
Using Reinforcement Learning to Conceal
Honeypot Functionality

Seamus Dowling1(B) , Michael Schukat2, and Enda Barrett2

1 Galway Mayo Institute of Technology, Castlebar, Mayo, Ireland
seamus.dowling@gmit.ie

2 National University of Ireland Galway, Galway, Ireland

Abstract. Automated malware employ honeypot detecting mechanisms
within its code. Once honeypot functionality has been exposed, malware
such as botnets will cease the attempted compromise. Subsequent mal-
ware variants employ similar techniques to evade detection by known
honeypots. This reduces the potential size of a captured dataset and
subsequent analysis. This paper presents findings on the deployment of
a honeypot using reinforcement learning, to conceal functionality. The
adaptive honeypot learns the best responses to overcome initial detection
attempts by implementing a reward function with the goal of maximising
attacker command transitions. The paper demonstrates that the honey-
pot quickly identifies the best response to overcome initial detection and
subsequently increases attack command transitions. It also examines the
structure of a captured botnet and charts the learning evolution of the
honeypot for repetitive automated malware. Finally it suggests changes
to an existing taxonomy governing honeypot development, based on the
learning evolution of the adaptive honeypot. Code related to this paper
is available at: https://github.com/sosdow/RLHPot.

Keywords: Reinforcement learning · Honeypot · Adaptive

1 Introduction

Honeypots have evolved to match emerging threats. From “packets found on
the internet” in 1993 [1] to targeting and capturing IoT attacks [2], honey-
pot development has become a cyclic process. Malware captured on a honey-
pot is retrospectively analysed. This analysis informs defence hardening and
subsequent honeypot redevelopment. Because of this, honeypot contribution to
security is considered a reactive process. The value of honeypot deployment
comes from the captured dataset. The longer an attack interaction can be main-
tained, the larger the dataset and subsequent analysis. Global honeypot projects
track emerging threats [3]. Virtualisation technologies provide honeypot opera-
tors with the means of abstracting deployments from production networks and
bare metal infrastructure [4]. To counter honeypot popularity, honeypot detec-
tion tools were developed and detection techniques were incorporated into mal-
ware deployments [5]. These have the effect of ending an attempted compromise
c© Springer Nature Switzerland AG 2019
U. Brefeld et al. (Eds.): ECML PKDD 2018, LNAI 11053, pp. 341–355, 2019.
https://doi.org/10.1007/978-3-030-10997-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10997-4_21&domain=pdf
http://orcid.org/0000-0001-8722-2009
https://github.com/sosdow/RLHPot
https://doi.org/10.1007/978-3-030-10997-4_21


342 S. Dowling et al.

once it is discovered to be a honeypot. The only solution is to modify the hon-
eypot or incorporate a fix into a new release or patch. This is a cyclic process.
The rapid mutation of malware variants often makes this process redundant.
For example, the recent Mirai bot [6] exploited vulnerabilities in Internet of
Things (IoT) deployments. IoT devices are often constrained reduced function
devices (RFD). Security measures can be restricted and provide an opportunity
for compromise. When the Mirai bot source code was made public, it spawned
multiple variants targeting different attack vectors. Bots and their variants are
highly automated. Human social engineering may play a part in how the end
devices are compromised. Botmasters communicate with command and control
(C&C) to send instructions to the compromised hosts. But to generate and com-
municate with a global botnet of compromised hosts, malware employs highly
automated methods. Coupled with honeypot detection techniques, it becomes
an impossible task for honeypot developers to release newer versions and patches
to cater for automated malware and their variants. This paper describes a rein-
forcement learning approach to creating adaptive honeypots that can learn the
best responses to attack commands. In doing so it overcomes honeypot detection
techniques employed by malware. The adaptive honeypot learns from repetitive,
automated compromise attempts. We implement a state action space formalism
designed to reward the learner for prolonging attack interaction. We present
findings on a live deployment of the adaptive honeypot on the Internet. We
demonstrate that after an initial learning period, the honeypot captures a larger
dataset with four times more attack command transitions when compared with a
standard high interaction honeypot. Thus we propose the following contributions
over existing work:

– Whilst the application of reinforcement learning to this domain is not new,
previous developments facilitated human attack interactions which is not rel-
evant for automated malware. Our proposed state action space formalism
is new, targeting automated malware and forms a core contribution of this
work.

– Presents findings on a live deployment with a state action space formalism
demonstrating intelligent decision making, overcoming initial honeypot detec-
tion techniques.

