
Learning Cheap and Novel Flight
Itineraries

Dmytro Karamshuk(B) and David Matthews

Skyscanner Ltd., Edinburgh, UK
{Dima.Karamshuk,David.Matthews}@skyscanner.net

Abstract. We consider the problem of efficiently constructing cheap
and novel round trip flight itineraries by combining legs from different
airlines. We analyse the factors that contribute towards the price of such
itineraries and find that many result from the combination of just 30%
of airlines and that the closer the departure of such itineraries is to
the user’s search date the more likely they are to be cheaper than the
tickets from one airline. We use these insights to formulate the problem
as a trade-off between the recall of cheap itinerary constructions and the
costs associated with building them.

We propose a supervised learning solution with location embeddings
which achieves an AUC= 80.48, a substantial improvement over simpler
baselines. We discuss various practical considerations for dealing with
the staleness and the stability of the model and present the design of the
machine learning pipeline. Finally, we present an analysis of the model’s
performance in production and its impact on Skyscanner’s users.

1 Introduction

Different strategies are used by airlines to price round trip tickets. Budget air-
lines price a complete round trip flight as the sum of the prices of the individual
outbound and inbound journeys (often called flight legs). This contrasts with
traditional, national carrier, airlines as their prices for round trip flights are
rarely the sum of the two legs. Metasearch engines, such as Skyscanner1, can
mix outbound and inbound tickets from different airlines to create combina-
tion itineraries, e.g., flying from Miami to New York with United Airlines and
returning with Delta Airlines (Fig. 1)2. Such combinations are, for a half of search
requests, cheaper than the round trip tickets from one airline.

A näıve approach to create such combinations with traditional airlines,
requires an extra two requests for prices per airline, for both the outbound and
the inbound legs, on top of the prices for complete round trips. These additional
requests for quotes is an extra cost for a metasearch engine. The cost, however,

1 https://www.skyscanner.net/.
2 Our constructions contrast with those built through interlining which involve two

airlines combining flights on the same leg of a journey organised through a commer-
cial agreement.

c© Springer Nature Switzerland AG 2019
U. Brefeld et al. (Eds.): ECML PKDD 2018, LNAI 11053, pp. 288–304, 2019.
https://doi.org/10.1007/978-3-030-10997-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10997-4_18&domain=pdf
https://www.skyscanner.net/
https://doi.org/10.1007/978-3-030-10997-4_18

Learning Cheap and Novel Flight Itineraries 289

can be considerably optimized by constructing only the combinations which are
competitive against the round trip fares from airlines.

To this end, we aim to predict price competitive combinations of tickets from
traditional airlines given a limited budget of extra quote requests. Our approach
is as follows.

Fig. 1. Example of a combination flight itinerary in Skyscanner’s search results.

Firstly, we analyse a data set of 2.3M search queries from 768K Skyscanner’s
users, looking for the signals which impact the competitiveness of combination
itineraries in the search results. We find the that the vast majority of competitive
combination itineraries are composed of only 30% of airlines and are more likely
to appear in the searches for flights departing within days of the user’s search.

Secondly, we formulate the problem of predictive itinerary construction as a
trade-off between the computation cost and resulting coverage, where the cost is
associated with the volume of quote requests the system has to make to construct
combination itineraries, and the coverage represents the model’s performance in
finding all such itineraries that are deemed price competitive. To the best of our
knowledge this is the first published attempt to formulate and solve the problem
of constructing flight itineraries using machine learning.

Thirdly, we evaluate different supervised learning approaches to solve this
problem and propose a solution based on neural location embeddings which
outperforms simpler baselines and achieves an AUC = 80.48. We also provide an
intuition on the semantics of information that such embedding methods are able
to learn.

Finally, we implement and deploy the proposed model in a production envi-
ronment. We provide simple guidance for achieving the right balance between
the staleness and stability of the production model and present the summary of
its performance.

