all modalities as the same. However, we consider this is not
a good approach in the problems related to interdisciplinary study like VAR
where the properties of data are different and important to design the solutions.
Our assumption is some modalities are more likely to be correlated than oth-
ers, and hence better to be fused together before they will be fused with other
modalities. Based on that idea, we propose a simple but effective fusion model
called Deep Modular Multimodal Fusion (DMMF) which uses VolNet as build-
ing block. DMMF is able to fuse relevant modalities in each module separately
in a hierarchical fashion.

We have conducted extensive experiments for VAR on real world datasets
obtained from Sakurajima volcanic monitoring system. Sakurajima is one of the
most active volcanoes in Japan. In this paper, we propose two models for VAR:
VolNet on a single sensor and DMMF on multiple sensors. First, we compared
the performance of VolNet with conventional time series classification on a single
sensor. Second, we compared DMMF with the best results obtained from the first
experiment on single sensor and the one-time fusion model. The result shows that
our proposed VolNet and DMMF outperformed all other state-of-the-art models.

To the best of our knowledge, this work is the first attempt to employ deep
neural network for the study of VAR. Our deep model learns various patterns
and classifies volcanic eruption accurately. The following are the contributions
of this paper:

– Propose an accurate VolNet architecture for VAR on a single sensor.
– Propose a simple but effective fusion model called Deep Modular Multimodal

Fusion (DMMF) which fuses the modalities in different modules in a hierar-
chical fashion.

– Outperform volcano experts on the task of VAR.
– Conduct extensive experiments in real volcanic sensor datasets.

The rest of the paper is organized as follows: We briefly introduce the dataset
used in our experiment in Sect. 2. Next, we explain our approaches for VAR in
Sect. 3. In the Sect. 4, we show detailed experiments on proposed method and
baseline models. Related work will be summarized in Sect. 5. And finally, we
conclude the paper in Sect. 6.

2 Datasets

We use volcanic sensor data obtained from Osumi Office of River and National
Highway, Kyushu Regional Development Bureau, MLIT1. The data is about
1 http://www.mlit.go.jp/en/index.html.

http://www.mlit.go.jp/en/index.html
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Fig. 2. The explanation of strain data (left) and seismic data (right). Strain data
is measured by Strainmeters. These instruments measure linear strain by detecting
horizontal contraction or extension in a length. They are installed in the direction of
the crater (radial component) and perpendicular to the radial direction (tangential
component). Seismic data is measured by Seismometer. This measures ground surface
vibration as the velocity of a particle. Square sum of the velocity is proportional to
seismic energy to evaluate the intensity of long-term tremor. Maximum amplitude
velocity in the seismic records is treated as the instantaneous intensity of the event.

the explosive eruptions of Sakurajima volcano2 which is one of the most active
volcanoes in Japan. There are many explosive eruptions occurring in this vol-
cano every week, so the data is good for VAR. This data includes four types
of sensor data arranged into two groups. The first group is the seismic data
including “seismic energy” and “maximum amplitude”. These data are related
to the ground surface vibration. The second group is the strain data including
“tangential strain” and “radial strain”. These two strains measure the ground
deformation horizontally and vertically respectively. The data in each group are
correlated with each other as they measure one type of data but in different
ways. The details of data measurement and the instruments are shown in Fig. 2.

The data for all sensors are numeric values and recorded in every minute.
The total data includes eight years from 2009 to 2016, and this is the biggest
dataset about the volcanic monitor in Japan.

