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Abstract. Pandemic influenza has the epidemic potential to kill mil-
lions of people. While various preventive measures exist (i.a., vaccination
and school closures), deciding on strategies that lead to their most effec-
tive and efficient use remains challenging. To this end, individual-based
epidemiological models are essential to assist decision makers in deter-
mining the best strategy to curb epidemic spread. However, individual-
based models are computationally intensive and it is therefore pivotal
to identify the optimal strategy using a minimal amount of model eval-
uations. Additionally, as epidemiological modeling experiments need to
be planned, a computational budget needs to be specified a priori. Con-
sequently, we present a new sampling technique to optimize the evalu-
ation of preventive strategies using fixed budget best-arm identification
algorithms. We use epidemiological modeling theory to derive knowl-
edge about the reward distribution which we exploit using Bayesian
best-arm identification algorithms (i.e., Top-two Thompson sampling
and BayesGap). We evaluate these algorithms in a realistic experimen-
tal setting and demonstrate that it is possible to identify the optimal
strategy using only a limited number of model evaluations, i.e., 2-to-3
times faster compared to the uniform sampling method, the predomi-
nant technique used for epidemiological decision making in the literature.
Finally, we contribute and evaluate a statistic for Top-two Thompson
sampling to inform the decision makers about the confidence of an arm
recommendation. Code related to this paper is available at: https://
plibin-vub.github.io/epidemic-bandits.
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1 Introduction

The influenza virus is responsible for the deaths of half of a million people each
year. In addition, seasonal influenza epidemics cause a significant economic bur-
den. While transmission is primarily local, a newly emerging variant may spread
to pandemic proportions in a fully susceptible host population [29]. Pandemic
influenza occurs less frequently than seasonal influenza but the outcome with
respect to morbidity and mortality can be much more severe, potentially killing
millions of people worldwide [29]. Therefore, it is essential to study mitigation
strategies to control influenza pandemics.

For influenza, different preventive measures exist: i.a., vaccination, social
measures (e.g., school closures and travel restrictions) and antiviral drugs. How-
ever, the efficiency of strategies greatly depends on the availability of preven-
tive compounds, as well as on the characteristics of the targeted epidemic. Fur-
thermore, governments typically have limited resources to implement such mea-
sures. Therefore, it remains challenging to formulate public health strategies that
make effective and efficient use of these preventive measures within the existing
resource constraints.

Epidemiological models (i.e., compartment models and individual-based
models) are essential to study the effects of preventive measures in silico [2,17].
While individual-based models are usually associated with a greater model com-
plexity and computational cost than compartment models, they allow for a more
accurate evaluation of preventive strategies [11]. To capitalize on these advan-
tages and make it feasible to employ individual-based models, it is essential to
use the available computational resources as efficiently as possible.

In the literature, a set of possible preventive strategies is typically evalu-
ated by simulating each of the strategies an equal number of times [7,13,15].
However, this approach is inefficient to identify the optimal preventive strategy,
as a large proportion of computational resources will be used to explore sub-
optimal strategies. Furthermore, a consensus on the required number of model
evaluations per strategy is currently lacking [34] and we show that this number
depends on the hardness of the evaluation problem. Additionally, we recognize
that epidemiological modeling experiments need to be planned and that a com-
putational budget needs to be specified a priori. Therefore, we present a novel
approach where we formulate the evaluation of preventive strategies as a best-
arm identification problem using a fixed budget of model evaluations. In this
work, the budget choice is left to the discretion of the decision maker, as would
be the case for any uniform evaluation.

As running an individual-based model is computationally intensive (i.e., min-
utes to hours, depending on the complexity of the model), minimizing the num-
ber of required model evaluations reduces the total time required to evaluate a
given set of preventive strategies. This renders the use of individual-based models
attainable in studies where it would otherwise not be computationally feasible.
Additionally, reducing the number of model evaluations will free up computa-
tional resources in studies that already use individual-based models, capacitat-
ing researchers to explore a larger set of model scenarios. This is important, as
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considering a wider range of scenarios increases the confidence about the overall
utility of preventive strategies [35].