2 Data Set

To collect a dataset for our analysis we enabled the retrieval of both outbound
and inbound prices for all airlines on a sample of 2.3M Skyscanner search results
for round trip flights in January 2018. We constructed all possible combina-
tion itineraries and recorded their position in the ranking of the cheapest search
results, labelling them competitive, if they appeared in the cheapest ten search

290 D. Karamshuk and D. Matthews

results, or non-competitive otherwise3. This resulted in a sample of 16.9M com-
bination itineraries (both competitive and non-competitive) for our analysis,
consisting of 768K users searching for flights on 147K different routes, i.e., ori-
gin and destination pairs.

Our analysis determined that the following factors contribute towards a com-
bination itinerary being competitive.

2.1 Diversity of Airlines and Routes

We notice that the vast majority (70%) of airlines rarely appear in a compet-
itive combination itinerary (Fig. 2), i.e., they have a less than 10% chance of
appearing in the top ten of search results. The popularity of airlines is highly
skewed too. The top 25% of airlines appear in 80% of the search results whereas
the remaining 75% of airlines account for the remaining 20%. We found no cor-
relation between airlines’ popularity and its ability to appear in a competitive
combination itinerary.

airlines

se
ar

ch
 re

su
lts

 w
ith

 c
om

bi
na

tio
ns

Fig. 2. Search results with competitive combinations across different airlines. The
cumulative share of all search results (red) and search results with competitive combi-
nations (blue) for top x% of airlines (x-axis). (Color figure online)

The absence of a correlation with popularity is even more vividly seen in
the analysis of combination performance on different search routes (Fig. 3). The
share of competitive combinations on unpopular and medium popular routes
is rather stable (≈45%) and big variations appear only in the tail of popular
routes. In fact, some of those very popular routes have almost a 100% chance to
have combination itineraries in the top ten results, whereas some other ones of a
comparable popularity almost never feature a competitive combination itinerary.
3 Skyscanner allows to rank search results by a variety of other parameters apart from

the cheapest. The analysis of these different ranking strategies is beyond the scope
of this paper.

Learning Cheap and Novel Flight Itineraries 291

Fig. 3. Search results with competitive combinations across routes with different pop-
ularity. Red: the cumulative distribution function of the volume of searches across
different origin and destination pairs (routes). Blue: the share of search results with
competitive combinations (y-axis) on the routes of a given popularity (x-axis). (Color
figure online)

This finding is in line with our modelling results in Sect. 3 where we observe
that the popularity of a route or an airline is not an indicative feature to predict
price competitiveness of combination itineraries. We therefore focus on a small
number of airlines and routes which are likely to create competitive combination
itineraries. We explore different supervised learning approaches to achieve this
in Sect. 3.

2.2 Temporal Patterns

We also analyse how the days between search and departure (number of days
before departure) affects the competitiveness of combinations in the top ten of
search results (Fig. 4). We find that combination itineraries are more likely to be
useful for searches with short horizons and gradually become less so as the days
between search and departure increases. One possible explanation lies in the fact
that traditional single flight tickets become more expensive as the departure day
approaches, often unequally so across different airlines and directions. Thus, a
search for a combination of airlines on different flight legs might give a much more
competitive result. This observation also highlights the importance to consider
the volatility of prices as the days between search and departure approaches, the
fact which we explore in building a production pipeline in Sect. 4.

3 Predictive Construction of Combination Itineraries

Only 10% of all possible combination itineraries are cheap enough to appear in
the top ten cheapest results and therefore be likely to be seen by the user. The

292 D. Karamshuk and D. Matthews

se
ar

ch
 re

su
lts

 w
ith

 c
om

bi
na

tio
ns

Fig. 4. Search results with competitive combinations across different days between
search and departures (booking horizon). Red: the cumulative distribution function of
the booking horizon. Blue: the share of search results with competitive combinations
(y-axis) for a given booking horizon (x-axis). (Color figure online)

difficulty is in the fact that the cost of enabling combinations in Skyscanner
search results is proportional to the volume of quote requests required to check
their competitiveness. In this section we formulate the problem of predictive
combination itinerary construction where we aim to train an algorithm to spec-
ulatively construct only those combinations which are likely to be competitive
and thus to reduce the overall cost associated with enabling combinations in
production.