– Demonstrates that using the proposed state action space formalism for auto-
mated malware produces a larger dataset with four times more command
transitions compared to a standard high interaction honeypot.

– Demonstrates that our proposed state action space formalism is more effective
than similar deployments. Previous adaptive honeypots using reinforcement
learning collected three times more command transitions when compared to
a high interaction honeypot.

– Demonstrates that the collected dataset can be used in a controlled envi-
ronment for policy evaluation, which results in a more effective honeypot
deployment.



Using Reinforcement Learning to Conceal Honeypot Functionality 343

This article is organised as follows:
Section 2 presents the evolution of honeypots and the taxonomy governing

their development. This section also addresses honeypot detection measures used
by malware and the use of reinforcement learning to create adaptive honeypots
capable of learning from attack interactions.

Section 3 outlines the implementation of reinforcement learning within a hon-
eypot, creating an adaptive honeypot. It rewards the learning agent for overcom-
ing detection attempts and prolonging interaction with automated malware.

Section 4 presents findings from two experiments. The first experiment is
a live deployment of the adaptive honeypot on the Internet, which captures
automated attack interactions. The second is a controlled experiment, which
evaluates the learning policies used by the adaptive honeypot.

Sections 5 and 6 discuss the limitations of the adaptive honeypot model that
provides for future work in this area and our conclusions.

2 Related Work

2.1 Honeypot Evolution

In 2003, Spitzner defined a honeypot as a “security resource whose value lies in
being probed, attacked or compromised” [7]. After a decade of monitoring mali-
cious traffic [1], honeypots were seen as a key component in cybersecurity. Cap-
turing a successful compromise and analysing their methods, security companies
can harden subsequent defences. This cycle of capture-analyse-harden-capture,
is seen as a reactive process. Virtualisation allowed for the easy deployment
of honeypots and gave rise to popular deployments such as Honeyd [4]. This
increase in honeypot popularity raised the question of their role. To address
this, Zhang [8] introduced honeypot taxonomy. This taxonomy identifies secu-
rity as the role or class of a honeypot, and could have prevention, detection,
reaction or research as values. Deflecting an attacker away from a production
network, by luring them into a honeypot, has a prevention value. Unauthorized
activity on a honeypot is red flagged immediately providing a detection value.
Designing a honeypot to maintain an attackers interest, by offering choices or
tokens [9] has a reaction value. Finally the research value gives insights into
the behaviour and motivation of an attacker. As more devices connected and
threats evolved on the Internet, Seifert [10] introduced a new taxonomy, a sum-
mery of which is displayed in Table 1. The possible combinations for class/value
from Table 1 informed the development of complex honeypots. The purpose of
honeypots developed under this taxonomy is to collect data for the retrospec-
tive analysis of malware methods. However, firewalls and intrusion prevention
and detection systems (IPS, IDS) became standard IT infrastructure for proac-
tively limiting malware infections. Therefore honeypots were briefly considered
as alternatives to IDS and IPS [11,12].



344 S. Dowling et al.

Table 1. Seifert’s taxonomy for honeypot development [10]

Class Value Note

Interaction level High High degree of functionality

Low Low degree of functionality

Data capture Events Collect data about changes in state

Attacks Collect data about malicious
activity

Intrusions Collect data about security
compromises

None Do not collect data

Containment Block Identify and block malicious
activity

Diffuse Identify and mitigate against
malicious activity

Slow down Identify and hinder malicious
activity

None No action taken

Distribution
appearance

Distributed Honeypot is or appears to be
composed of multiple systems

Standalone Honeypot is or appears to be one
system

Communications
interface

Network interface Directly communicated with via a
NIC

Non-network interface Directly communicated with via
interface other than NIC (USB
etc.)

Software API Honeypot can be interacted with
via a software API (SSH, HTTP
etc.)

