
On Optimizing Operational Efficiency
in Storage Systems via Deep

Reinforcement Learning

Sunil Srinivasa1(B), Girish Kathalagiri1, Julu Subramanyam Varanasi2,
Luis Carlos Quintela1, Mohamad Charafeddine1, and Chi-Hoon Lee1

1 Samsung SDS America, 3655 North First Street, San Jose, CA 95134, USA
ssunil@gmail.com, girish.sk@gmail.com,

{l.quintela,mohamad.c,lee.chihoon}@samsung.com
2 Samsung Semiconductors Inc., 3655 North First Street, San Jose, CA 95134, USA

sv.julu@gmail.com

Abstract. This paper deals with the application of deep reinforcement
learning to optimize the operational efficiency of a solid state storage
rack. Specifically, we train an on-policy and model-free policy gradient
algorithm called the Advantage Actor-Critic (A2C). We deploy a dueling
deep network architecture to extract features from the sensor readings
off the rack and devise a novel utility function that is used to control
the A2C algorithm. Experiments show performance gains greater than
30% over the default policy for deterministic as well as random data
workloads.

Keywords: Data center · Storage system · Operational efficiency
Deep reinforcement learning · Actor-critic methods

1 Introduction

The influence of artificial intelligence (AI) continues to proliferate our daily lives
at an ever-increasing pace. From personalized recommendations to autonomous
vehicle navigation to smart personal assistants to health screening and diagnosis,
AI has already proven to be effective on a day-to-day basis. But it can also be
effective in tackling some of the world’s most challenging control problems – such
as minimizing the power usage effectiveness1 (PUE) in a data center.

From server racks to large deployments, data centers are the backbone to
delivering IT services and providing storage, communication, and networking to
the growing number of users and businesses. With the emergence of technologies
such as distributed cloud computing and social networking, data centers have an
even bigger role to play in today’s world. In fact, the Cisco R© Global Cloud Index,

1 PUE [1] is defined as the ratio of the total energy used by the data center to the
energy delivered towards computation. A PUE of 1.0 is considered ideal.

c© Springer Nature Switzerland AG 2019
U. Brefeld et al. (Eds.): ECML PKDD 2018, LNAI 11053, pp. 238–253, 2019.
https://doi.org/10.1007/978-3-030-10997-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10997-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-10997-4_15

On Optimizing Operational Efficiency in Data Centers via DRL 239

an ongoing effort to forecast the growth of data center and cloud-based traffic,
estimates that the global IP traffic will grow 3-fold over the next 5 years [2].

Naturally, data centers are sinkholes of energy (required primarily for cool-
ing). While technologies like virtualization and software-based architectures to
optimize utilization and management of compute, storage and network resource
are constantly advancing [4], there is still a lot of room to improve the utilization
of energy on these systems using AI.

1.1 The Problem

In this paper, we tackle an instance of the aforementioned problem, specifically,
optimizing the operation of a solid state drive (SSD) storage rack (see Fig. 1).
The storage rack comprises 24 SSDs and a thermal management system with
5 cooling fans. It also has 2 100G ethernet ports for data Input/Output (I/O)
between the client machines and the storage rack. From data I/O operations
off the SSDs, the rack’s temperature increases and that requires the fans to be
turned on for cooling. Currently, the fan speeds are controlled simply based on a
tabular (rule-based) method - thermal sensors throughout the chassis including
one for each drive bay record temperatures and the fan speeds are varied based on
a table that maps the temperature thresholds to desired fan speeds. In contrast,
our solution uses a deep reinforcement learning2 (DRL)-based control algorithm
called the Advantage Actor-Critic to control the fans. Experimental results show
significant performance gains over the rule-based current practices.

Fig. 1. The SSD storage rack we used for our experiments. It comprises 24 SSDs that
are kept cool via 5 fans.