3.1 Problem Formulation

We tackle the predictive combination itinerary construction as a supervised
learning problem where we train a classifier F (Q,A, F) → {True, False} to pre-
dict whether any constructed combination itinerary in which airline A appears
on the flight leg F , either outbound or inbound, will yield a competitive combi-
nation itinerary in the search results for the query Q. The current formulation
is adopted to fit in Skyscanner’s current pricing architecture which requires an
advance decision about whether to request a quote from airline A on a leg F for a
query Q. To measure the predictive performance of any such classifier F (Q,A, F)
we define the following metrics:

Recall or coverage is measured as a share of competitive itineraries con-
structed by the classifier F (X), more formally:

Recall@10 =
|L@10

pred ∩ L@10
all |

|L@10
all | (1)

where L@10
pred is the set of competitive combination itineraries constructed by an

algorithm and L@10
all is the set of all possible competitive combination itineraries.

Learning Cheap and Novel Flight Itineraries 293

In order to estimate the latter we need a mechanism to sample the ground truth
space which we discuss in Sect. 4.

Quote requests or cost is measured in terms of all quote requests required by
the algorithm to construct combination itineraries, i.e.:

Quote Requests =
|Lpred|
|Lall| (2)

where Lall - is the set of all possible combination itineraries constructed via the
ground truth sampling process. Note that our definition of the cost is sometimes
also named as predictive positive condition rate in the literature.

The problem of finding the optimal classifier F (Q,A, F) is then one of finding
the optimal balance between the recall and quote requests. Since every algorithm
can yield a spectrum of all possible trade-offs between the recall and the quote
requests we also use the area under the curve (AUC) as an aggregate performance
metric.

3.2 Models

We tried several popular supervised learning models including logistic regression,
multi-armed bandit and random forest. The first two algorithms represent rather
simple models which model a linear combination of features (logistic regression)
or their joint probabilities (multi-armed bandit). In contrast, random forest can
model non-linear relations between individual features and exploits an idea of
assembling different simple models trained on a random selection of individ-
ual features. We use the scikit-learn4 implementation of these algorithms and
benchmark them against:

Popularity Baseline. We compare the performance of the proposed models
against a näıve popularity baseline computed by ranking the combinations of
(origin, destination, airline) by their popularity in the training set and cutting-
off the top K routes which are estimated to cumulatively account for a defined
share of quote requests. We note that this is also the model which was initially
implemented in the production system.

Oracle Upper-Bound. We also define an upper-bound for the prediction perfor-
mance of any algorithm by considering an oracle predictor constructed with the
perfect knowledge of the future, i.e., the validation data set. The aim of the ora-
cle predictor is to estimate the upper-bound recall of competitive combinations
achieved with a given budget of quote requests.

Results. From Fig. 5 we observe that all proposed supervised models achieve a
superior performance in comparison to the näıve popularity baseline (AUC =
51.76%), confirming our expectations from Sect. 2 that popularity alone cannot
explain competitiveness of combinations itineraries. Next, we notice that the
4 http://scikit-learn.org/.

http://scikit-learn.org/

294 D. Karamshuk and D. Matthews

Model AUC
popularity 51.76

logistic regression 75.69
multi-armed bandit 77.68

random forest 80.37
oracle 96.60

Fig. 5. Performance of different supervised learning models (logistic regression (LR),
nearest neighbour (NN), multi-armed bandit (MAB) and random forest (RF)) bench-
marked over a näıve popularity baseline (popular) and the upper-bound performance
attainable with a perfect knowledge of the future (oracle).

random forest model outperforms other models and achieves an AUC = 80.37%,
a large improvement from the second best performing model (AUC = 77.68%).
At the same time, the results of our best performing model still lag behind the
oracle predictor which achieves 100% recall with as little as 10% of total cost
or AUC = 96.60%. In order to improve the performance of our best model even
further in the following section we focused on experimenting with the represen-
tation of the feature space and more specifically the representation of location
information identified as the most important predictor across all experiments.