Role in multi-tiered Client Honeypot acts as a server

Architecture Server Honeypot acts as a client

2.2 Anti-honeypot and Anti-detection

Honeypots can be deployed simply and quickly with virtualization tools and
cloud services. Seiferts taxonomy from Table 1 provides the framework to
create modern, relevant honeypots. For example, ConPot is a SCADA honeypot
developed for critical industrial IoT architectures [13]; IoTPot is a bespoke hon-
eypot designed to analyze malware attacks targeting IoT devices [2]. Botnets
provide a mechanism for global propagation of cyber attack infection and con-
trol. They are under the control of a single C&C [14]. A typical botnet attack
will consist of 2 sets of IP addresses. The first set of IPs is the compromised
hosts. These are everyday compromised machines that are inadvertently partic-
ipating in an attack. The second set of IPs is the C&C reporters and software



Using Reinforcement Learning to Conceal Honeypot Functionality 345

loaders. These are the sources from which the desired malware is downloaded.
There is a multitude of communication channels opened between C&C, report
and loader servers, bot victims and target. The main methods of communication
are IRC (Internet Relay Chat), HTTP and P2P based models where bots use
peer-to-peer communications. Botmasters obfuscate visibility by changing the
C&C connection channel. They use Dynamic DNS (DDNS) for botnet commu-
nication, allowing them to shut down a C&C server on discovery and start up a
new server for uninterrupted attack service. Malware developers became aware
of the existence honeypots, capturing and analyzing attack activity. To counter
this, dedicated honeypot detection tools were developed and evasion techniques
we designed into malware [15]. Tools such as Honeypot Hunter performed tests
to identify a honeypot [5]. False services were created and connected to by the
anti-honeypot tool. Honeypots are predominately designed to prolong attacker
interaction and therefore pretend to facilitate the creation and execution of these
false services. This immediately tags the system as a honeypot. With the use
of virtualization for honeypot deployments [4], anti-detection techniques issued
simple kernel commands to identify the presence of virtual infrastructure instead
of bare metal [16]. New versions of honeypots are redesigned and redeployed
continuously to counter new malware methods. More recently, the Mirai botnet
spawned multiple variants targeting IoT devices through various attack vectors
[6]. Honeypots played an active part in capturing and analyzing the Mirai struc-
ture [17]. Variants were captured on Cowrie, a newer version of the popular
Kippo honeypot [18]. Analysis of the Mirai variants found that Cowrie failed
initial anti-honeypot tests before honeypot functionality was manually amended
[19]. Examining the structure of the Mirai variant [20], when a “mount” com-
mand is issued, the honeypot returns it’s standard response at which point the
attack ends. It indicates that the variant is implementing anti-detection tech-
niques. Virtual machine (VM) aware botnets, such as Conficker and Spybot
scan for the presence of a virtualized environment and can refuse to continue or
modify its methods [21].

2.3 Adaptive Honeypots

Machine learning techniques have previously been applied to honeypots. These
techniques have analysed attacker behaviour retrospectively on a captured
dataset. Supervised and unsupervised methods are used to model malware inter-
action and to classify attacks [22–24]. This analysis is a valuable source of infor-
mation for security groups. However, by proactively engaging with an attacker,
a honeypot can prolong interaction and capture larger datasets potentially lead-
ing to better analysis. To this end, the creation of intelligent, adaptive honey-
pots has been explored. Wagener [25] uses reinforcement learning to extract as
much information as possible from the intruder. A honeypot called Heliza was
developed to use reinforcement learning when engaging an attacker. The hon-
eypot implemented behavioural strategies such as blocking commands, return-
ing error messages and issuing insults. Previously, he had proposed the use of
game theory [26] to define the reactive action of a honeypot towards attacker’s



346 S. Dowling et al.

behaviour. Pauna [27] also presents an adaptive honeypot using the same rein-
forced learning algorithms and parameters as Heliza. He proposes a honeypot
named RASSH that provides improvements to scalability, localisation and learn-
ing capabilities. It does this by using newer libraries with a Kippo honeypot and
delaying responses to frustrate human attackers. Both Heliza and RASSH use
PyBrain [28] for their implementation of reinforcement learning and use actions,
such as insult and delay targeting human interaction. Whilst Heliza and RASSH
implement reinforcement learning to increase command transitions from human
interactions, our work pursues the goal of increasing command transitions to
overcome automated honeypot detection techniques.

2.4 Reinforcement Learning in Honeypots

Reinforcement learning is a machine learning technique in which a learning agent
learns from its environment, through trial and error interactions. Rather than
being instructed as to which action it should take given a specific set of inputs,
it instead learns based on previous experiences as to which action it should take
in the current circumstance.

Markov Decision Processes. Reinforcement learning problems can generally
be modelled using Markov Decision Processes (MDPs). In fact reinforcement
learning methods facilitate solutions to MDPs in the absence of a complete
environmental model. This is particularly useful when dealing with real world
problems such as honeypots, as the model can often be unknown or difficult to
approximate. MDPs are a particular mathematical framework suited to mod-
elling decision making under uncertainty. A MDP can typically be represented
as a four tuple consisting of states, actions, transition probabilities and rewards.

