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Abstract. Resistance against differential cryptanalysis is an important
design criteria for any modern block cipher and most designs rely on
finding some upper bound on probability of single differential character-
istics. However, already at EUROCRYPT’91, Lai et al. comprehended
that differential cryptanalysis rather uses differentials instead of single
characteristics.

In this paper, we consider exactly the gap between these two
approaches and investigate this gap in the context of recent lightweight
cryptographic primitives. This shows that for many recent designs like
Midori, Skinny or Sparx one has to be careful as bounds from count-
ing the number of active S-boxes only give an inaccurate evaluation of
the best differential distinguishers. For several designs we found new dif-
ferential distinguishers and show how this gap evolves. We found an
8-round differential distinguisher for Skinny-64 with a probability of
2−56.93, while the best single characteristic only suggests a probability
of 2−72. Our approach is integrated into publicly available tools and can
easily be used when developing new cryptographic primitives.

Moreover, as differential cryptanalysis is critically dependent on the
distribution over the keys for the probability of differentials, we provide
experiments for some of these new differentials found, in order to confirm
that our estimates for the probability are correct. While for Skinny-64
the distribution over the keys follows a Poisson distribution, as one would
expect, we noticed that Speck-64 follows a bimodal distribution, and the
distribution of Midori-64 suggests a large class of weak keys.
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1 Introduction

Differential cryptanalysis, first published by Biham and Shamir [9] to analyse the
DES, has become one of the prime attack vectors which any modern symmetric-
key primitive has to be resistant against. The idea behind differential cryptanal-
ysis is to find a correlation between the difference of a pair of plaintexts and
ciphertexts which holds with high probability. The challenge for an cryptanalyst
consists of finding such a correlation or to show that no such correlation exists.
A popular approach is to design a cipher in such a way that one can find a
bound on the best differential characteristics, either directly e.g., the wide-trail
strategy deployed in AES or using methods based on Matsui’s algorithm, MILP
or SAT.

A differential characteristic specifies all the intermediate differences after each
round of the primitive. However, when constructing a differential distinguisher
one only cares about the input and output difference. It is often assumed that
a single characteristic dominates the probability of such a differential, however
this is not true in general and leads to imprecise estimates of the probability in
many cases [10,24].

In the work by Lai, Massey and Murphy [33] they showed that if an iterated
cryptographic primitive has independent round-keys, it can be considered as a
Markov cipher. As differential cryptanalysis considers just the first and last dif-
ference and ignores the intermediate values, the probability of such a differential
can then be computed as the sum of all characteristics, that are formed by the
differentials. While this assumes that the rounds are independent, it provides a
more precise estimate and the probability of the most probable differential will
always be greater than the probability of the most probable characteristic.

Contributions. We provide a broad study covering different design strategies
and investigate the differential gap between single characteristics and differen-
tials for the block ciphers LBlock, Midori, Present, Prince, Rectangle, Simon,
Skinny, Sparx, Speck and Twine. In order to do this, we use an automated app-
roach for enumerating the characteristics with the highest probability contribut-
ing to a differential based on SMT solvers [41], which we adopt to different design
strategies. This allows us to efficiently enumerate a large set of characteristics
contributing to the probability of a differential resulting in a precise estimate for
the probability of differentials.

For Skinny-64 we present an 8-round differential distinguisher with a prob-
ability of 2−56.93, while the best single characteristic only suggests a probability
of 2−72. For Midori-64 we show that the best characteristic for 8 rounds, with a
probability of 2−76 can be used to find a differential with a probability of 2−60.86.
Our results show that in the case of many new lightweight ciphers like Midori-
64, Skinny-64, and Sparx-64 the probabilities improve significantly and that we
can find differential distinguishers which are able to cover more rounds. This
suggests that one should be particularly careful with lightweight block ciphers
when using simpler approximations like counting the number of active S-boxes.
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Our method is generic and can easily be applied to other designs as one only
needs to describe the differential behaviour of the round function and can re-use
all the components we implemented for doing so. This allows both to find optimal
differential characteristics and to enumerate all characteristics contributing to a
differential.

Furthermore, we provide experiments to verify that our estimates of the
differential probability provide a good approximation. However, we also noticed
that the distribution over the choice of keys varies significantly for some design
strategies and that commonly made assumptions do not hold for reduced-round
versions. While for Skinny-64 the distribution over the keys follows relatively
closely what one would expect we noticed that for Midori-64 for a large class of
keys there are no pairs following the differential at all, while for very few keys
the probability is significantly higher.