In this paper, we contribute a novel technique to evaluate preventive strate-
gies as a fixed budget best-arm identification problem. We employ epidemiolog-
ical modeling theory to derive assumptions about the reward distribution and
exploit this knowledge using Bayesian algorithms. This new technique enables
decision makers to obtain recommendations in a reduced number of model eval-
uations. We evaluate the technique in an experimental setting, where we aim
to find the best vaccine allocation strategy in a realistic simulation environ-
ment that models an influenza pandemic on a large social network. Finally, we
contribute and evaluate a statistic to inform the decision makers about the con-
fidence of a particular recommendation.

2 Background

2.1 Pandemic Influenza and Vaccine Production

The primary preventive strategy to mitigate seasonal influenza is to produce
vaccine prior to the epidemic, anticipating the virus strains that are expected
to circulate. This vaccine pool is used to inoculate the population before the
start of the epidemic. While it is possible to stockpile vaccines to prepare for
seasonal influenza, this is not the case for influenza pandemics, as the vaccine
should be specifically tailored to the virus that is the source of the pandemic.
Therefore, before an appropriate vaccine can be produced, the responsible virus
needs to be identified. Hence, vaccines will be available only in limited supply
at the beginning of the pandemic [33]. In addition, production problems can
result in vaccine shortages [10]. When the number of vaccine doses is limited, it
is imperative to identify an optimal vaccine allocation strategy [28].

2.2 Modeling Influenza

There is a long tradition of using individual-based models to study influenza
epidemics [2,15,17], as they allow for a more accurate evaluation of preventive
strategies. A state-of-the-art individual-based model that has been the driver for
many high impact research efforts [2,17,18], is FluTE [6]. FluTE implements a
contact model where the population is divided into communities of households
[6]. The population is organized in a hierarchy of social mixing groups where the
contact intensity is inversely proportional with the size of the group (e.g., closer
contact between members of a household than between colleagues). Additionally,
FluTE implements an individual disease progression model that associates dif-
ferent disease stages with different levels of infectiousness. FluTE supports the
evaluation of preventive strategies through the simulation of therapeutic inter-
ventions (i.e., vaccines, antiviral compounds) and non-therapeutic interventions
(i.e., school closure, case isolation, household quarantine).
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2.3 Bandits and Best-Arm Identification

The multi-armed bandit game [1] involves a K-armed bandit (i.e., a slot machine
with K levers), where each arm Ak returns a reward rk when it is pulled (i.e.,
rk represents a sample from Ak’s reward distribution). A common use of the
bandit game is to pull a sequence of arms such that the cumulative regret is
minimized [20]. To fulfill this goal, the player needs to carefully balance between
exploitation and exploration.

In this paper, the objective is to recommend the best arm A∗ (i.e., the arm
with the highest average reward μ∗), after a fixed number of arm pulls. This is
referred to as the fixed budget best-arm identification problem [1], an instance
of the pure-exploration problem [4]. For a given budget T , the objective is to
minimize the simple regret μ∗ − μJ , where μJ is the average reward of the
recommended arm AJ , at time T [5]. Simple regret is inversely proportional to
the probability of recommending the correct arm A∗ [24].

3 Related Work

As we established that a computational budget needs to be specified a priori, our
problem setting matches the fixed budget best-arm identification setting. This
differs from settings that attempt to identify the best arm with a predefined con-
fidence: i.e., racing strategies [12], strategies that exploit the confidence bound
of the arms’ means [25] and more recently fixed confidence best-arm identifica-
tion algorithms [16]. We selected Bayesian fixed budget best-arm identification
algorithms, as we aim to incorporate prior knowledge about the arms’ reward
distributions and use the arms’ posteriors to define a statistic to support policy
makers with their decisions. We refer to [21,24], for a broader overview of the
state of the art with respect to (Bayesian) best-arm identification algorithms.

Best-arm identification algorithms have been used in a large set of applica-
tion domains: i.a., evaluation of response surfaces, the initialization of hyper-
parameters and traffic congestion.

While other algorithms exist to rank or select bandit arms, e.g. [30], best-arm
identification is best approached using adaptive sampling methods [23], as the
ones we study in this paper.