– S, represents the environmental state space;
– A, represents the total action space;
– p(.|s, a), defines a probability distribution governing state transitions

st+1 ∼ p(.|st, at);
– q(.|s, a), defines a probability distribution governing the rewards received

R(st, at) ∼ q(.|st, at);

S the set of all possible states represents the agent’s observable world. At the
end of each time period t the agent occupies state st ∈ S. The agent must then
choose an action at ∈ A(st), where A(st) is the set of all possible actions within
state st. The execution of the chosen action, results in a state transition to
st+1 and an immediate numerical reward R(st, at). Formula (1) represents the
reward function, defining the environmental distribution of rewards. The learning
agent’s objective is to optimize its expected long-term discounted reward.

Ras, s
′ = E{rt+1|st = s, at = a, st+1 = s′} (1)

The state transition probability p(st+1|st, at) governs the likelihood that the
agent will transition to state st+1 as a result of choosing at in st.

Pas, s
′ = Pr{st+1 = s′|st = s, at = a} (2)



Using Reinforcement Learning to Conceal Honeypot Functionality 347

The numerical reward received upon arrival at the next state is governed by a
probability distribution q(st+1|st, at) and is indicative as to the benefit of choos-
ing at whilst in st. In the specific case where a complete environmental model is
known, i.e. (S, A, p, q) are fully observable, the problem reduces to a planning
problem and can be solved using traditional dynamic programming techniques
such as value iteration. However if there is no complete model available, then
reinforcement learning methods have proven efficacy in solving MDPs.

SARSA Learning. During the reinforcement learning process the agent can
select an action which exploits its current knowledge or it can decide to use fur-
ther exploration. Reinforcement learning provides parameters to help the learn-
ing environment decide on the reward and exploration values. Figure 1 models
a basic reinforcement learning interaction process. We have to consider how
the model in Fig. 1, applies to adaptive honeypot development. Throughout its
deployment, the honeypot is considered to be an environment with integrated
reinforcement learning. We are using SSH as an access point and a simulated
Linux server as a vulnerable environment. SSH is responsible for 62% of all com-
promise attempts [29]. Within this environment, the server has states that are
examined and changed with bash scripts. Examples are iptables, wget, sudo, etc.
The reinforcement learning agent can perform actions on these states such as to
allow, block or substitute the execution of the scripts. The environment issues
a reward to the agent for performing that action. The agent learns from this
process as the honeypot is attacked and over time learns the optimum policy
π*, mapping the optimal action to be taken each time, for each state s. The
learning process will eventually converge as the honeypot is rewarded for each
attack episode. This temporal difference method for on-policy learning uses the
transition from one state/action pair to the next state/action pair, to derive the
reward. State, Action, Reward, State, Action also known as SARSA, is a com-
mon implementation of on-policy reinforcement learning (3). The reward policy
Q is estimated for a given state st and a given action at. The environment is

Fig. 1. Reinforcement learning model.



348 S. Dowling et al.

explored using a random component ε or exploited using learned Q values. The
estimated Q value is expanded with a received reward rt plus an estimated future
reward Q(st+1, at+1), that is discounted (γ). A learning rate parameter is also
applied (α).

Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1) − Q(st, at)] (3)

As each attack is considered an episode, the policy is evaluated at the end of
each episode. SARSA is implemented with the following parameters:

– epsilon-greedy policy
The honeypot environment is unknown to the learning agent. We want it to
learn without prior knowledge and eventually converge. To this end, we set
our explorer to ε-greedy.

– Discount factor γ = 1
γ is applied when a future reward is estimated. For our honeypot no discount
factor is applied, as attack episodes are readily defined commands between
SSH open and close events. This allows for retrospective reward calculations.

– Step size α = 0.5
A step size parameter is applied for the creation of the state/action space.

3 Reinforcement Learning Honeypot Implementation

Previous contributions demonstrate that there is a relationship between hon-
eypot and malware development and evolution. Botnet traffic is highly auto-
mated as it attacks, compromises and reports without any intervention. From
a malware developer’s perspective, there is very little human interaction, post
launch. Honeypot evasion techniques can be implemented, as new honeypots are
uncovered. This paper uses reinforcement learning to prolong interaction with
an attack sequence. Initial bot commands will attempt to return known honey-
pot responses, or positives to false requests. Depending on the response, the bot
will either cease or amend its actions. We want our honeypot to learn and be
rewarded for prolonging interaction. Therefore our reward function is to increase
the number of commands from the attack sequence. Attacker commands can be
categorised into the following:

– L - Known Linux bash commands
wget, cd, mount, chmod, etc.