3 Proposed Methods

3.1 Problem Definition

VAR takes D sensors as the input and each sensor is a time series of length
N . Formally, the input is a matrix of size D × N with the element xd

i is the
ith element of the time series obtained from sensor d, where 1 ≤ i ≤ N and
1 ≤ d ≤ D. In case of VAR for single sensor, D is equal to 1 and the input is a
time series of length N . In this paper, the output of VAR is the class of the input,
which is either explosive or not explosive. The task is a two-class classification. In
VAR, the majority of the input are not explosive, but the explosive cases attract

2 https://en.wikipedia.org/wiki/Sakurajima.

https://en.wikipedia.org/wiki/Sakurajima
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Fig. 3. The architecture of VolNet on a single sensor for VAR. The layers includes
Conv (Convolution), ReLU, Drop (Dropout), MaxPool (Max Pooling non-overlapping
pooling region with length of 2), Dense (fully-connected), and Sigmoid. The temporal
convolution has kernel size of 5. The numbers before and after “x” on the bottom refer
to the number of feature maps and the size of a feature map, respectively.

more attention than not explosive cases. Therefore, the goal of this research is
not only to optimize the misclassification rate in general, but also maximize the
precision and recall of explosive class.

3.2 Challenges

There are two main challenges in this task. The first is extreme class imbalance:
Although Sakurajima is an active volcano, it is not explosive for most of the
time. This poses a big challenge to the classification task as most classifiers tend
to favor the majority class. The second challenge is sensor fusion. Because the
eruption is complicated and controlled by many factors, multiple different time
series sensor data should be used in order to improve the performance of the
classifier. The fusion model should handle multiple data effectively.

3.3 Proposed VolNet for Single Sensor

CNN with its deep architecture is able to learn a hierarchy of abstract features
automatically. Given a time series, CNN extracts features from the input using
convolution operation with a kernel. Since the convolution operation will spread
in different regions of the same sensor, it is feasible for CNN to detect the salient
patterns within the input, no matter where they are. Because the nature of time
series data is temporal, we use one-dimensional (1D) kernel for each time series
independently. The feature map extracted by 1D convolution is obtained as:

ml+1
i (x) = σ

(
F l∑
f=1

[ P l−1∑
p=0

Kl
if (p)ml

f (x + p)
]

+ bl+1
i

)
, (1)

where ml+1
i is the feature map i in layer l + 1, F l is the number of feature maps

in layer l, P l is the length of the kernel in layer l, Kl
if is the convolution kernel of

the feature map f in the layer l, and bl+1
i is the bias vector in layer l+1. Pooling
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layer is also used in our model to increase the robustness of features to the small
variations. In general, given a feature map, the pooling layer is obtained as:

ml+1
i (x) = f1≤n≤N l

(
ml

i(x + n)
)

, (2)

where f is the pooling function, 1 ≤ n ≤ N l is the range of value function f
applies for, and N l is the length of pooling region.

In this part, we will construct the architecture of VolNet especially for VAR.
The overall structure is shown in Fig. 3. There are four main blocks in the archi-
tecture. The first block is “Input” and the last one is “Output”. The network
takes a time series of raw volcanic sensor signal as input and outputs the status
of the volcano which is either explosive or not explosive. The second block called
“Deep Feature Extraction” to automatically extract deep features from the time
series input. This block includes the following eight small blocks in order: (1) a
convolution layer, (2) a rectified linear unit (ReLU) layer that is the activation
function mapping the output value using the function relu(x) = max(0, x), and
(3) a dropout layer that is a regularization technique [3] where randomly selected
neurons are ignored during training, hence reduce over-fitting. We employ a max
pooling at the end of this block to decrease the dimension of the feature maps. All
the convolution layer has kernel size of 5 and 128 feature maps. Dropout has the
probability of 0.5 and we only use dropout for three small blocks (the first, fourth
and last small blocks). The reason is more dropout layers can lead to much ran-
domness which is not good in our case. Max pooling has non-overlapping pooling
region with length of 2. These hyper parameters are proved to be effective in
our task through experiments and chosen using a validation set. The third block
called “Classification” is a fully-connected network taking the learned features
in previous layer and output the class using sigmoid function S(x) = 1

1+e−x .
We also use dropout layer in this block to reduce over-fitting. One remark in
designing the architecture of VolNet especially for VAR is that there are no nor-
malization layers. The experiments showed that adding batch normalization [4]
did not improve but worsen the performance.