In preliminary work, we explored the potential of multi-armed bandits to
evaluate prevention strategies in a regret minimization setting, using default
strategies (i.e., ε-greedy and UCB1). We presented this work at the ‘Adaptive
Learning Agents’ workshop hosted by the AAMAS conference [26]. This setting
is however inadequate to evaluate prevention strategies in silico, as minimizing
cumulative regret is sub-optimal to identify the best arm. Additionally, in this
workshop paper, the experiments considered a small and less realistic population,
and only analyzed a limited range of R0 values that is not representative for
influenza pandemics.
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4 Methods

We formulate the evaluation of preventive strategies as a multi-armed bandit
game with the aim of identifying the best arm using a fixed budget of model
evaluations. The presented method is generic with respect to the type of epidemic
that is modeled (i.e., pathogen, contact network, preventive strategies). The
method is evaluated in the context of pandemic influenza in the next section1.

4.1 Evaluating Preventive Strategies with Bandits

A stochastic epidemiological model E is defined in terms of a model configuration
c ∈ C and can be used to evaluate a preventive strategy p ∈ P. The result of a
model evaluation is referred to as the model outcome (e.g., prevalence, proportion
of symptomatic individuals, morbidity, mortality, societal cost). Evaluating the
model E thus results in a sample of the model’s outcome distribution:

outcome ∼ E(c, p), where c ∈ C and p ∈ P (1)

Our objective is to find the optimal preventive strategy (i.e., the strat-
egy that minimizes the expected outcome) from a set of alternative strategies
{p1, ..., pK} ⊂ P for a particular configuration c0 ∈ C of a stochastic epidemi-
ological model, where c0 corresponds to the studied epidemic. To this end, we
consider a multi-armed bandit with K = |{p1, ..., pK}| arms. Pulling arm pk cor-
responds to evaluating pk by running a simulation in the epidemiological model
E(c0, pk). The bandit thus has preventive strategies as arms with reward distri-
butions corresponding to the outcome distribution of a stochastic epidemiological
model E(c0, pk). While the parameters of the reward distribution are known (i.e.,
the parameters of the epidemiological model), it is intractable to determine the
optimal reward analytically. Hence, we must learn about the outcome distribu-
tion via interaction with the epidemiological model. In this work, we consider
prevention strategies of equal financial cost, which is a realistic assumption, as
governments typically operate within budget constraints.

4.2 Outcome Distribution

As previously defined, the reward distribution associated with a bandit’s arm
corresponds to the outcome distribution of the epidemiological model that is
evaluated when pulling that arm. Therefore, we are able to specify prior knowl-
edge about the reward distribution using epidemiological modeling theory.

It is well known that a disease outbreak has two possible outcomes: either it
is able to spread beyond a local context and becomes a fully established epidemic
or it fades out [32]. Most stochastic epidemiological models reflect this reality and
hence its epidemic size distribution is bimodal [32]. When evaluating preventive
strategies, the objective is to determine the preventive strategy that is most

1 Code is available at https://github.com/plibin-vub/bandits.

https://github.com/plibin-vub/bandits
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suitable to mitigate an established epidemic. As in practice we can only observe
and act on established epidemics, epidemics that faded out in simulation would
bias this evaluation. Consequently, it is necessary to focus on the mode of the
distribution that is associated with the established epidemic. Therefore we censor
(i.e., discard) the epidemic sizes that correspond to the faded epidemic. The size
distribution that remains (i.e., the one that corresponds with the established
epidemic) is approximately Gaussian [3].

In this study, we consider a scaled epidemic size distribution, i.e., the pro-
portion of symptomatic infections. Hence we can assume bimodality of the full
size distribution and an approximately Gaussian size distribution of the estab-
lished epidemic. We verified experimentally that these assumptions hold for all
the reward distributions that we observed in our experiments (see Sect. 5).

To censor the size distribution, we use a threshold that represents the number
of infectious individuals that are required to ensure an outbreak will only fade
out with a low probability.