2 DRL [3] is the latest paradigm for tackling AI problems.

240 S. Srinivasa et al.

Ideally, if we are able to measure the PUE of the storage rack, that will be the
precise function that needs to be minimized. However, the rack did not contain
any hooks or sensors for directly measuring energy. As a proxy for the PUE, we
instead designed a utility (or reward) function that represents the operational
efficiency of the rack. Our reward function is explained in detail in Sect. 2.2, and
across the space of its arguments, comprises contours of good as well as contours
of not-so-good values. The problem now becomes being able to learn a control
algorithm that optimizes the operational efficiency of the rack by always driving
it towards the reward contours with good values.

1.2 Related Work and Our Contributions

Prior work in the area of developing optimal control algorithms for data centers
[4–6] build approximate models to study the effects of thermal, electrical and
mechanical subsystem interactions in a data center. These model-based methods
are sometimes inadequate and suffer from error propagation, which leads to sub-
optimal control policies. Recently, Google DeepMind published a blog [7] on
using AI to reduce Google’s data centre cooling bill by 40%. In [8], the authors
use the deep deterministic policy gradient technique on a simulation platform
and achieve a low PUE as well as a 10% reduction in cooling energy costs.

Our novel contributions are three-fold. First, unlike prior model-based
approaches, we formulate a model-free method that does not require any knowl-
edge of the SSD server behavior dynamics. Second, we train our DRL algorithm
on the real system3, and do not require a simulator. Finally, since our SSD rack
does not have sensors to quantify energy consumption, we devise a reward func-
tion that is used not only to quantify the system’s operational efficiency, but
also as a control signal for training.

2 Our DRL-Based Solution

In this section, we provide the details of our solution to the operation optimiza-
tion problem. We first introduce the reader to reinforcement learning (RL), and
subsequently explain the algorithm and the deep network architecture used for
our experiments.

2.1 Reinforcement Learning (RL) Preliminaries

RL is a field of machine learning that deals with how an agent (or algorithm)
ought to take actions in an environment (or system) so as to maximize a certain
cumulative reward function. It is gaining popularity due to its direct applica-
bility to many practical problems in decision-making, control theory and multi-
dimensional optimization. RL problems are often modeled as a Markov Decision

3 In fact, the SSD server rack also has a Intel Xeon processor with 44 cores to facilitate
online (in-the-box) training.

On Optimizing Operational Efficiency in Data Centers via DRL 241

Process with the following typical notation. During any time slot t, the envi-
ronment is described by its state notated st. The RL agent interacts with the
environment in that it observes the state st and takes an action at from some
set of actions, according to its policy π(at|st) - the policy of an agent (denoted
by π(at|st)) is a probability density function that maps states to actions, and
is indicative of the agent’s behavior. In return, the environment provides an
immediate reward rt(st, at) (which is evidently a function of st and at) and
transitions to its next state st+1. This interaction loops in time until some ter-
minating criterion is met (for example, say, until a time horizon H). The set of
states, actions, and rewards the agent obtains while interacting (or rolling-out)
with the environment, τ =: {(s0, a0, r0), (s1, a1, r1), . . . , (sH−1, aH−1, rH−1), sH}
forms a trajectory. The cumulative reward observed in a trajectory τ is called
the return, R(τ) =

∑H−1
t=0 γH−1−trt(st, at), where γ is a factor used to discount

rewards over time, 0 ≤ γ ≤ 1. Figure 2 represents an archetypal setting of a RL
problem.

Fig. 2. The classical RL setting. Upon observing the environment state st, the agent
takes an action at. This results in an instantaneous reward rt, while the environment
transitions to its next state st+1. The objective of the agent is to maximize the cumu-
lative reward over time.

In the above setting, the goal of the agent is to optimize the policy π so
as to maximize the expected return Eτ [Rτ] where the expectation operation is
taken across several trajectories. Two functions related to the return are (a)
the action value function Qπ(st, at), which is the expected return for selecting
action at in state st and following the policy π, and (b) the state value function
V π(st), which measures the expected return from state st upon following the
policy π. The advantage of action at in state st is then defined as Aπ(st, at) =
Qπ(st, at) − V π(st).