3.3 Location Representations

This section describes different approaches we tried to more richly represent
location information.

Trace-Based Embeddings. In this approach we collected the histories of per-user
searches in the training data set and built sequences of origin and destination
pairs appearing in them. For instance, if a user searched for a flight from London
to Barcelona, followed by a search from London to Frankfurt, followed by another
one from Frankfurt to Budapest, then we will construct a sequence of locations
[London, Barcelona, London, Frankfurt, Frankfurt, Budapest] to represent the
user’s history. We also filter out the users who searched for less than 10 flights
in our data set and remove the duplicates in consecutive searches. We feed the
resulting sequences into a Word2Vec algorithm [13], treating each location as a
word and each user sequence as a sentence. We end up with a representation of
each origin and destination locations as vectors from the constructed space of
location embeddings.

Learning Cheap and Novel Flight Itineraries 295

This approach is inspired by the results in mining distributed representations
of categorical data, initially proposed for natural language processing [13], but
recently applied also for mining graph [16] and location data [12,15,20]. Specifi-
cally, we tried the approach proposed in [15] and [20], but since the results were
quite similar we only describe one of them.

Co-trained Embeddings. In this alternate approach we train a neural network
with embedding layers for origin and destination features, as proposed in [8] and
implemented in Keras embedding layers5. We use a six-layer architecture for
our neural network where embedding layers are followed by four fully connected
layers of 1024, 512, 256, 128 neurons with relu activation functions.

Note that the goal of this exercise is to understand whether we can learn use-
ful representation of the location data rather than to comprehensively explore
the application of deep neural networks as an alternative to our random forest
algorithm which, as we discuss in Sect. 4, is currently implemented in our pro-
duction pipeline. Hence, we focus on the representations we learn from the first
layer of the proposed network.

Table 1. Examples of location embeddings for airports most similar to London
Heathrow (left) and Beijing Capital (right) in the embedded feature space.

London Heathrow
Airport Similarity

Frankfurt am Main 0.71
Manchester 0.69

Amsterdam Schipol 0.62
Paris Charles de Gaulle 0.62

London Gatwick 0.61

Beijing Capital
Airport Similarity

Chubu Centrair 0.91
Taipei Taoyuan 0.90
Seoul Incheon 0.90

Miyazaki 0.88
Shanghai Pudong 0.88

Learned Embeddings. In Table 1 we present few examples of the location embed-
dings we learn with these proposed approaches. Particularly, we take few example
airports (London Heathrow and Beijing Capital) and find other airports which
are located in vicinity in the constructed vector spaces. The results reveal two
interesting insights. Firstly, the resulting location embeddings look like they are
capturing the proximity between the airports. The airports most closely located
to London Heathrow and Beijing Capital are located in the western Europe and
south-east Asia, correspondingly. Secondly, we notice that the algorithm is able
to capture that London Heathrow is semantically much closer to transatlantic
hubs such as Paris Charles de Gaulle, Amsterdam Schipol and London Gatwick
rather than a geographically closer London Luton or London Stansted airports
which are mainly focused on low-cost flights within Europe.