4.3 Epidemic Fade-Out Threshold

For heterogeneous host populations (i.e., a population with a significant variance
among individual transmission rates, as is the case for influenza epidemics [9,14]),
the number of secondary infections can be accurately modeled using a negative
binomial offspring distribution NB(R0, γ) [27], where R0 is the basic reproductive
number (i.e., the number of infections that is, by average, generated by one
single infection) and γ is a dispersion parameter that specifies the extent of
heterogeneity. The probability of epidemic extinction pext can be computed by
solving g(s) = s, where g(s) is the probability generating function (pgf) of the
offspring distribution [27]. For an epidemic where individuals are targeted with
preventive measures (e.g., vaccination), we obtain the following pgf

g(s) = popc + (1 − popc)
(
1 +

R0

γ
(1 − s)

)−γ (2)

where popc signifies the random proportion of controlled individuals [27]. From
pext we can compute a threshold T0 to limit the probability of extinction to a
cutoff � [19].

4.4 Best-Arm Identification with a Fixed Budget

Our objective is to identify the best preventive strategy (i.e., the strategy that
minimizes the expected outcome) out of a set of preventive strategies, for a
particular configuration c0 ∈ C using a fixed budget T of model evaluations. To
find the best prevention strategy, it suffices to focus on the mean of the outcome
distribution, as it is approximately Gaussian with an unknown yet small variance
[3], as we confirm in our experiments (see Fig. 1).

Successive Rejects was the first algorithm to solve the best-arm identification
in a fixed budget setting [1]. For a K-armed bandit, Successive Rejects operates
in (K − 1) phases. At the end of each phase, the arm with the lowest average
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reward is discarded. Thus, at the end of phase (K − 1) only one arm survives,
and this arm is recommended.

Successive Rejects serves as a useful baseline, however, it has no support
to incorporate any prior knowledge. Bayesian best-arm identification algorithms
on the other hand, are able to take into account such knowledge by defining
an appropriate prior and posterior on the arms’ reward distribution. As we will
show, such prior knowledge can increase the best-arm identification accuracy.
Additionally, at the time an arm is recommended, the posteriors contain valu-
able information that can be used to formulate a variety of statistics helpful
to assist decision makers. We consider two state-of-the-art Bayesian algorithms:
BayesGap [21] and Top-two Thompson sampling [31]. For Top-two Thompson
sampling, we derive a statistic based on the posteriors to inform decision makers
about the confidence of an arm recommendation: the probability of success.

As we established in the previous section, each arm of our bandit has a reward
distribution that is approximately Gaussian with unknown mean and variance.
For the purpose of genericity, we assume an uninformative Jeffreys prior (σk)−3

on (μk, σ2
k), which leads to the following posterior on μk at the nth

k pull [22]:
√

n2
k

Sk,nk

(μk − xk,nk
) | xk,nk

, Sk,nk
∼ Tnk

(3)

where xk,nk
is the reward mean, Sk,nk

is the total sum of squares and Tnk
is the

standard student t-distribution with nk degrees of freedom.
BayesGap is a gap-based Bayesian algorithm [21]. The algorithm requires

that for each arm Ak, a high-probability upper bound Uk(t) and lower bound
Lk(t) is defined on the posterior of μk at each time step t. Using these bounds,
the gap quantity

Bk(t) = max
l �=k

Ul(t) − Lk(t) (4)

is defined for each arm Ak. Bk(t) represents an upper bound on the simple regret
(as defined in Sect. 2.3). At each step t of the algorithm, the arm J(t) that
minimizes the gap quantity Bk(t) is compared to the arm j(t) that maximizes
the upper bound Uk(t). From J(t) and j(t), the arm with the highest confidence
diameter Uk(t) − Lk(t) is pulled. The reward that results from this pull is
observed and used to update Ak’s posterior. When the budget is consumed, the
arm

J(argmin
t≤T

BJ(t)(t)) (5)

is recommended. This is the arm that minimizes the simple regret bound over
all times t ≤ T .