2.2 State, Action and Reward Formulations

In order to employ RL for solving our problem, we need to formulate state,
action and reward representations.

242 S. Srinivasa et al.

State: We use a vector of length 7 for the state representation comprising the
following (averaged and further, normalized) scalars:

1. tps (transfers per second): the mean number of transfers per second that
were issued to the SSDs. A transfer is an I/O request to the device and is
of indeterminate size. Multiple logical requests can be combined into a single
I/O request to the device.

2. kB read per sec: the mean number of kilo bytes read from an SSD per
second.

3. kB written per sec (writes per second): the mean number of kilo bytes
written to an SSD per second.

4. kb read: the mean number of kilo bytes read from an SSD in the previous
time slot.

5. kb written: the mean number of kilo bytes written to an SSD in the previous
time slot.

6. temperature: the mean temperature recorded across the 24 SSD tempera-
ture sensors on the rack.

7. fan speed: the mean speed of the 5 cooling fans in revolutions per minute
(rpm).

Recall there are 24 SSDs in our rack (and hence 24 different values of transfers
per second, bytes read, bytes written, etc.), but we simply use the averaged (over
the 24 SSDs) values for our state representation4.

To obtain 1. through 5. above, we use the linux system command iostat [20]
that monitors the input/output (I/O) device loading by observing the time the
devices are active in relation to their average transfer rates. For 6. and 7., we
use the ipmi-sensors [21] system command that displays current readings of
sensors and sensor data repository information.

For normalizing, 1. through 7., we use the min-max strategy. Accordingly,
for feature X, an averaged value of x̄ is transformed to Γ (x̄), where

Γ (x̄) =
x̄ − minX

maxX − minX
, (1)

where minX and maxX are the minimum and maximum values set for the feature
X. Table 1 lists the minimum and maximum values we used for normalizing the
state features, which were chosen based on empirically observed range of values.

Action: The action component of our problem is simply in setting the fan
speeds. In order to keep the action space manageable5, we use the same action
4 We shall see shortly that we are constrained to use the same control setting (speed)

on all the 5 fans. Hence, it is not meaningful to individualize the SSDs based on their
slot location inside the server. Using averaged values is practical in this scenario.

5 The action space grows exponentially with the number of fans, when controlling
each fan independently. For example, with just 3 fan speed settings, the number
of possible actions with 5 fans becomes 35 = 243. DRL becomes inneffective when
handling such a large problem. Instead, if we set all the fan speeds to the same value,
the action space dimension reduces to just 5, and is quite manageable. Incidentally,
setting separate speeds to the fans is also infeasible from a device driver standpoint
- the ipmitool utility can only set all the fans to the same speed.

On Optimizing Operational Efficiency in Data Centers via DRL 243

Table 1. Minimum and maximum values of the various state variables used for the
min-max normalization.

Feature X minX maxX

tps 0.0 1000.0

kB read per sec 0.0 4000000.0

kB written per sec 0.0 4000000.0

kB read 0.0 4000000.0

kB written 0.0 4000000.0

temperature 27.0 60.0

fan speed 7500.0 16000.0

(i.e., speed-setting) on all the 5 fans. For controlling the fan speeds, we use the
ipmitool [22] command-line interface. We consider two separate scenarios:

– raw action: the action space is discrete with values 0 through 6, where 0
maps to 6000 rpm, while 6 refers to 18000 rpm. Accordingly, only 7 different
rpm settings are allowed: 6000 through 18000 in steps of 2000 rpm. Note that
consecutive actions can be very different from each other.

– incremental action: the action space is discrete taking on 3 values - 0, 1 or
2. An action of 1 indicates no change in the fan speed, while 0 and 2 refer to
an decrement or increment of the current fan speed by 1000 rpm, respectively.
This scenario allows for smoother action transitions. For this case, we allow
10 different rpm values: 9000 through 18000, in steps of 1000 rpm.