Related Work. Daemen and Rijmen firstly studied the probability of differ-
entials for AES in their work on Plateau Characteristics [20]. In their work, they
analysed AES on the distribution of differential probability over the choice of
keys and showed that all 2-round characteristics have either a zero probability
or for a small subset of keys the probability is non-zero. However, they only
considered AES, but conjectured that other ciphers with 4-uniform S-boxes will
show a similar result. In the case of AES and AES-like ciphers, there has also
been a lot of research in studying the expected differential/linear probability
(MEDP/MELP) [18,30], that is used to provable bound the security of a block
cipher against differential/linear cryptanalysis.

In recent years, many automated tools were proposed that could help design-
ers to prove bounds against differential/linear attacks. Mouha et al. [42] used
Mixed Integer Linear Programming (MILP) to count active S-boxes and com-
pute provable bounds. Furthermore, there have been a few approaches of using
automated tools to find optimal characteristics, and to collect many character-
istics with the same input/output differences. This idea was first introduced by
Sun et al. [46] who used MILP. Likewise, tools using SAT/SMT solvers are used
where the results were applied to Salsa-20 [41], Norx [5], and Simon [31].

Moreover, there exist several design and attack papers that study the effect of
numerous characteristics contributing to the probability of a differential: Mantis
[24], Noekeon [29], Salsa [41], Simon/Speck [11,31], Rectangle [54] and Twine
[10]. Yet, these are often based on truncated differentials or dedicated algorithms
for finding large numbers of characteristics. For example in [25], Eichlseder and
Kales attack Mantis-6 by finding a large cluster of differential characteristics.
Contrary to the attack on Mantis-5 by Dobraunig et al. [24] where the cluster
was found manually, in the attack on Mantis-6, Eichlseder and Kales used a tool
based on truncated differentials.

Similar effects have also been observed in the case of linear cryptanalysis,
where Abdelraheem et al. [1] showed that the security margins based on the
distribution of linear biases are not always accurate. Their work has further
been studied and improved by Blondeau and Nyberg [13].
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Software. All the models for enumerating the differential characteristics are
publicly available at https://github.com/TheBananaMan/cryptosmt.

Outline. The remainder of this paper is structured as follows. After briefly
revisiting some of the necessary definitions about differential cryptanalysis in
Sect. 2, we provide details about the automated tools that we use in Sect. 3 and
describe how to efficiently find differential characteristics for various ciphers. In
Sect. 4 we present the results of our analysis on the gap between single differential
characteristics and differentials for various cryptographic primitives. We also
analyze the best differential attacks, that are published on those ciphers so far,
and show if the attacks can be improved by considering the aforementioned
differential gaps. Moreover, in Sect. 5 we give details about our experiments of
the distribution over keys for the probability of differentials.

2 Differentials and Differential Characteristics

Differential cryptanalysis is one of the most powerful techniques in the analysis
of symmetric-key primitives. Many extensions to it have been developed and it
has found wide applications on block ciphers, stream ciphers and cryptographic
hash functions. In the following, we state some definitions and notations that we
will use throughout the paper.

A block cipher is a family of permutations parameterised by a key K ∈ F
k
2 ,

that maps a set of plaintexts P ∈ F
n
2 to a set of ciphertexts C ∈ F

n
2

EK : Fk
2 × F

n
2 → F

n
2 . (1)

Virtually all currently used block ciphers are iterative block ciphers, i.e., they
are composed of applying a simple round function r times

EK(·) = fr(·) ◦ . . . ◦ f1(·). (2)

The idea of differential cryptanalysis is to look at pairs of plaintexts (p1, p2) and
the corresponding ciphertexts (c1, c2) and try to find a correlation between the
differences α and β, where α = p1 ⊕ p2 and β = c1 ⊕ c2.

Definition 1. A differential is a pair of differences (α, β) ∈ F
n
2 × F

n
2 .

If such a correlation holds with high probability, we can use this to distinguish
the block cipher from a random permutation and further use this to mount
key-recovery attacks.