– C - Customised attack commands
Commands executing downloaded files

– CC - Compound commands
Multiple commands with bash separators/operators

– NF - known commands not facilitated by honeypot
The honeypot is configured for 75 of the ‘most used’ bash commands.

– O - Other commands
Unhandled keystrokes such as ENTER and unknown commands.



Using Reinforcement Learning to Conceal Honeypot Functionality 349

We propose a transition reward function whereby the learning agent is rewarded
if a bot command is an input string i, comprised of bash commands (L), cus-
tomised commands (C) or compound commands (CC). Therefore Y = C ∪ L ∪
CC. For example ‘iptables stop’ is an input string i that transitions the state
(s) of iptables on a Linux system. Other commands or commands not facilitated
by the honeypot are not given any reward. We propose an action set a = allow,
block, substitute. Allow and Block are realistic responses to malware behaviour.
Botnets can use complex if-else structures to determine next steps during com-
promise [30]. Using Substitute to return an alternative response to an attack
command potentially increases the number of attack transitions to newer com-
mands. This action set coupled with state set Y, creates a discrete state/action
space. The reward function is as follows:

rt(si, a) =

{
1, if i ∈ Y
0, otherwise

(4)

where Y = C ∪ L ∪ CC

The formula for transition reward rt, based on state/action (s,a), is as follows:

– If the input string i is a customised attacker command C or a known bash
command L or a compound command CC, then reward rt(si, a) = 1

– otherwise the reward rt(si, a) = 0

A model of the adaptive learning process from the reinforcement learning model
in Fig. 1, is shown in Fig. 2.

The adaptive honeypot has the following elements:

– Modified honeypot. Cowrie is a widely used honeypot distribution that logs
all SSH interactions in a MySQL database. This has been modified to generate
the parameters to pass to the learning agent. Depending on the action selected
by the learning agent, the honeypot will allow, block or substitute attack
commands.

– SARSA agent. This module receives the required parameters from the adap-
tive honeypot and calculates Q(st, at) as per Eq. (3). It determines the
responses chosen by the adaptive honeypot and learns over time which actions
yield the greatest amount of reward.

More detailed learning and reward functionality for this adaptive honeypot is
available [31].

4 Results

We deployed two Cowrie honeypots at the same time; one adaptive as detailed
in the previous section, and one standard high interaction. The adaptive honey-
pot was developed to generate rewards on 75 states and is freely available [32].
This was facilitated within PyBrain, which allows us to define the state/action



350 S. Dowling et al.

Fig. 2. Adaptive honeypot with reinforcement learning process.

space. We used Amazon Web Services (AWS) EC2 to facilitate an Internet fac-
ing honeypots. Cowrie, PyBrain, MySQL and other dependencies were installed
on the adaptive honeypot EC2 instance. Both were accessible through SSH and
immediately started to record malware activity. Initially it logged dictionary
and bruteforce attempts. To compare performance, we undertake to extract all
commands executed on the honeypots. Therefore events such as failed attempts,
dictionary and bruteforce attacks are excluded as they represent pre-compromise
interactions. Thereafter it captured other malware traffic including a Mirai-like
bot [20]. These commands all represent interactions post-compromise. This bot
became the dominant attacking tool over a 30-day period, until over 100 dis-
tinct attacks were recorded on the honeypot. Other SSH malware interacted
with the honeypot. But these were too infrequent to excessively modify the
rewards. Prior to presenting the results it is important to discuss the format of
the bot, a sample of which is displayed in Table 2. In reality it has a sequence of
44 commands. The high interaction honeypot only ever experienced the first 8
commands in the sequence before the attack terminated. During 100 captures of
the same bot, it never captured more than 8 transitions in the attack sequence.
The adaptive honeypot initially experienced only the first 8 commands but then
the sequence count started to increase as the honeypot learned from its state
actions and rewards. Examining the entire bot structure, a mount command
appears in the initial command sequence. A standard high-interaction honeypot
has preconfigured parameters, and the response of mount is a known anti-evasion
technique [19]. Figure 3 presents a comparison of the cumulative transitions for



Using Reinforcement Learning to Conceal Honeypot Functionality 351

Table 2. Sample of bot commands and categories

Sequence Bot command Category

38 /gweerwe323f Other

39 cat/bin/echo L

40 cd/ L

41 wget http:// <IP >/bins/usb bus.x86 -O
- >usb bus; chmod 777 usb bus

CC

42 ./usb bus C

Fig. 3. Cumulative transitions for all commands.