In order to use BayesGap to evaluate preventive strategies, we contribute
problem-specific bounds. Given our posteriors (Eq. 3), we define

Uk(t) = μ̂k(t) + βσ̂k(t)
Lk(t) = μ̂k(t) − βσ̂k(t)

(6)

where μ̂k(t) and σ̂k(t) are the respective mean and standard deviation of the
posterior of arm Ak at time step t, and β is the exploration coefficient.
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The amount of exploration that is feasible given a particular bandit game, is
proportional to the available budget, and inversely proportional to the game’s
complexity [21]. This complexity can be modeled taking into account the game’s
hardness [1] and the variance of the rewards. We use the hardness quantity
defined in [21]:

Hε =
∑

k

H−2
k,ε (7)

with arm-dependent hardness

Hk,ε = max(
1
2
(Δk + ε), ε), where Δk = max

l �=k
(μl) − μk (8)

Considering the budget T , hardness Hε and a generalized reward variance
σ2

G over all arms, we define

β =

√
T − 3K

4Hεσ2
G

(9)

Theorem 1 in the Supplementary Information (Sect. 2) formally proves that using
these bounds results in a probability of simple regret that asymptotically reaches
the exponential lower bound of [21].

As both Hε and σ2
G are unknown, in order to compute β, these quantities

need to be estimated. Firstly, we estimate Hε’s upper bound Ĥε by estimating
Δk as follows

Δ̂k = max
1≤l<K;l �=k

(μ̂l(t) + 3σ̂l(t)
)

−
(
μ̂k(t) − 3σ̂k(t)) (10)

as in [21], where μ̂k(t) and σ̂k(t) are the respective mean and standard deviation
of the posterior of arm Ak at time step t. Secondly, for σ2

G we need a measure
of variance that is representative for the reward distribution of all arms. To this
end, when the arms are initialized, we observe their sample variance s2k, and
compute their average s̄2G.

As our bounds depend on the standard deviation σ̂k(t) of the t-distributed
posterior, each arm’s posterior needs to be initialized 3 times (i.e., by pulling
the arm) to ensure that σ̂k(t) is defined, this initialization also ensures proper
posteriors [22].

Top-two Thompson sampling is a reformulation of the Thompson sampling
algorithm, such that it can be used in a pure-exploration context [31]. Thomp-
son sampling operates directly on the arms’ posterior of the reward distribution’s
mean μk. At each time step, Thompson sampling obtains one sample for each
arm’s posterior. The arm with the highest sample is pulled, and its reward is
subsequently used to update that arm’s posterior. While this approach has been
proven highly successful to minimize cumulative regret [8,22], as it balances the
exploration-exploitation trade-off, it is sub-optimal to identify the best arm [4].
To adapt Thompson sampling to minimize simple regret, Top-two Thompson
sampling increases the amount of exploration. To this end, an exploration prob-
ability ω needs to be specified. At each time step, one sample is obtained for



464 P. J. K. Libin et al.

each arm’s posterior. The arm Atop with the highest sample is only pulled with
probability ω. With probability 1 − ω we repeat sampling from the posteriors
until we find an arm Atop-2 that has the highest posterior sample and where
Atop �= Atop-2. When the arm Atop-2 is found, it is pulled and the observed
reward is used to update the posterior of the pulled arm. When the available
budget is consumed, the arm with the highest average reward is recommended.

As Top-two Thompson sampling only requires samples from the arms’ poste-
riors, we can use the t-distributed posteriors from Eq. 3 as is. To avoid improper
posteriors, each arm needs to be initialized 2 times [22].

As specified in the previous subsection, the reward distribution is censored.
We observe each reward, but only consider it to update the arm’s value when it
exceeds the threshold T0 (i.e., when we receive a sample from the mode of the
epidemic that represents the established epidemic).

4.5 Probability of Success

The probability that an arm recommendation is correct presents a useful confi-
dence statistic to support policy makers with their decisions. As Top-two Thomp-
son sampling recommends the arm with the highest average reward, and we
assume that the arm’s reward distributions are independent, the probability of
success is

P (μ
J

= max
1≤k≤K

μ
k
) =

∫

x∈R

[ K∏

k �=J

Fμk
(x)

]
fμJ

(x)dx (11)

where μ
J

is the random variable that represents the mean of the recommended
arm’s reward distribution, fμJ

is the recommended arm’s posterior probability
density function and Fμk

is the other arms’ cumulative density function (full
derivation in Supplementary Information, Sect. 3). As this integral cannot be
computed analytically, we estimate it using Gaussian quadrature.