5 https://keras.io/layers/embeddings/.

https://keras.io/layers/embeddings/

296 D. Karamshuk and D. Matthews

Model AUC
One hot 80.37%

Trace embeddings 77.80%
DN embeddings 80.48%

Deep network (DN) 82.67%
Oracle 96.60%

Fig. 6. Performance of the random forest model with different representations of ori-
gin and destination data (one hot encoding, trace-based embeddings, co-trained (DN)
embeddings) and a neural network with embedding layers (DN). (Color figure online)

3.4 Prediction Performance

In Fig. 6 we compare the results of applying different location representations to
the random forest algorithm proposed in the previous section. We use the random
forest trained with one-hot representation as a baseline and compare it with: (a)
the random forest model trained with trace-based embeddings (orange curve)
and (b) the random forest trained with co-trained embeddings from the deep
neural network model discussed early (green curve). In this latter approach we
decouple the embedding layer from the rest of the layers in the neural network
and use that as an input to our random forest model. We are able to assess
how the embedding learned in the neural network can effectively represent the
location data. Finally, we provide the results of the deep neural network itself
for comparison (red curve).

The results of the model trained from trace-based embeddings performed
worse than a baseline one-hot encoding, Fig. 6. The random forest model with
co-trained embeddings outperforms both results and achieves AUC = 80.48%.
The characteristic curves of the random forest model with one-hot encoding
(blue curve) and co-trained embeddings (green curve) overlap largely in Fig. 6,
but a closer examination reveals a noticeable improvement of the latter in the
area between 0 and 20% and above 50% of the quote request budget. One pos-
sible explanation behind these results might be that the embeddings we have
trained from user-traces, in contrast to the co-trained embeddings, have been
learning the general patterns in user-searches rather than optimising for our
specific problem.

We also notice that the performance of the deep neural network surpasses
that of the random forest but any such comparison should also consider the
complexity of each of the models, e.g., the number and the depth of the decision

Learning Cheap and Novel Flight Itineraries 297

trees in the random forest model versus the number and the width of the layers
in the neural network.

4 Putting the Model in Production

4.1 Model Parameters

Training Data Window. To decide on how far back in time we need to look
for data to train a good model we conduct an experiment where samples of
an equivalent size are taken from each of the previous N days, for increasing
values of N (Fig. 7). We observe that the performance of the model is initially
increasing as we add more days into the training window, but slows down for N
between [3..7] days and the performance even drops as we keep increasing the
size of the window further. We attribute this observation to the highly volatile
nature of the flight fares and use a training window of 7 days to train the model
in production.

Fig. 7. The impact of the selected training window on the prediction performance of
the model.

Model Staleness. To decide how frequently to retrain the model in production
we measure its staleness in an experiment (Fig. 8). We consider a six day long
period with two variants: when the model is trained once before the start of
the experiment and when the model is retrained every single day. The results
suggest, that the one-off trained model quickly stales by an average of 0.3%
in AUC with every day of the experiment. The model retrained every single
day, although also affected by daily fluctuations, outperforms the one-off trained
model. This result motivates our decision to retrain the model every day.

298 D. Karamshuk and D. Matthews

Fig. 8. Model staleness of the one-off trained model vs. the model retrained every day.

Model Stability. Frequent retraining of the model comes at a price of its sta-
bility, i.e., giving the same prediction for the same input day in day out.
To explain this phenomena we look at the changes in the rules that the
model is learning in different daily runs. We generate a simplified approxi-
mation of our random forest model by producing a set of decision rules of
a form (origin, destination, airline), representing the cases when combination
itineraries with a given airline perform well on a given (origin, destination)
route. We analyse how many of the rules generated in day Ti−1 were dropped
in the day Ti’s run of the model and how many new ones were added instead
(Fig. 9).

Fig. 9. Model stability, daily changes of (origin, destination, airline) rules inferred from
the random forest model.

We see that around 88% of rules remain relevant between the two consecutive
days the remaining ≈12% are dropped and a similar number of new ones are
added. Our qualitative investigation followed from this experiment suggested

Learning Cheap and Novel Flight Itineraries 299

that dropping a large number of rules may end up in a negative user experience.
Someone who saw a combination option on day Ti−1 might be frustrated from
not seeing it on Ti even if the price went up and it is no longer in the top ten of
the search results. To account for this phenomenon we have introduced a simple
heuristic in production which ensures that all of the rules which were generated
on day Ti−1 will be included for another day Ti.