Definition 2. The differential probability of a differential over a block cipher is

DP(α EK−−→ β) = Pr
X

(EK(X) ⊕ EK(X ⊕ α) = β). (3)

where X is a random variable that is uniformly distributed over F
n
2 .

https://github.com/TheBananaMan/cryptosmt
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For ease of notation we define the weight of a differential as − log2(DP(·)).
Any non-zero differential for a random permutation F$ : Fn

2 → F
n
2 will have a

differential probability close to 2−n. Therefore one is interested in finding any
differential with DP(α EK−−→ β) � 2−n. In general, it is computationally infeasible
to compute the exact value of the DP as this would require to exhaustively search
through the whole space of all possible plaintexts. One can use the structure
of a block cipher, to obtain a good approximation of the actual DP with less
computational effort by tracking the differences through the round functions.

Definition 3. A differential characteristic is a sequence of differences

Q = (α1
f1−→ α2

f2−→ . . .
fr−1−−−→ αr). (4)

Yet, it is still computationally infeasible to compute the exact value of DP(Q)
and the general approach is to assume independence of the rounds. For most
designs it is feasible to compute the exact probability of a differential for a
single round. One can therefore compute

DP(Q) ≈
r−1∏

i=1

Pr
X

(αi
fi−→
X

αi+1). (5)

While this assumption of independent rounds is not true in general, it has been
shown to serve as a good approximation in practice. However, if an adversary
wants to construct a distinguisher, she actually does not care about any interme-
diate differences and is only interested in the probability of the differential. The
adversary can therefore collect all differential characteristics sharing the same
input and output difference to get a better estimate

Pr(α1
E−→ αr) =

∑

α2,...,αr−1

Pr
X

(α1
f1−→
X

α2
f2−−−−→

f1(X)
· · · αr−1

fr−1−−−−−−−−−→
fr−1◦...◦f1(X)

αr). (6)

It is often assumed that the probability of the differential is close to the prob-
ability of the best single characteristic. While this might hold for some ciphers
this assumption has been shown to be inaccurate in several cases and does not
hold for many modern block ciphers [10,24]. We will show later in Sect. 4 that
this assumption fails particularly often for some recently designed lightweight
block ciphers.

We consider two different criteria for a design: differential characteristic resis-
tant (DCR), which means that no single differential characteristic exists with a
probability larger than 2−n and differential resistant (DR) which means that it
should be difficult to find a differential with a probability larger than 2−n. Note
that we typically can not avoid that there are differentials with DP ≥ 2−n, as
if we fix the input difference to α1 then

∑
αr �=0 Pr(α1

E−→ αr) = 1. This implies
that there exists at least one differential with a probability DP ≥ 2−n. In the
Wide-Trail Strategy which was used to design the AES and subsequently many
other ciphers, Daemen and Rijmen suggest that it is a sound design strategy to



168 R. Ankele and S. Kölbl

restrict the probability of difference propagation [19]. Nevertheless, this does not
result in a proof for security.

Note that in the definitions so far the influence of the keys was ignored.
However, the DP for a specific differential strongly depends on the choice of the
secret key and it is therefore of interest how this distribution looks like. To solve
this problem we could compute the probabilities of a differential over the whole
key space, however this is again practically infeasible which leads one to use the
expected differential probability.

Definition 4. The expected differential probability of a block cipher Ek of an
r-round differential (α, β), with a key-size of κ-bits is defined as

EDP(α E−→ β) = 2κ
∑

k∈F
κ
2

Pr
X

(α Ek−−→
X

β). (7)

In order to derive some sort of security proof against differential cryptanalysis
often the Hypothesis of Stochastic Equivalence [33] is used which states that
for all differentials Q it holds that for most keys K the differential probability
of a characteristic is close to the expected differential probability, DPK(Q) ≈
EDP(Q). In practice this hypothesis does not always hold [16], which we will
also see later in Sect. 5.

3 Finding Differential Characteristics Efficiently

While there are many methods based on SAT, MILP or Matsui’s algorithm to
find differential characteristics and even prove an upper bound on the probabil-
ity of the best single characteristic, it remains a hard problem to find a good
estimate on the probability of the best differential. Even finding those differential
characteristics remains a difficult problem for some design strategies and crypt-
analysts had to search manually for differentials in some attacks [53]. Nowadays a
variety of automated tools [12,35,45] is available which are constantly improved
and help cryptanalysts in finding good differential characteristics.

3.1 SAT/SMT Solvers

SAT solvers are used to solve the Boolean satisfiability problem (SAT) and are
based on heuristic algorithms. A solver starts from an initial assignment for the
literals and then builds a search tree by using systematic backtracking until
all conflicting clauses are resolved and either an assignment of variables for a
satisfiable set of clauses is returned or the solver decides that this instance is
unsatisfiable. The most commonly algorithms used in SAT solvers are based on
the original idea of DPLL [21].