both honeypots. This includes all command transitions for Y. At attack 16, the
adaptive honeypot increased the number of commands in the sequence to 12.
Examining the logs, we find that for the first time, the adaptive honeypot sub-
stituted a result for cat command and blocked a mount command. At attack 12
the honeypot blocked a compound echo command and continued to do so until
attack 42. This is a very interesting result when compared to the high interaction
honeypot’s linear accumulation. The honeypot continued to learn until attack 42
when it allowed all compound commands in the sequence to be executed. Inves-
tigating the machinations of the bot, through sandboxing and code exploration,
could explain this learning evolution. This is however beyond the scope of this
article. The adaptive honeypot subsequently collected four times more command
transitions than a standard high interaction honeypot. This task demonstrates
that the adaptive honeypot was rewarded to increase the command transitions
captured. By doing so it overcame initial honeypot identification techniques and
continued to reward the learning agent in the event of further evasion measures.

Previous research has used reinforcement learning to create adaptive honey-
pots provisioning human interaction. Heliza presented findings from an adap-
tive honeypot deployed on the Internet. When compared to a high interaction



352 S. Dowling et al.

honeypot, it produced three times more transitions to attack commands after
347 successful attacks. We point out that malware is an automated process and
providing actions such as insult and delay are not relevant. After 100 successful
attacks, our adaptive honeypot overcame initial honeypot detection techniques
and subsequently captured four times more attack commands. It demonstrates
that our state action space formalism for automated malware in more effec-
tive and produces a larger dataset for analysis. The captured dataset and bot
analysis are valuable elements for further honeypot research. As an example,
we used the captured dataset as an input stream and considered how the hon-
eypot can be optimised by performing policy evaluation. We implemented the
adaptive honeypot within a controlled Eclipse environment and modified the
explorer component using PyBrain. The learning agent uses this explorer com-
ponent to determine the explorative action to be executed. PyBrain provides for
the following policies [28]:

– Epsilon greedy
A discrete explorer that mostly executes the original policy but sometimes
returns a random action.

– Boltzmann Softmax
A discrete explorer that executes actions with a probability that depends on
their action values.

– State dependent
A continuous explorer that disrupts the resulting action with added, dis-
tributed random noise.

We ran the attack sequence for each of the policies and found that the Boltz-
mann explorer performed better in the controlled environment, resulting in more
command transitions (Fig. 4). Boltzmann learned the best action to overcome
detection at attack 11. State dependent learned the best action to overcome
detection at attack 52. Epsilon greedy was the least effective as it learned the
best action to overcome detection at attack 67. This policy evaluation demon-
strates that parameters within the learning environment can be optimised to
inform the development and deployment of more effective adaptive honeypots.

5 Limitations and Future Work

This paper improves upon an existing RL implementation by reducing the action
set and simplifying the reward. By doing so it targets automated attack meth-
ods using SSH as a popular attack vector [23]. It is important to note that all
interactions captured on both the high-interaction and adaptive honeypots were
automated. There were no interactions showing obvious human cognition such
as delayed responses, typing errors etc. This was verified by the timestamps of
an entire attack sequence being executed in seconds. However, there are many
honeypots deployed to capture malware using known vulnerabilities at different
application and protocol levels [33]. There also exists tools to detect honeypots
deployed on various attack vectors [5]. Therefore our research can be consid-
ered to have a narrow focus. We have presented previous and current adaptive



Using Reinforcement Learning to Conceal Honeypot Functionality 353

Fig. 4. Cumulative transitions for policy evaluation

honeypots targeting human and automated malware. We have also demonstrated
that reinforcement learning can overcome initial detection honeypot techniques
and prolong attack interaction. It is not unreasonable to consider a similar app-
roach for application and protocol dependent honeypots. Further research into
adaptive honeypot deployment could incorporate machine learning libraries such
as PyBrain into these application and protocol dependent honeypots. Prior to
pursuing this future work, research is required to determine if malware targeting
these other honeypots is predominately human or automated. Honeypot opera-
tors have the tools to target human [25] or automated [31] attack traffic. There-
after, adaptive honeypots using reinforcement learning can facilitate detection
evasion. This ultimately leads to prolonged attack engagement and the capture
of more valuable datasets.