It is important to note that, while aiming for generality, we made some con-
servative assumptions: the reward distributions are approximated as Gaussian
and the uninformative Jeffreys prior is used. These assumptions imply that the
derived probability of success will be an under-estimator for the actual recom-
mendation success, which is confirmed in our experiments.

5 Experiments

We composed and performed an experiment in the context of pandemic influenza,
where we analyze the mitigation strategy to vaccinate a population when only a
limited number of vaccine doses is available (details about the rationale behind
this scenario in Sect. 2.1). In our experiments, we accommodate a realistic setting
to evaluate vaccine allocation, where we consider a large and realistic social
network and a wide range of R0 values.

We consider the scenario when a pandemic is emerging in a particular geo-
graphical region and vaccines becomes available, albeit in a limited number of
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doses. When the number of vaccine doses is limited, it is imperative to identify
an optimal vaccine allocation strategy [28]. In our experiment, we explore the
allocation of vaccines over five different age groups, that can be easily approached
by health policy officials: pre-school children, school-age children, young adults,
older adults and the elderly, as proposed in [6].

5.1 Influenza Model and Configuration

The epidemiological model used in the experiments is the FluTE stochastic
individual-based model. In our experiment we consider the population of Seattle
(United States) that includes 560,000 individuals [6]. This population is realistic
both with respect to the number of individuals and its community structure, and
provides an adequate setting for the validation of vaccine strategies [34] (more
detail about the model choice in the Supplementary Information, Sect. 4).

At the first day of the simulated epidemic, 10 random individuals are seeded
with an infection (more detail about the seeding choice in the Supplementary
Information, Sect. 5). The epidemic is simulated for 180 days, during which no
more infections are seeded. Thus, all new infections established during the run
time of the simulation, result from the mixing between infectious and susceptible
individuals. We assume no pre-existing immunity towards the circulating virus
variant. We choose the number of vaccine doses to allocate to be approximately
4.5% of the population size [28].

We perform our experiment for a set of R0 values within the range of 1.4
to 2.4, in steps of 0.2. This range is considered representative for the epidemic
potential of influenza pandemics [2,28]. We refer to this set of R0 values as R0.

Note that the setting described in this subsection, in conjunction with a
particular R0 value, corresponds to a model configuration (i.e., c0 ∈ C).

The computational complexity of FluTE simulations depends both on the
size of the susceptible population and the proportion of the population that
becomes infected. For the population of Seattle, the simulation run time was up
to 11 1

2 min (median of 101
2 min, standard deviation of 6 s), on state-of-the-art

hardware (details in Supplementary Information, Sect. 6).

5.2 Formulating Vaccine Allocation Strategies

We consider 5 age groups to which vaccine doses can be allocated: pre-school
children (i.e., 0–4 years old), school-age children (i.e., 5–18 years old), young
adults (i.e., 19–29 years old), older adults (i.e., 30–64 years old) and the elderly
(i.e., >65 years old) [6]. An allocation scheme can be encoded as a Boolean
5-tuple, where each position in the tuple corresponds to the respective age group.
The Boolean value at a particular position in the tuple denotes whether vac-
cines should be allocated to the respective age group. When vaccines are to be
allocated to a particular age group, this is done proportional to the size of the
population that is part of this age group [28]. To decide on the best vaccine
allocation strategy, we enumerate all possible combinations of this tuple.
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5.3 Outcome Distributions

To establish a proxy for the ground truth concerning the outcome distributions of
the 32 considered preventive strategies, all strategies were evaluated 1000 times,
for each of the R0 values in R0. We will use this ground truth as a reference
to validate the correctness of the recommendations obtained throughout our
experiments.