Reward: In this section, we design a reward function that functions as a proxy
for the operational efficiency of the SSD rack. One of the most important com-
ponents of a RL solution is reward shaping. Reward shaping refers to the process
of incorporating domain knowledge towards engineering a reward function, so as
to better guide the agent towards its optimal behavior. Being able to devise a
good reward function is critical since it explicitly relates to the expected return
that needs to be maximized. We now list some desired properties of a meaning-
ful reward function that will help perform reward shaping in the context of our
problem.

– Keeping both the devices’ temperatures and fan speeds low should yield the
highest reward, since this scenario means the device operation is most effi-
cient. However, also note that this case is feasible only when the I/O loads
are absent or are very small.

– Irrespective of the I/O load, a low temperature in conjunction with a high fan
speed should yield a bad reward. This condition is undesirable since otherwise,
the agent can always set the fan speed to its maximum value, which in turn
will not only consume a lot of energy, but also increase the wear on the
mechanical components in the system.

244 S. Srinivasa et al.

– A high temperature in conjunction with a low fan speed should also yield
a poor reward. If not, the agent may always choose to set the fan speed to
its minimum value. This may result in overheating the system and potential
SSD damages, in particular when the I/O loads are high.

– Finally, for different I/O loads, the optimal rewards should be similar.
Otherwise, the RL agent may learn to overfit and perform well only on certain
loads.

While there are several potential candidates for our desired reward function,
we used the following mathematical function:

R = −max
(

Γ (T̄)
Γ (F̄)

,
Γ (F̄)
Γ (T̄)

)

, (2)

where T̄ and F̄ represent the averaged values of temperature (over the 24 SSDs)
and fan speeds (over the 5 fans), respectively. Γ (·) is the normalizing transfor-
mation explained in (1), and is performed using the temperature and fan speed
minimum and maximum values listed in Table 1. Note that while this reward
function weighs F and T equally, we can tweak the relationship between F and
T to meet other preferential tradeoffs that the system operator might find desir-
able. Nevertheless, the DRL algorithm will be able to optimize the policy for
any designed reward function.

Figure 3 plots the reward function we use as a function of mean temperature
T̄ (in ◦C) and fan speed F̄ (in rpm). Also shown on the temperature-fan speed
plane are contours representing regions of similar rewards. The colorbar on the
right shows that blue and green colors represent the regions with poor rewards,
while (dark and light) brown shades the regions with high rewards. All the
aforementioned desired properties are satisfied with this reward function - the
reward is maximum when both fan speed temperature are low; when either of
them becomes high, the reward drops and there are regions of similar maximal
rewards for different I/O loads (across the space of temperature and fan speeds).

2.3 Algorithm: The Advantage Actor-Critic (A2C) Agent

Once we formulate the state, action and reward components, there are several
methods in the RL literature to solve our problem. A rather classic approach
is the policy gradient (PG) algorithm [9], that essentially uses gradient-based
techniques to optimize the agent’s policy. PG algorithms have lately become
popular over other traditional RL approaches such as Q-learning [10] and SARSA
[11] since they have better convergence properties and can be effective in high-
dimensional and continuous action spaces.

While we experimented with several PG algorithms including Vanilla Policy
Gradient [12] (and its variants [13,14]) and Deep Q-Learning [15], the most
encouraging results were obtained with the Advantage Actor-Critic (A2C)
agent. A2C is essentially a synchronous, deterministic variant of Asynchronous

On Optimizing Operational Efficiency in Data Centers via DRL 245

Fig. 3. Depiction of the reward (operational efficiency) versus temperature and fan
speeds. The reward contours are also plotted on the temperature-fan speed surface.
The brown colored contour marks the regions of optimal reward. (Color figure online)

Advantage Actor-Critic (A3C) [16], that yields state-of-the-art performance on
several Atari games as well as on a wide variety of continuous motor control
tasks.