To train VolNet, we minimize the weighted binary cross entropy loss function,
and increase positive weight to deal with class imbalance problem:

L =
batch size∑

i=1

yi log(y′
i) × weight + (1 − yi) log(1 − y′

i),

with y is the target and y′ is the prediction. The parameter weight with value
more than 1 is included to the loss function to penalize the cases when the target
is 1 (explosive) but the prediction is near 0 (not explosive). By optimizing the loss
function this way, we can force the model to favor explosive class if the ground
truth is explosive. The model was trained via Stochastic Gradient Descent with
the learning rate of 10−3.

VolNet is designed mainly to deal with one sensor time series. In order to
process multiple time series, we proposed a new fusion model built on the top
of VolNet called Deep Modular Multimodal Fusion (DMMF).
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Fig. 4. The proposed Deep Modular Multimodal Fusion (DMMF) for multiple sensors
based on VAR. First, we extract the deep representation features using VolNet for
each modality independently. Then we group the features from the modalities which
are relevant with each other into modules. In this figure, there are two modules A-B
and C-D. Each module is followed by a Dense (fully-connected layer) so that they will
be fused here. Then, in the next level, two modules will be fused again using one more
Dense layer. Finally, we use a Sigmoid layer to compute the classification.

3.4 Proposed Deep Modular Multimodal Fusion for Multiple
Sensors

While using one sensor performs well for VAR, fusing multiple sensors can poten-
tially improve the performance. This is especially important in VAR where the
eruption is affected by many factors. Also in the monitoring system, each sensor
measures a different type of data and data is considered noisy due to earth-
quakes and typhoons. Therefore, adding more data from different sources can
potentially improve the accuracy of VAR.

Recent work on multimodal fusion for sensors adapted CNN for each modal-
ity independently and then concatenate all the feature maps in one step [6], [8],
which is not appropriate for VAR. In VAR, each modality is the data obtained
from one sensor and some related sensors create a group of data. Our assump-
tion is that the modalities in the same group of data are more related than other
modalities and related modalities should be fused together before they will be
fused with other modalities. For example, the modalities from tangential strain
sensor and radial strain sensor make a group called “strain data”. They both
measure the ground deformation, but in different directions which are horizon-
tally and vertically respectively. Intuitively, the multimodal fusion model that
considers fusing these two modalities first is expected to improve the perfor-
mance. Based on this idea, we propose a simple but effective Deep Modular
Multimodal Fusion (DMMF) which is built on the top of our proposed VolNet
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and is able to fuse relevant modalities in each module separately in a hierarchical
fashion.

The overall architecture of DMMF is shown in Fig. 4. First, we use VolNet to
extract the feature maps for each modality independently and then concatenate
all feature maps to get the deep representation for each modality. Then we
group the features from the modalities which are relevant with each other into
modules. In each module, we concatenate the features of all modalities into
one vector and add a fully-connected network so that these modalities will be
fused. We then concatenate all the fused features from all modules and add
one more fully-connected layer to fuse all the modules. The final layer is the
sigmoid to compute the classification score based on the fused features from all
modules. DMMF fuses the modalities in a hierarchical fashion, so all modalities
have a chance to fused with each other. Unlike ensemble model where the final
classification is made based on the classification of models on different sets of
data, DMMF makes the classification based on the feature fusion of different
groups of data in a hierarchical fashion.

There are some remarks on the design of DMMF. First, DMMF is built
on the top of Volnet, hence takes advantages of deep features extracted from
VolNet which is powerful to discriminate between classes. Second, DMMF does
not directly concatenate all features at once, but it fuses the modalities in some
different modules in a hierarchical fashion. Intuitively, when related modalities
are fused together, the fusion will be more robust to noise as relevant modalities
tend to complement with each other.