4.2 Architecture of the Pipeline

Equipped with the observations from the previous section we implement a
machine learning pipeline summarised in Fig. 10. There are three main com-
ponents in the design of the pipeline: the data collection process which samples
the ground truth space to generate training data; the training component which
runs daily to train and validate the model and the serving component which
delivers predictions to the Skyscanner search engine.

Data Querying
AWS Athena

Data Archive
AWS S3

Data Collection Current Model

Model Training
scikit-learn

Training Data
7 recent days

Validation Data
5% of the last day Model Validation

Passed?

Skyscanner
Traffic

Pre-processing

Experiments with
Challenger Model

5 %

5 %

90%

Training Component (AWS CF + AWS Data Pipeline)

Report Failure

Update Model Apache Kafka

Serving Component

Fig. 10. The architecture of the machine learning pipeline.

Training Infrastructure: The training infrastructure is orchestrated by AWS
Cloud Formation6 and AWS Data Pipeline7. The data querying and preprocess-
ing is implemented with Presto distributed computing framework8 managed by
AWS Athena9. The model training is done with scikit-learn library on a high-
capacity virtual machine. Our decision for opting towards a single large virtual
machine vs. a multitude of small distributed ones has been dictated by the fol-
lowing considerations:
6 https://aws.amazon.com/cloudformation/.
7 https://aws.amazon.com/datapipeline/.
8 https://prestodb.io/.
9 https://aws.amazon.com/athena/.

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/datapipeline/
https://prestodb.io/
https://aws.amazon.com/athena/

300 D. Karamshuk and D. Matthews

Data Volume: Once the heavy-lifting of data collection and preprocessing is
done in Presto, the size of the resulting training data set becomes small enough
to be processed on a single high capacity virtual machine.

Performance: By avoiding expensive IO operations characteristic of distributed
frameworks, we decreased the duration of a model training cycle to less than
10 min.

Technological Risks: The proposed production environment closely resembles
our offline experimentation framework, considerably reducing the risk of a per-
formance difference between the model developed during offline experimentation
and the model run in production.

Traffic Allocation. We use 5% of Skyscanner search traffic to enable ground
truth sampling and prepare the data set for training using Skyscanner’s logging
infrastructure10 which is built on top of Apache Kafka11. We enable construction
of all possible combination itineraries on this selected search traffic, collecting
a representative sample of competitive and non-competitive cases to train the
model. We use another 5% of the search traffic to run a challenger experiment
when a potentially better performing candidate model is developed using offline
analysis. The remaining 90% of the search traffic are allocated to serve the
currently best performing model.

Validation Mechanism. We use the most recent seven days, Ti−7..Ti−1, of the
ground truth data to train our model on day Ti as explained in Sect. 4.1. We
also conduct a set of validation tests on the newly trained model before releasing
it to the serving infrastructure. We use a small share of the ground truth data
(5% out of 5% of the sampled ground truth data) from the most recent day
Ti−1 in the ground truth data set with the aim of having our validation data as
close in time to when the model appears in production on day Ti. This sampled
validation set is excluded from the training data.

4.3 Performance in Production

When serving the model in production we allow a budget of an additional 5% of
quote requests with which we expect to reconstruct 45% of all competitive com-
bination itineraries (recall Fig. 6). From Fig. 11 we note that the recall measured
in production deviates by ≈5% from expectations in our offline experiments. We
attribute this to model staleness incurred from 24 h lag in the training data we
use from the time when the model is pushed to serve users’ searches.

Analysing the model’s impact on Skyscanner users, we note that new cheap
combination itineraries become available in 22% of search results. We see evi-
dence of users finding these additional itineraries useful with a 20% relative
increase in the booking transactions for combinations.

10 More details here https://www.youtube.com/watch?v=8z59a2KWRIQ.
11 https://kafka.apache.org/.

https://www.youtube.com/watch?v=8z59a2KWRIQ
https://kafka.apache.org/

Learning Cheap and Novel Flight Itineraries 301

Fig. 11. Performance of the model in offline experiments vs. production expressed in
terms of Recall@10 at 5% of quote requests.