As the name suggests, actor-critic algorithms comprise two components, an
actor and a critic. The actor determines the best action to perform for any given
state, and the critic estimates the actor’s performed action. Iteratively, the actor-
critic network implements generalized policy iteration [11] - alternating between
a policy evaluation step and a policy improvement step. Architecturally, both
the actor and the critic are best modeled via functional approximators, such as
deep neural networks.

2.4 Actor-Critic Network Architecture

For our experiments, we employed a dueling network architecture, similar to
the one proposed in [17]. The exact architecture is depicted in Fig. 4: the state of
the system is a 7-length vector that is fed as input to a fully connected (FC) layer
with 10 neurons represented by trainable weights θ. The output of this FC layer
explicitly branches out to two separate feed-forward networks - the policy (actor)
network (depicted on the upper branch in Fig. 4) and the state-value function
(critic) network (depicted on the lower branch). The parameters θ are shared

246 S. Srinivasa et al.

between the actor and the critic networks, while additional parameters α and β
are specific to the policy and state-value networks, respectively. The policy net-
work that has a hidden layer with 5 neurons and a final softmax output layer for
predicting the action probabilities (for the 7 raw or 3 incremental actions). The
state-value function network comprises a hidden layer of size 10 that culminates
into a scalar output for estimating the value function of the input state. The actor
aims to approximate the optimal policy π∗: π(a|s; θ, α) ≈ π∗(a|s), while the critic
aims to approximate the optimal state-value function: V (s; θ, β) ≈ V ∗(s).

Fig. 4. The employed dueling network architecture with shared parameters θ. α and β
are the actor- and critic-specific parameters, respectively. All the layers are fully con-
nected neural networks; the numbers shown above represent the hidden layer dimen-
sions. The policy network on the upper branch estimates the action probabilities via a
softmax output layer, while the critic network on the lower branch approximates the
state-value function.

Prior DRL architectures for actor-critic methods [16,18,19] employ single-
stream architectures wherein the actor and critic networks do not share param-
eters. The advantage of our dueling network lies partly in its ability to com-
pute both the policy and state-value functions via fewer trainable parameters
vis-à-vis single-stream architectures. The sharing of parameters also helps mit-
igate overfitting one function over the other (among the policy and state-value
functions). In other words, our dueling architecture is able to learn both the
state-value and the policy estimates efficiently. With every update of the policy
network parameters in the dueling architecture, the parameters θ get updated
as well - this contrasts with the updates in a single-stream architecture wherein
when the policy parameters are updated, the state-value function parameters

On Optimizing Operational Efficiency in Data Centers via DRL 247

remain untouched. The more frequent updating of the parameters θ mean a
higher resource allocation towards the learning process, thus resulting in faster
convergence in addition to obtaining better function approximations.

The pseudocode for our A2C algorithm in the context of the dueling net-
work architecture (see Fig. 4) is described in Algorithm 1. Note that R rep-
resents the Monte Carlo return, and well-approximates the action-value func-
tion. Accordingly, we use R − V (s; (θ, β)) as an approximation to the advantage
function.

Algorithm 1. Advantage Actor-Critic (A2C) - pseudocode
// Notate shared parameters by θ and actor- and critic-specific parameters by α and
β, respectively.
// Assume same learning rates η for θ, α as well as β. In general, they may all be
different.
Initialize θ, α and β via uniformly distributed random variables.
repeat

Reset gradients dθ = 0, dα = 0 and dβ = 0.
Sample N trajectories τ1, . . . , τN under the (current) policy π(·; (θ, α)).
i = 1
repeat

tstart = t
Obtain state st

repeat
Perform action at sampled from policy π(at|st; (θ, α)).
Receive reward rt(st, at) and new state st+1

t ← t + 1
until t − tstart = H
i ← i + 1
Initialize R: R = V (st; (θ, β))
for i ∈ {t − 1, . . . , tstart} do