R0 presents us with an interesting evaluation problem. To demonstrate this,
we visualize the outcome distribution for R0 = 1.4 and for R0 = 2.4 in Fig. 1
(the outcome distributions for the other R0 values are shown in Sect. 7 of the
Supplementary Information). Firstly, we observe that for different values of R0,
the distances between top arms’ means differ. Additionally, outcome distribution
variances vary over the set of R0 values in R0. These differences produce dis-
tinct levels of evaluation hardness (see Sect. 4.4), and demonstrate the setting’s
usefulness as benchmark to evaluate preventive strategies. While we discuss the
hardness of the experimental settings under consideration, it is important to
state that our best-arm identification framework requires no prior knowledge
on the problem’s hardness. Secondly, we expect the outcome distribution to be
bimodal. However, the probability to sample from the mode of the outcome dis-
tribution that represents the non-established epidemic decreases as R0 increases
[27]. This expectation is confirmed when we inspect Fig. 1, the left panel shows a
bimodal distribution for R0 = 1.4, while the right panel shows a unimodal out-
come distribution for R0 = 2.4, as only samples from the established epidemic
were obtained.
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Fig. 1. Violin plot that depicts the density of the outcome distribution (i.e., epidemic
size) for 32 vaccine allocation strategies (left panel Ro = 1.4, right panel Ro = 2.4).

Our analysis identified that the best vaccine allocation strategy was
〈0, 1, 0, 0, 0〉 (i.e., allocate vaccine to school children, strategy 8) for all R0 values
in R0.
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5.4 Best-Arm Identification Experiment

To assess the performance of the different best-arm identification algorithms (i.e.,
Successive Rejects, BayesGap and Top-two Thompson sampling) we run each
algorithm for all budgets in the range of 32 to 500. This evaluation is performed
on the influenza bandit game that we defined earlier. For each budget, we run
the algorithms 100 times, and report the recommendation success rate. In the
previous section, the optimal vaccine allocation strategy was identified to be
〈0, 1, 0, 0, 0〉 for all R0 in R0. We thus consider a recommendation to be correct
when it equals this vaccine allocation strategy.

We evaluate the algorithm’s performance with respect to each other and with
respect to uniform sampling, the current state-of-the art to evaluate preventive
strategies. The uniform sampling method pulls arm Au for each step t of the
given budget T , where Au’s index u is sampled from the uniform distribution
U(1,K). To consider different levels of hardness, we perform this analysis for
each R0 value in R0.

For the Bayesian best-arm identification algorithms, the prior specifications
are detailed in Sect. 4.4. BayesGap requires an upper and lower bound that is
defined in terms of the used posteriors. In our experiments, we use upper bound
Uk(t) and lower bound Lk(t) that were established in Sect. 4.4. Top-two Thomp-
son sampling requires a parameter that modulates the amount of exploration ω.
As it is important for best-arm identification algorithms to differentiate between
the top two arms, we choose ω = 0.5, such that, in the limit, Top-two Thompson
sampling will explore the top two arms uniformly.

We censor the reward distribution based on the threshold T0 we defined in
Sect. 4.3. This threshold depends on basic reproductive number R0 and disper-
sion parameter γ. R0 is defined explicitly for each of our experiments. For the
dispersion parameter we choose γ = 0.5, which is a conservative choice according
to the literature [9,14]. We define the probability cutoff � = 10−10.

Figure 2 shows recommendation success rate for each of the best-arm iden-
tification algorithms for R0 = 1.4 (left panel) and R0 = 2.4 (right panel). The
results for the other R0 values are visualized in Sect. 8 of the Supplementary
Information. To complement these results, we show the recommendation suc-
cess rate with confidence intervals in Sect. 9 of the Supplementary Informa-
tion. The results for different values of R0 clearly indicate that our selection
of best-arm identification algorithms significantly outperforms the uniform sam-
pling method. Overall, the uniform sampling method requires more than double
the amount of evaluations to achieve a similar recommendation performance.
For the harder problems (e.g., setting with R0 = 2.4), recommendation uncer-
tainty remains considerable even after consuming 3 times the budget required by
Top-two Thompson sampling.