5 Related Work

Mining Flights Data. The problem of airline fare prediction is discussed in detail
in [2] and several data mining models were benchmarked in [5]. The authors of
[1] modelled 3D trajectories of flights based on various weather and air traffic
conditions. The problem of itinerary relevance ranking in one of the largest
Global Distributed Systems was presented in [14]. The systematic patterns of
airline delays were analysed in [7]. And the impact of airport network structure
on the spread of global pandemics was weighed up in [4].

Location Representation. Traditional ways to model airline prices have been
based on complex networks [4,7] or various supervised machine learning mod-
els [5,14]. A more recent trend is around incorporating neural embeddings to
model location data. Embeddings have seen great success in natural language
processing [13], modelling large graphs [16] and there has been a spike of enthu-
siasm around applying neural embedding to geographic location context with a
variety of papers focusing on: (a) mining embeddings from sequences of loca-
tions [12,15,20]; (b) modelling geographic context [6,9,19] and (c) using alter-
native neural architectures where location representations are learned while
optimising towards particular applications [19] and different approaches are
mixed together in [9] and [6]. The practicalities of augmenting existing non-
deep machine learning pipelines with neural embeddings are discussed in [21]
and in [3].

Productionising Machine Learning Systems. The research community has
recently started recognising the importance of sharing experience and learning
in the way machine learning and data mining systems are implemented in pro-
duction systems. In [17] the authors stress the importance of investing consider-
able thinking and resources in building long-lasting technological infrastructures

302 D. Karamshuk and D. Matthews

for machine learning systems. The authors of [10] describe their experiences
in building a recommendation engine, providing a great summary of business
and technological constraints in which machine learning researchers and engi-
neers operate when working on production systems. In [18] the developers of
Google Drive share their experience on the importance of reconsidering UI met-
rics and launch strategies for online experimentation with new machine learning
features. Alibaba research in [11] emphasises the importance of considering per-
formance constraints and user experience and feedback in addition to accuracy
when deploying machine learning in production.

6 Conclusions

We have presented a system that learns to build cheap and novel round trip flight
itineraries by combining legs from different airlines. We collected a sample of all
such combinations and found that the majority of competitive combinations were
concentrated around a minority of airlines but equally spread across routes of
differing popularity. We also found that the performance of these combinations in
search results increases as the time between search and departure date decreases.

We formulated the problem of predicting competitive itinerary combinations
as a trade-off between the coverage in the search results and the cost associated
with performing the requests to airlines for the quotes needed for their construc-
tion. We considered a variety of supervised learning approaches to model the
proposed prediction problem and showed that richer representations of location
data improved performance.

We put forward a number of practical considerations for putting the proposed
model into production. We showed the importance of considering the trade-off
between the model stability and staleness, balancing keeping the model perfor-
mant whilst minimising the potential negative impact on the user experience
that comes with changeable website behaviour.

We also identify various considerations we took to deliver proposed model to
users including technological risks, computational complexity and costs. Finally,
we provided an analysis of the model’s performance in production and discuss
its positive impact on Skyscanner’s users.

Acknowledgement. The authors would like to thank the rest of the Magpie team
(Boris Mitrovic, Calum Leslie, James Eastwood, Linda Edstrand, Ronan Le Nagard,
Steve Morley, Stewart McIntyre and Vitaly Khamidullin) for their help and support
with this project and the following people for feedback on drafts of this paper: Bryan
Dove, Craig McIntyre, Kieran McHugh, Lisa Imlach, Ruth Garcia, Sri Sri Perangur,
Stuart Thomson and Tatia Engelmore.