R ← ri(si, ai) + γR
Sum gradients w.r.t θ and α: // gradient ascent on the actor parameters
dθ ← dθ + ∇θ log π(ai|si; (θ, α)) (R − V (si; (θ, β)))
dα ← dα + ∇α log π(ai|si; (θ, α)) (R − V (si; (θ, β)))
Subtract gradients w.r.t β and θ: //gradient descent on the critic parameters
dθ ← dθ − ∇θ (R − V (si; (θ, β)))2

dβ ← dβ − ∇β (R − V (si; (θ, β)))2

end for
until i = N
// Optimize parameters
Update θ, α and β: θ ← θ + ηdθ, α ← α + ηdα, β ← β + ηdβ.

until convergence.

248 S. Srinivasa et al.

3 Experimental Setup and Results

3.1 Timelines

Time is slotted to the duration of 25 s. At the beginning of every time slot, the
agent observes the state of the system and prescribes an action. The system
is then allowed to stabilize and the reward is recorded at the end of the time
slot (which is also the beginning of the subsequent time slot). The system would
have, by then, proceeded to its next state, when the next action is prescribed. We
use a time horizon of 10 slots (H = 250 s), and each iteration comprises N = 2
horizons, i.e., the network parameters θ, α and β are updated every 500 s.

3.2 I/O Scenarios

We consider two different I/O loading scenarios for our experiments.

– Simple periodic workload: We assume a periodic load where within each
period, there is no I/O activity for a duration of time (roughly 1000 s) followed
by heavy I/O loading for the same duration of time. I/O loading is performed
using a combination of ‘read’, ‘write’ and ‘randread’ operations with varying
block sizes of data ranging from 4 KBytes to 64 KBytes. A timeline of the
periodic workload is depicted in Fig. 5 (left).

– Complex stochastic workload: This is a realistic workload where in every
time window of 1000 s, the I/O load is chosen uniformly randomly from three
possibilities: no load, medium load or heavy load. A sample realization of the
stochastic workload is shown in Fig. 5 (right).

Fig. 5. The simple periodic workload (left) with a period of 2000 s, and a realization
of the more realistic stochastic workload (right). Histograms of the load types are also
shown for clarity. While the simple load chooses between no load and heavy load in a
periodic manner, the complex load chooses uniformly randomly between the no load,
medium load and heavy load scenarios.

3.3 Hyperparameters

Table 2 lists some hyperparameters used during model training.

On Optimizing Operational Efficiency in Data Centers via DRL 249

Table 2. Table of hyperparameters.

Parameter Value

γ: discount factor used in computing the returns 0.99

Optimizer for training θ, α and β Stochastic gradient descent

SGD learning rate η 0.01

Entropy bonus scaling (See [23]) 0.05

3.4 Results

In this section, we present our experimental results. Specifically, we consider
three separate scenarios - (a) periodic load with raw actions, and the stochastic
load with both (b) raw and (c) incremental actions. In each of the cases, we
compare the performances of our A2C algorithm (after convergence) against the
default policy (which we term the baseline). Recall that he baseline simply uses
a tabular method to control fan speeds based on temperature thresholds.

(a) Scenario 1: Periodic Load with Raw Actions. We first experimented
with the periodic I/O load shown in Fig. 5 (left). Figure 6 summarizes the results;
it shows the I/O activity, normalized cumulative rewards6, fan speeds and tem-
perature values over time for both the baseline and our method. Compared to
the baseline, the A2C algorithm provided a cumulative reward uplift of ∼33%
for similar I/O activity! The higher reward was obtained primarily as a result
of the A2C algorithm prescribing a higher fan speed when there was heavy I/O
loading (roughly 16000 rpm versus 11000 rpm for the baseline), which resulted in

Fig. 6. Performance comparison of baseline and A2C for scenario 1.

6 We normalize the cumulative baseline reward to 1.0, and correspondingly scale the
cumulative A2C reward. This also helps quantify the reward uplift.