4 Experiments

4.1 Evaluation Metrics

Because of class imbalance problem, we use two type of F-score to do the evalua-
tion. The first metric is F-score of the explosive class (FE) which is the minority
class in VAR. This metric measures the performance of the model in terms of
minor but important class. The second metric is the unweighted average F-score
(Favg) of the explosive class and the not explosive class. Unweighted F-score is
the general metric of the model and the contribution of each class to the score
is equal.

4.2 Experiment 1: VAR on a Single Data

In this part, we conduct VAR experiments on each sensor data separately and
compare the performance of proposed VolNet with the baseline models. In this
experiment, we firstly show the effectiveness of deep feature representation in
term of accuracy, and secondly to get insight into the best sensor for VAR.

The data is obtained from Sakurajima volcano as shown in Sect. 2. We use
the sliding window technique to segment the time series into sequences. The
sliding window length of raw data is 101 min and the sliding step is 10 min in
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our experiments. The choice of window length is based on the average sum of
the inflation and deflation time of all eruptions, which is the domain knowledge
from volcano experts. The sliding step of 10 min is chosen to reduce the chance of
missing important patterns. In this paper, we use the first order differences of the
series Δxi = xi+1 − xi for all experiments. This is based on the characteristics
of volcanic sensor signal where the change of two consecutive data points is
important. Preliminary experimental result shows that all models using first
order difference data outperformed the ones using raw data. Due to using first
order differences, the length of each data sample now is 100 data points with the
time interval of one minute.

We label each sequence into two classes: explosive and not explosive. If there is
at least one eruption between the starting time and ending time of the sequence,
we set it explosive, otherwise not explosive. This strategy considers the impor-
tance of the sequence with different numbers of eruption equally, but in fact, it
is not common to have a sequence with more than one eruption within its time
period. The total number of extracted sequences for eight years from 2009 to
2016 is around 400,000. The ratio of explosive class over not explosive class is
approximately 1:10. For each year, we split part of dataset for testing to make
sure test set covers all the dataset. In total, we obtain 50,000 sequences for
testing and the rest 350,000 for training. There is no overlapping about time
between test set and the training set to make sure the accuracy is reliable. We
use validation set to pick up the hyper parameters of the models. Validation set
is 20% of training data.

We do the experiments on proposed VolNet and the following baseline models:

– VolNet: The network architecture is shown in Fig. 3.
– 1 Nearest Neighbor with Euclidean distance (1NN-ED): Even though 1NN-

ED is simple, it is considered one of the best techniques in time series classi-
fication [10]. First order difference time series data with normalization is the
input of the model.

– 1 Nearest Neighbor with Dynamic Time Warping distance (1NN-DTW):
Same as 1NN-ED, but the distance metric is DTW instead. 1NN-DTW is
very effective in many time series classification due to its flexibility for com-
puting distance. It also achieves state-of-the-art performance on the task of
time series classification together with 1NN-ED [11]. One disadvantage of
1NN-DTW is that testing time is extremely slow, so we only test on 5% of
data. We run the test multiple times and take average score. Running in all
dataset takes months to finish.

– Means and Variance (MV): Mean and Variance show advantages in some time
series classification task [13]. We use the mean and variance of the time series
as the features and do the classification using 1NN-ED.

– Symbolic Aggregate Approximation - Vector Space Model (SAX-VSM):
Unlike Nearest Neighbor which is distance-based approach, SAX-VSM is a
well-known and effective feature-based approach for time series classification
[12]. The input is also first order difference of sensor data.

– Support Vector Machine (SVM): The support vector machine with radial
basis function (RBF) kernel is used as a classifier [14]. RBF kernel is chosen
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Table 1. The results of VolNet and baselines for each type of data. The best model
for each data is shown in bold.