All best-arm identification algorithms require an initialization phase in order
to output a well-defined recommendation. Successive Rejects needs to pull each
arm at least once, while Top-two Thompson sampling and BayesGap need to
pull each arm respectively 2 and 3 times (details in Sect. 4.4). For this rea-
son, these algorithms’ performance can only be evaluated after this initialization
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phase. BayesGap’s performance is on par with Successive Rejects, except for the
hardest setting we studied (i.e., R0 = 2.4). In comparison, Top-two Thompson
sampling consistently outperforms Successive Rejects 30 pulls after the initializa-
tion phase. Top-two Thompson sampling needs to initialize each arm’s posterior
with 2 pulls, i.e., double the amount of uniform sampling and Successive Rejects.
However, our experiments clearly show that none of the other algorithms reach
any acceptable recommendation rate using less than 64 pulls.

Fig. 2. In this figure, we present the results for the experiment with R0 = 1.4 (left
panel) and R0 = 2.4 (right panel). Each curve represents the rate of successful arm
recommendations (y-axis) for a range of budgets (x-axis). A curve is shown for each
of the considered algorithms: BayesGap (legend: BG), Successive Rejects (legend: SR),
Top-two Thompson sampling (legend: TtTs) and uniform sampling (legend: Uni).

In Sect. 4 we derived a statistic to express the probability of success (Ps) con-
cerning a recommendation made by Top-two Thompson sampling. We analyzed
this probability for all the Top-two Thompson sampling recommendations that
were obtained in the experiment described above. To provide some insights on
how this statistic can be used to support policy makers, we show the Ps values
of all Top-two Thompson sampling recommendations for R0 = 2.4 in the left
panel of Fig. 3 (Figures for the other R0 values in Sect. 10 of the Supplementary
Information). This Figure indicates that Ps closely follows recommendation cor-
rectness and that the uncertainty of Ps is inversely proportional to the size of
the available budget. Additionally, in the right panel of Fig. 3 (Figures for the
other R0 values in Sect. 11 of the Supplementary Information) we confirm that
Ps underestimates recommendation correctness. These observations show that
Ps has the potential to serve as a conservative statistic to inform policy makers
about the confidence of a particular recommendation, and thus can be used to
define meaningful cutoffs to guide policy makers in their interpretation of the
recommendation of preventive strategies.

In this work, we define uninformed priors to ensure a generic framework. This
does not exclude decision makers to use priors that include more domain knowl-
edge (e.g., dependence between arms), if this is available. We do however show
in our experiments that the use of these uninformed priors lead to a significant
performance increase.
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Fig. 3. Top-two Thompson sampling was run 100 times for each budget for the exper-
iment with R0 = 2.4. For each of the recommendations, Ps was computed. In the left
panel, these Ps values are shown as a scatter plot, where each point’s color reflects the
correctness of the recommendation (see legend). In the right panel, the Ps values were
binned (i.e., 0.5 to 1 in steps of 0.05). Per bin, we thus have a set of Bernoulli trials,
for which we show the empirical success rate (blue scatter) and the Clopper-Pearson
confidence interval (blue confidence bounds). The orange reference line denotes perfect
correlation between the empirical success rate and the estimated probability of success.
(Color figure online)

6 Conclusion

We formulate the objective to select the best preventive strategy in an individual-
based model as a fixed budget best-arm identification problem. We set up an
experiment to evaluate this setting in the context of a realistic influenza pan-
demic. To assess the best arm recommendation performance of the preventive
bandit, we report a success rate over 100 independent bandit runs.

We demonstrate that it is possible to efficiently identify the optimal preven-
tive strategy using only a limited number of model evaluations, even if there is
a large number of preventive strategies to consider. Compared to uniform sam-
pling, our technique is able to recommend the best preventive strategy reducing
the number of required model evaluations 2-to-3 times, when using Top-two
Thompson sampling. Additionally, we defined a statistic to support policy mak-
ers with their decisions, based on the posterior information obtained during
Top-two Thompson sampling. As such, we present a decision support tool to
assist policy makers to mitigate epidemics. Our framework will enable the use
of individual-based models in studies where it would otherwise be computation-
ally too prohibitive, and allow researchers to explore a wider variety of model
scenarios.
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