Table 3. Modified Seifert’s taxonomy

Class Value Note

Interaction level High High degree of functionality

Low Low degree of functionality

Adaptive Learns from attack interaction

6 Conclusions

This paper presents a state action space formalism designed to overcome anti
detection techniques used by malware to evade honeypots. The reinforcement
learning function is configured to reward the honeypot for increasing malware
interaction. After an initial period, the honeypot learned the best method to
avoid an attack command known to discover the presence of a honeypot. A
standard high interaction honeypot always failed to maintain an attack beyond
8 commands. This indicated that the bot detected a honeypot and ceased oper-
ations. Our adaptive honeypot learned how to overcome this initial detection,



354 S. Dowling et al.

and cumulatively collected four times more command transitions. Honeypots
are designed to capture malware for retrospective analysis, which helps under-
stand attack methods and identify zero day attacks. Once discovered, malware
developers modify attack methods to evade detection and release them as new
variants. By modifying parameters within PyBrain we were able evaluate learn-
ing policies. The collected dataset is a valuable tool and can be used as an input
stream into honeypots in a controlled environment. It allows us to ascertain the
best policy for future deployments. Continuous capture and analysis using this
method can ensure that more effective adaptive honeypots are deployed for new
malware variants. IoT, ICS, and wireless sensor networks are example of where
RFDs are targeted by new malware. Rather than releasing new versions of hon-
eypots when discovered, an adaptive honeypot can learn how to evade the anti
detection methods used. It gives security developers an advantage in the cat-
and-mouse game of malware development and discovery. For future work it is
incumbent on honeypot developers to revisit Seifert’s taxonomy in Table 1 and
consider adding to interaction level class and value, a sample of which is shown
in Table 3.

References

1. Bellovin, S.M.: Packets found on an internet. ACM SIGCOMM Comput. Commun.
Rev. 23(3), 26–31 (1993)

2. Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., Rossow, C.:
IoTPOT: analysing the rise of IoT compromises. EMU 9, 1 (2015)

3. Watson, D., Riden, J.: The honeynet project: data collection tools, infrastructure,
archives and analysis. In: WOMBAT Workshop on 2008 IEEE Information Security
Threats Data Collection and Sharing. WISTDCS 2008, pp. 24–30 (2008)

4. Provos, N., et al.: A virtual honeypot framework. In: USENIX Security Symposium,
vol. 173, pp. 1–14 (2004)

5. Krawetz, N.: Anti-honeypot technology. IEEE Secur. Priv. 2(1), 76–79 (2004)
6. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and

other botnets. Computer 50(7), 80–84 (2017)
7. Spitzner, L.: Honeypots: Tracking Hackers, vol. 1. Addison-Wesley, Reading (2003)
8. Zhang, F., et al.: Honeypot: a supplemented active defense system for network

security. In: 2003 Proceedings of the Fourth International Conference on Paral-
lel and Distributed Computing, Applications and Technologies. PDCAT-2003, pp.
231–235. IEEE (2003)

9. Spitzner, L.: Honeytokens: the other honeypot (2003). https://www.symantec.
com/connect/articles/honeytokens-other-honeypots. Accessed 17 Feb 2014

10. Seifert, C., Welch, I., Komisarczuk, P.: Taxonomy of honeypots. Technical report
CS-TR-06/12, School of Mathematical and Computing Sciences, Victoria Univer-
sity of Wellington, June 2006

11. Kuwatly, I., et al.: A dynamic honeypot design for intrusion detection. In: 2004
Proceedings of The IEEE/ACS International Conference on Pervasive Services.
ICPS 2004, pp. 95–104. IEEE (2004)

12. Prasad, R., Abraham, A.: Hybrid framework for behavioral prediction of network
attack using honeypot and dynamic rule creation with different context for dynamic
blacklisting. In: 2010 Second International Conference on Communication Software
and Networks. ICCSN 2010, pp. 471–476. IEEE (2010)

https://www.symantec.com/connect/articles/honeytokens-other-honeypots
https://www.symantec.com/connect/articles/honeytokens-other-honeypots


Using Reinforcement Learning to Conceal Honeypot Functionality 355

13. Jicha, A., Patton, M., Chen, H.: SCADA honeypots: an indepth analysis of Conpot.
In: 2016 IEEE Conference on Intelligence and Security Informatics (ISI) 2016

14. Vormayr, G., Zseby, T., Fabini, J.: Botnet communication patterns. IEEE Com-
mun. Surv. Tutor. 19(4), 2768–2796 (2017)