250 S. Srinivasa et al.

a lower temperature (52 ◦C versus 55 ◦C). To clarify this, Fig. 7 plots the contour
regions of the temperature and fan speeds for the baseline (left) and the A2C
algorithm, at convergence (right). The black-colored blobs essentially mark the
operating points of the SSD rack for the two types of load. Evidently, the A2C
method converges to the better reward contour as compared to the baseline.

(b) Scenario 2: Stochastic Load with Raw Actions. With the stochastic
I/O load (see Fig. 8), the overall reward uplift obtained is smaller (only 12%
after averaging over 3000 time steps) than the periodic load case. Again, the
A2C algorithm benefits by increasing the fan speeds to keep the temperatures
lower. Upon looking more closely at the convergence contours (Fig. 9), it is noted

Fig. 7. For the no load scenario, the baseline policy settles to 36 ◦C and 9 K rpm while
the A2C algorithm converges to 35 ◦C and 10 K rpm. With heavy I/O loading, the
corresponding numbers are 55 ◦C and 11 K versus 52 ◦C and 16 K. The A2C algorithm
is seen to always settle at the innermost contour, as desired.

Fig. 8. Performance comparison of baseline and A2C for scenario 2. The mean values
of temperatures and fan speeds are shown using the black line.

On Optimizing Operational Efficiency in Data Centers via DRL 251

Fig. 9. Temperature and fan speed contours for the baseline (left) and the A2C method
(right). With the stochastic loading with 7 actions, the A2C does not converge as well
as in the periodic load case (see Fig. 9 (right)).

Fig. 10. Performance comparison of baseline and A2C for scenario 3.

that with the stochastic load, the A2C method sometimes settles to sub-optimal
reward contours. We believe this happened due of insufficient exploration.

(c) Scenario 3: Stochastic Load with Incremental Actions. With raw
actions, the action space is large to explore given the random nature of the I/O
load, and this slows learning. To help the algorithm explore better, we study
scenario 3. wherein actions can take on only 3 possible values (as compared to
7 values in the prior scenario). With this modification, more promising results
are observed - specifically, we observed a cumulative reward uplift of 32% (see
Fig. 10). In fact, the A2C algorithm is able to start from a completely random
policy (Fig. 11 (left)) and learn to converge to the contour region with the best
reward (Fig. 11 (right)).

252 S. Srinivasa et al.

Fig. 11. Temperature and fan speed contours for the A2C method under scenario 3.
The left plot is taken during early steps of training, while the plot on the right is taken
at convergence. This illustrates that the A2C algorithm is able to start exploring from
a completely random policy (black blobs everywhere) and learn to converge to the
contour region with the best reward.

4 Concluding Remarks

In this paper, we tackle the problem of optimizing the operational efficiency
of a SSD storage rack server using the A2C algorithm with a dueling network
architecture. Experimental results demonstrate promising reward uplifts of over
30% across two different data I/O scenarios. We hope that this original work
on applied deep reinforcement learning instigates interest in employing DRL to
other industrial and manufacturing control problems. Interesting directions for
future work include experimenting with other data I/O patterns and reward
functions, and scaling this work up to train multiple server racks in parallel in
a distributed fashion via a single or multiple agents.

Acknowledgements. We want to thank the Memory Systems lab team, Samsung
Semiconductors Inc. for providing us a SSD storage rack, workload, data and fan control
API for running our experiments. We also thank the software engineering team at
Samsung SDS for developing a DRL framework [24] that was used extensively for
model building, training and serving.