Seismic energy Maximum amplitude Radial strain Tangential strain

Favg FE Favg FE Favg FE Favg FE

1NN-ED 82.0 67.4 80.4 64.5 70.4 45.3 70.6 45.8

1NN-DTW 82.6 68.3 82.8 69.0 72.8 50.0 57.2 20.6

MV 79.8 63.3 80.5 64.6 58.5 26.9 59.8 28.8

SAX-VSM 74.3 43.4 75.0 44.7 70.6 35.2 71.7 37.0

SVM 85.7 74.2 57.3 18.7 68.6 41.3 72.3 48.4

MLP 84.2 71.6 83.3 70.2 76.0 56.4 76.4 57.2

LSTM 86.0 74.7 87.5 77.4 79.4 62.9 78.9 62.2

VolNet 92.8 87.7 93.2 88.9 89.9 88.5 92.0 86.1

because it shows the best results among all kernels. The input of the model
is the first order difference data and the hyper parameter is carefully tuned
using validation set.

– Multilayer Perceptron (MLP): MLP is an effective technique for time series
classification [15]. The input is also first order difference sensor data. The
architecture of the MLP includes one input layer, two hidden layers, and
one output. The architecture and the number of neurons are optimized using
validation set. We include this method to show the effectiveness of the feature
learning from VolNet.

– Long Short-Term Memory (LSTM): LSTM is well-known to deal with sequen-
tial data. The architecture of LSTM includes two layers with the dimension
of hidden state is 64. The input is also first order difference of sensor data.

The results of VolNet and the baselines for VAR are shown in Table 1. From
the results, VolNet works well on different types of data and consistently out-
performs all other baseline models on two evaluation metrics. From the accuracy
of all models, we can see that seismic energy and maximum amplitude are the
two best for VAR according to the experiments. The accuracy between models
are quite different. VolNet is the best model among all models. LSTM is the sec-
ond best model. The fact that VolNet which is built on CNN works better than
LSTM in this case may suggest that the shape of the sequence is more important
than the dependency of data through time. MLP also gains good accuracy, but
much worse than VolNet. Other baseline models are quite unstable as they only
work well on some data. For example, SVM works very well on seismic energy
data, but when it comes to maximum amplitude data, it becomes the worst
model with very low FE . Both distance-based and feature-based methods like
1NN-ED, 1NN-DTW, MV and SAX-VSM did not work well on this task. This
suggests that the raw signal and handcrafted feature extraction are not as good
as deep automatic feature extraction from VolNet.
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4.3 Experiment 2: Comparison with Volcano Experts

Volcano experts always want to predict the volcano status by using the sensor
data. They try to understand the pattern of explosive eruption extracted from
the sensor data. So far, the best way for volcano experts to recognize the eruption
at Sakurajima volcano is using tangential strain. The pattern of eruption is
gradually increase of tangential strain and then suddenly decrease. The point
of eruption is usually the starting point of the decrease [22]. We would like to
compare the model from expert and our proposed VolNet in the task of VAR.

We implement the expert model to detect explosive eruption using tangential
strain. The dataset for this experiment is different from the previous experiments
due to special condition of expert model. The experts need to observe the sen-
sor data prior and after the eruption. The way we create dataset is as follows.
For explosive eruption class we segment the sequences which has the explosive
eruption at the position 80 of a sequence with length 100. This is based on the
average inflation length of an eruption is about 80 min and the average deflation
length is about 20 min. For not explosive class we use all the sequences which
do not have any eruption.

Because the common pattern of eruption is an increase of tangential strain
until the explosive point and then decrease of tangential strain after the eruption,
we can divide the sequence into two parts: inflation (before explosive point) and
deflation (after the explosive point). In the case of eruption, if we calculate the
first order difference of the values in the inflation part, the amount of change
will be positive. And in the case of deflation part, the amount of change will
be negative. If there is no eruption, the amount of change in both inflation
and deflation will not follow that rule. We call the amount of change in the
inflation part is accumulated inflation, and that amount in the case of deflation
is accumulated deflation. Expert model classifies the status of volcano based on
the accumulated inflation and accumulated deflation.