15. Wang, P., et al.: Honeypot detection in advanced botnet attacks. Int. J. Inf. Com-
put. Secur. 4(1), 30–51 (2010)

16. Holz, T., Raynal, F.: Detecting honeypots and other suspicious environments. In:
2005 Proceedings from the Sixth Annual IEEE SMC Information Assurance Work-
shop. IAW 2005, pp. 29–36. IEEE (2005)

17. Antonakakis, M., et al.: Understanding the Mirai botnet. In: USENIX Security
Symposium, pp. 1092–1110 (2017)

18. Valli, C., Rabadia, P., Woodward, A.: Patterns and patter-an investigation into
SSH activity using kippo honeypots (2013)

19. Not capturing any Mirai samples. https://github.com/micheloosterhof/cowrie/
issues/411. Accessed 02 Feb 2018

20. SSH Mirai-like bot. https://pastebin.com/NdUbbL8H. Accessed 28 Nov 2017
21. Khattak, S., et al.: A taxonomy of botnet behavior, detection, and defense. IEEE

Commun. Surv. Tutor. 16(2), 898–924 (2014)
22. Hayatle, O., Otrok, H., Youssef, A.: A Markov decision process model for high

interaction honeypots. Inf. Secur. J.: A Global Perspect. 22(4), 159–170 (2013)
23. Ghourabi, A., Abbes, T., Bouhoula, A.: Characterization of attacks collected from

the deployment of Web service honeypot. Secur. Commun. Netw. 7(2), 338–351
(2014)

24. Goseva-Popstojanova, K., Anastasovski, G., Pantev, R.: Using multiclass machine
learning methods to classify malicious behaviors aimed at web systems. In: 2012
IEEE 23rd International Symposium on Software Reliability Engineering (ISSRE),
pp. 81–90. IEEE (2012)

25. Wagener, G., Dulaunoy, A., Engel, T., et al.: Heliza: talking dirty to the attackers.
J. Comput. Virol. 7(3), 221–232 (2011)

26. Wagener, G., State, R., Dulaunoy, A., Engel, T.: Self adaptive high interaction
honeypots driven by game theory. In: Guerraoui, R., Petit, F. (eds.) SSS 2009.
LNCS, vol. 5873, pp. 741–755. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05118-0 51

27. Pauna, A., Bica, I.: RASSH-reinforced adaptive SSH honeypot. In: 2014 10th Inter-
national Conference on Communications (COMM), pp. 1–6. IEEE (2014)

28. Schaul, T., et al.: PyBrain. J. Mach. Learn. Res. 11(Feb), 743–746 (2010)
29. Initial analysis of four million login attempts. http://www.honeynet.org/node/

1328. Accessed 17 Nov 2017
30. Dowling, S., Schukat, M., Melvin, H.: A ZigBee honeypot to assess IoT cyberattack

behaviour. In: 2017 28th Irish Signals and Systems Conference (ISSC), pp. 1–6.
IEEE (2017)

31. Dowling, S., Schukat, M., Barrett, E.: Improving adaptive honeypot functionality
with efficient reinforcement learning parameters for automated malware. J. Cyber
Secur. Technol. 1–17 (2018) https://doi.org/10.1080/23742917.2018.1495375

32. An adaptive honeypot using reinforcement learning implementation. https://
github.com/sosdow/RLHPot. Accessed 19 Dec 2017

33. Bringer, M.L., Chelmecki, C.A., Fujinoki, H.: A survey: recent advances and future
trends in honeypot research. Int. J. Comput. Netw. Inf. Secur. 4(10), 63 (2012)

https://github.com/micheloosterhof/cowrie/issues/411
https://github.com/micheloosterhof/cowrie/issues/411
https://pastebin.com/NdUbbL8H
https://doi.org/10.1007/978-3-642-05118-0_51
https://doi.org/10.1007/978-3-642-05118-0_51
http://www.honeynet.org/node/1328
http://www.honeynet.org/node/1328
https://doi.org/10.1080/23742917.2018.1495375
https://github.com/sosdow/RLHPot
https://github.com/sosdow/RLHPot

	Using Reinforcement Learning to Conceal Honeypot Functionality
	1 Introduction
	2 Related Work
	2.1 Honeypot Evolution
	2.2 Anti-honeypot and Anti-detection
	2.3 Adaptive Honeypots
	2.4 Reinforcement Learning in Honeypots

	3 Reinforcement Learning Honeypot Implementation
	4 Results
	5 Limitations and Future Work
	6 Conclusions
	References