References

1. Power Usage Effectiveness. https://en.wikipedia.org/wiki/Power usage effective
ness

2. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper,
February 2018. https://www.cisco.com/c/en/us/solutions/collateral/service-prov
ider/global-cloud-index-gci/white-paper-c11-738085.html

3. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: A brief survey
of deep reinforcement learning. IEEE Sig. Process. Mag. 34(6), 26–28 (2017)

4. Shuja, J., Madani, S.A., Bilal, K., Hayat, K., Khan, S.U., Sarwar, S.: Energy-
efficient data centers. Computing 94(12), 973–994 (2012)

https://en.wikipedia.org/wiki/Power_usage_effectiveness
https://en.wikipedia.org/wiki/Power_usage_effectiveness
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

On Optimizing Operational Efficiency in Data Centers via DRL 253

5. Sun, J., Reddy, A.: Optimal control of building HVAC systems using complete
simulation-based sequential quadratic programming (CSBSQP). Build. Environ.
40(5), 657–669 (2005)

6. Ma, Z., Wang, S.: An optimal control strategy for complex building central chilled
water systems for practical and real-time applications. Build. Environ. 44(6), 1188–
1198 (2009)

7. Evans, R., Gao, J.: DeepMind AI Reduces Google Data Centre Cooling Bill by
40%, July 2016. Blog: https://deepmind.com/blog/deepmind-ai-reduces-google-
data-centre-cooling-bill-40/

8. Li, Y., Wen, Y., Guan, K., Tao, D.: Transforming Cooling Optimization for Green
Data Center via Deep Reinforcement Learning (2017). https://arxiv.org/abs/1709.
05077

9. Peters, J., Schaal, S.: Reinforcement learning of motor skills with policy gradients.
Neural Netw. (2008 Spec. Issue) 21(4), 682–697 (2008)

10. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.

MIT Press, Cambridge (2017)
12. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods

for reinforcement learning with function approximation. In: Advances in Neural
Information Processing Systems, vol. 12, pp. 1057–1063 (2000)

13. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

14. Greensmith, E., Bartlett, P.L., Baxter, J.: Variance reduction techniques for gradi-
ent estimates in reinforcement learning. J. Mach. Learn. Res. 5, 1471–1530 (2004)

15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

16. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937 (2016)

17. Wang, Z., Schaul, T., Hessel, M., Hasselt, H.V., Lanctot, M., Freitas, N.D.: Dueling
network architectures for deep reinforcement learning. In: International Conference
on International Conference on Machine Learning, vol. 48 (2016)

18. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Determin-
istic policy gradient algorithms. In: International Conference on Machine Learning
(2014)

19. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. US
Patent Application, No. US20170024643A1. https://patents.google.com/patent/
US20170024643A1/en

20. iostat Man Page. https://linux.die.net/man/1/iostat
21. ipmi-sensors Man Page. https://linux.die.net/man/8/ipmi-sensors
22. ipmitool Man Page. https://linux.die.net/man/1/ipmitool
23. O’Donoghue, B., Munos, R., Kavukcuoglu, K., Mnih, V.: Combining policy gra-

dient and Q-learning. In: International Conference on Learning Representations
(2017)

24. Parthasarathy, K., Kathalagiri, G., George, J.: Scalable implementation of machine
learning algorithms for sequential decision making. In: Machine Learning Systems,
ICML Workshop, June 2016

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://arxiv.org/abs/1709.05077
https://arxiv.org/abs/1709.05077
https://patents.google.com/patent/US20170024643A1/en
https://patents.google.com/patent/US20170024643A1/en
https://linux.die.net/man/1/iostat
https://linux.die.net/man/8/ipmi-sensors
https://linux.die.net/man/1/ipmitool

	On Optimizing Operational Efficiency in Storage Systems via Deep Reinforcement Learning
	1 Introduction
	1.1 The Problem
	1.2 Related Work and Our Contributions

	2 Our DRL-Based Solution
	2.1 Reinforcement Learning (RL) Preliminaries
	2.2 State, Action and Reward Formulations
	2.3 Algorithm: The Advantage Actor-Critic (A2C) Agent
	2.4 Actor-Critic Network Architecture

	3 Experimental Setup and Results
	3.1 Timelines
	3.2 I/O Scenarios
	3.3 Hyperparameters
	3.4 Results

	4 Concluding Remarks
	References