Let say E is the set of sequences having eruption, and NE is the set of
sequences which do not have eruption. For each sequence in E, we calculate the
accumulated inflation and accumulated deflation. Then we compute the mean
of accumulated inflations and the mean of accumulated deflations over set E.
Intuitively, a sequence having the accumulated inflation and deflation near to
these means has a high chance to have an eruption. We also do the same calcu-
lation for set NE to find the mean of accumulated inflation and deflation for the
case of no explosive eruption. In testing phase, given a sequence, we first calcu-
late accumulated inflation and deflation. The sequence will be assigned explosive
label if both difference in inflation and deflation are nearer to the explosive case
than the not explosive case. Otherwise, we set it not explosive. We use Piecewise
Aggregate Approximation (PAA) [9] to transform the time series before calculat-
ing the first order difference. This transformation can help to remove the small
variations in the sequence. The window size of PAA is decided using validation
set. In our experiment, the optimal window size is 4. Table 2 shows the parame-
ters for expert model. We can clearly see that in the case of explosive eruption,
accumulated inflation is positive and accumulated deflation is negative.
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Table 2. The obtained parameters of expert model

Explosive eruption Not explosive eruption

Mean accumulated inflation 0.367 0.019

Median accumulated inflation 0.376 0.023

Standard deviation accumulated inflation 0.569 0.353

Mean accumulated deflation −2.041 0.038

Median accumulated deflation −1.622 0.052

Standard deviation accumulated deflation 2.319 0.780

Table 3. The result of expert model and VolNet using tangential strain. The better
model is shown in bold.

Favg FE

Expert model 75.1 46.3

VolNet 86.5 73.3

The results of expert model and our VolNet are shown in Table 3. VolNet
outperforms expert model with a wide margin. This once again confirms that
deep feature extraction from VolNet is much more powerful than handcrafted
feature extraction.

4.4 Experiment 3: Multimodal Fusion

In this part, multiple sensors are used in the experiment. We would like to
firstly show the effectiveness of multimodal fusion in term of accuracy compared
with the best results obtained using only one sensor, and secondly to show the
effectiveness of DMMF over other fusion strategies. We use the same dataset with
Experiment 1 and run the experiments on proposed DMMF and the following
models:

– Proposed DMMF: The architecture is shown as Sect. 3.4. In the fusion step,
modalities are grouped into two modules called “module of strain data”
including tangential strain and radial strain, and “module of seismic data”
including maximum amplitude and seismic energy. This is based on related
sensors from domain knowledge.

– Best model without fusion: We copy the best results with one data from
Experiment 1.

– Early fusion: The first convolutional layer accepts data from all sensors using
the kernel of d × k, where 4 is the number of sensors and k is the kernel size.
In this experiment, d = 4 and k = 5.

– One-time fusion: The features extracted from different modalities are fused
at one step.

The results of fusion models for multiple sensors and the best model with
no fusion are shown in Table 4. From the results, proposed DMMF consistently
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outperforms all other models in both evaluation metrics. Specifically, compared
with the best results obtained from one sensor, DMMF improves the perfor-
mance by 3% and 4.2% on average for Favg and FE respectively. This proves
the effectiveness of fusion model on improving the performance for VAR when
more data is used. Early fusion does not improve the accuracy, but worsen the
overall accuracy compared with the best model with no fusion. This suggests
that fusion strategy is important to improve the accuracy. In contrast, one-time
fusion improves the accuracy more than 1% compared to no fusion. However,
compared with one-time fusion, DMMF gains an improvement with Favg and
FE increased by 1.9% and 3.7% on average respectively. This result supports
our assumption that hierarchical fusion is better than one-time fusion in term
of feature learning for VAR.

Table 4. The results of proposed DMMF and compared models. The best model is
shown in bold.

Favg FE

Best model without fusion 93.2 88.9

Early fusion 91.0 83.5

One-time fusion 94.3 89.4

DMMF 96.2 93.1

To further confirm the effectiveness of modular fusion, we run some experi-
ments with some combinations of modalities. Some combinations are:

– Seismic module fusion: Fusion with seismic energy and maximum amplitude.
– Strain module fusion: Fusion with tangential strain and radial strain.
– Maximum Amplitude Tangential Strain fusion: Fusion with maximum ampli-

tude and tangential strain.
– Change group fusion: DMMF fusion with architecture of grouping are {seismic

energy, tangential strain} and {maximum amplitude, radial strain}.