Learning Cheap and Novel Flight Itineraries 303

References

1. Ayhan, S., Samet, H.: Aircraft trajectory prediction made easy with predictive
analytics. In: KDD, pp. 21–30 (2016)

2. Boyd, E.: The Future of Pricing: How Airline Ticket Pricing Has Inspired a Revo-
lution. Springer, Heidelberg (2016)

3. Chamberlain, B.P., Cardoso, A., Liu, C.H., Pagliari, R., Deisenroth, M.P.: Cus-
tomer life time value prediction using embeddings. In: Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. ACM (2017)

4. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline
transportation network in the prediction and predictability of global epidemics.
Proc. Nat. Acad. Sci. U.S.A. 103(7), 2015–2020 (2006)

5. Etzioni, O., Tuchinda, R., Knoblock, C.A., Yates, A.: To buy or not to buy: mining
airfare data to minimize ticket purchase price. In: Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 119–128. ACM (2003)

6. Feng, S., Cong, G., An, B., Chee, Y.M.: POI2Vec: geographical latent representa-
tion for predicting future visitors. In: AAAI, pp. 102–108 (2017)

7. Fleurquin, P., Ramasco, J.J., Eguiluz, V.M.: Systemic delay propagation in the us
airport network. Sci. Rep. 3, 1159 (2013)

8. Guo, C., Berkhahn, F.: Entity embeddings of categorical variables. arXiv preprint
arXiv:1604.06737 (2016)

9. Kejriwal, M., Szekely, P.: Neural embeddings for populated geonames locations. In:
d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 139–146. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68204-4 14

10. Liu, D.C., et al.: Related pins at pinterest: the evolution of a real-world recom-
mender system. In: Proceedings of the 26th International Conference on World
Wide Web Companion, pp. 583–592. International World Wide Web Conferences
Steering Committee (2017)

11. Liu, S., Xiao, F., Ou, W., Si, L.: Cascade ranking for operational e-commerce
search. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1557–1565. ACM (2017)

12. Liu, X., Liu, Y., Li, X.: Exploring the context of locations for personalized location
recommendations. In: IJCAI, pp. 1188–1194 (2016)

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

14. Mottini, A., Acuna-Agost, R.: Deep choice model using pointer networks for air-
line itinerary prediction. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1575–1583. ACM (2017)

15. Pang, J., Zhang, Y.: DeepCity: a feature learning framework for mining location
check-ins. arXiv preprint arXiv:1610.03676 (2016)

16. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

17. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances
in Neural Information Processing Systems, pp. 2503–2511 (2015)

18. Tata, S., et al.: Quick access: building a smart experience for Google drive. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1643–1651. ACM (2017)

http://arxiv.org/abs/1604.06737
https://doi.org/10.1007/978-3-319-68204-4_14
http://arxiv.org/abs/1610.03676

304 D. Karamshuk and D. Matthews

19. Yan, B., Janowicz, K., Mai, G., Gao, S.: From ITDL to Place2Vec-reasoning about
place type similarity and relatedness by learning embeddings from augmented spa-
tial contexts. Proc. SIGSPATIAL 17, 7–10 (2017)

20. Zhao, S., Zhao, T., King, I., Lyu, M.R.: Geo-teaser: geo-temporal sequential embed-
ding rank for point-of-interest recommendation. In: Proceedings of the 26th Inter-
national Conference on World Wide Web Companion, pp. 153–162. International
World Wide Web Conferences Steering Committee (2017)

21. Zhu, J., Shan, Y., Mao, J., Yu, D., Rahmanian, H., Zhang, Y.: Deep embedding
forest: forest-based serving with deep embedding features. In: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1703–1711. ACM (2017)

	Learning Cheap and Novel Flight Itineraries
	1 Introduction
	2 Data Set
	2.1 Diversity of Airlines and Routes
	2.2 Temporal Patterns

	3 Predictive Construction of Combination Itineraries
	3.1 Problem Formulation
	3.2 Models
	3.3 Location Representations
	3.4 Prediction Performance

	4 Putting the Model in Production
	4.1 Model Parameters
	4.2 Architecture of the Pipeline
	4.3 Performance in Production

	5 Related Work
	6 Conclusions
	References