The results of experiment are shown in Table 5. We can see that the combina-
tion of seismic energy and maximum amplitude (seismic energy data) are better
than using seismic energy or maximum amplitude alone. The same thing can
apply to strain module fusion. However, when we combine maximum amplitude
and tangential strain which belong to two different group of data, the accuracy
goes down. This suggests that it is important to consider smart grouping when
performing fusion because the relevant modalities in each module can comple-
ment each other and improve the accuracy. In change group fusion, we build
an architecture exactly the same with DMMF, but try to change the group of
data into {seismic energy, tangential strain} and {maximum amplitude, radial
strain} which is against data properties. Compared with DMMF, the accuracy
of change group fusion goes down. This suggests that the effectiveness of DMMF
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Table 5. The results of proposed DMMF and the models with different combinations
of modalities. The best model is shown in bold.

Favg FE

Seismic module fusion 95.1 91.1

Strain module fusion 93.8 88.6

Maximum Amplitude Tangential Strain fusion 92.9 87.0

Change group fusion 94.8 90.5

DMMF 96.2 93.1

is due to smart grouping, not due to deeper architecture because grouping dif-
ferently worsen the performance. In general, the effectiveness of DMMF comes
from hierarchical fusion and smart grouping.

5 Related Work

In this section, we briefly review some related work on volcano activity study and
multiple sensor fusion. There is some work using sensor signals from the volcanic
monitoring system for volcano-related events. Noticeably, as in [16], the authors
applied neural network on seismic signals to classify the volcano events such as
landslides, lightning strikes, long-term tremors, earthquakes, and ice quakes. The
same research purpose was conducted by [18], but the methodology is based on
hidden Markov model instead. The authors in [19] combined seismic data from
multiple stations to improve the accuracy of the classifier. One common point
of these papers is that the classes of the task are tremors, earthquakes, ice
quakes, landslides, and lightning strikes. The concern about the explosive and
not explosive status of the volcano is ignored in these work. Our work focuses
on the classification of this class using the volcanic sensor data. The closet work
to ours is [17]. The author tries to classify the time series of seismic signals to
classify the volcano statuses using Support Vector Machine, still the methodology
is quite simple and the accuracy is not high. To the best of our knowledge, our
work is the first attempt to employ deep neural network for effective VAR on
the explosive status of the volcano.

Multimodal deep learning has been successfully applied for many applica-
tions like speech recognition, emotion detection [20,21]. In these applications,
the modalities are obtained from audio, video, and images. Human activity
recognition is one of the most popular applications which uses multiple sensor
data for the classification of human activity [6,8]. In these work, CNN is used
on multichannel time series. However, in the fusion step, the authors ignored
the properties of the modalities and fused all the modalities in one step. Our
research considers the properties of the modalities in the fusion step and fuses
the modalities in different modules in a hierarchical fashion.
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6 Conclusion

In this paper, we demonstrated the advantages of deep architecture based on
CNN for VAR. We proposed VolNet and a simple but effective fusion model
DMMF which uses VolNet as a building block. DMMF adapts the modality
properties to build the deep architecture and form the fusion strategy. The idea
is that relevant modalities should be fused together before they will be fused
with other less relevant modalities. The key advantages of DMMF are: (1) take
advantages of deep non-handcrafted feature extraction and hence powerful to
discriminate between classes, (2) relevant modalities in the same module com-
plements with each other and hence is able to deal with noise data. With the
extensive experiments, we demonstrated that DMMF consistently outperforms
other compared models. This shows the ability of DMMF on combining multiple
sensors into one model and the advantages of modular fusion. Moreover, DMMF
is not only limited to VAR as it also has the potential to apply for other tasks
that require multimodal fusion.
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