SMT solvers are more powerful than SAT solvers in the sense that they can
express constraints on a higher abstraction layer and allow simple first-order
logic. In general, SMT solvers often translate the problem to SAT and then use
an improved version of the DPLL algorithm and backtracking to infer when
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theory conflicts arise. Moreover, the solver checks the feasibility of conjunctions
from the first-order logic predicates as it interacts with the Boolean formulas
that are returned by the SAT solver.

There exists a few SAT/SMT solvers that are suitable for our use cases.
STP [50] is an SMT solver that uses the CVC and SMTLIB2 language to encode
the constraints and then invokes a SAT solver to check for satisfiability of the
model. CryptoMiniSat [40] is an advanced SAT solver that supports features like
XOR recovery1 to simplify clauses. As XOR operations are commonly used in
cryptography this can be an advantage and potentially reduces the solving time.
We also considered other solvers like Boolector [43], which for some instances
provide a better performance, however in general this only provides an improve-
ment by a small constant factor and it is hard to identify for which instances
one obtains any advantage.

3.2 From Differential Cryptanalysis to Satisfiability
Modulo Theories

When using automated tool like SAT/SMT solvers, one can simplify the search
for differential characteristics and differentials by modeling the differential
behavior of the block cipher. For this we represent all intermediate states of
our block cipher as variables which corresponds to the differences and encode
the transitions of differences through the round functions as constraints that can
be processed by the SMT/SAT solver. An advantage of using SMT over SAT
for the modeling is that most SMT solvers support reasoning over bit-vectors
which are commonly used in block cipher designs, especially when considering
word-oriented ciphers. This both simplifies the modeling of the constraints and
can lead to an improved time for solving the given problem instances compared
to an encoding in SAT.

Constructing an SMT Model. In this paper, we focus on a tool that uses the
CVC language2 for encoding the differential behavior of block ciphers. Therefore,
we encode the constraints imposed by the round function for each round of the
block cipher and the probability of the resulting differential transitions. Our
main goal here is to construct an SMT model which decides whether

∃Q : DP(Q) = 2−t, (8)

which allows us to find the best differential characteristic Q for a cipher by
finding the minimum value t for which the model is satisfiable.

In order to represent the differential behaviour of a cipher we consider any
operation in the cipher, e.g., the application of an S-box, matrix multiplication,
word-wise operation or bit operation, and add constraints for a valid transition

1 See https://www.msoos.org/2011/03/recovering-xors-from-a-cnf/.
2 A list of all bitwise and word level functions in CVC is available at: http://stp.

github.io/cvc-input-language/.

https://www.msoos.org/2011/03/recovering-xors-from-a-cnf/
http://stp.github.io/cvc-input-language/
http://stp.github.io/cvc-input-language/
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from an input to an output difference such that any valid assignment to the
variables corresponds to a valid differential characteristic in the actual opera-
tion. For any non-linear component we introduce additional variables wj which
represent the log2 probability of the differential transition. The probability of Q
is then given by

∑
wj . This means that a valid assignment for all these variables

directly gives us the differential characteristic Q with all intermediate differences
and DP(Q) = p.

In the following we give an overview on how the different components of the
ciphers can be modeled in the SMT model. The algorithms to find the optimal
differential characteristics and consequently good estimates for the differentials
are described in Sect. 3.3.

S-Boxes. Substitution Permutation Network (SPN) ciphers typically use S-
boxes, which are non-linear functions operating on a small number of bits. These
are often 4- or 8-bit functions and therefore we can compute the differential
probability by simply constructing the Difference Distribution Table (DDT),
which is a full lookup table of all possible pairs of input/output differences,
for each S-box. In our SMT model we represent the input difference to an n-
bit S-box as α = α1, . . . , αn respectively the output as β = β1, . . . , βn. These
variables correspond to the input/output difference to this S-box and we want
to constraint them to only allow non-zero probability combinations of input and
output differences. We further introduce additional variables w = w1, . . . , wn

which are used to represent the probability of the transition. The probability of
the transition is encoded as 2−wt(w), where wt(·) denotes the Hamming weight
of w.

In order to construct the constraints on the variables, we first find all valid
transitions and their corresponding probability. We want to construct a CNF
which is satisfiable if and only if the assignment corresponds to such a valid
characteristic. One simple way to this is by just considering all assignments
which are impossible. If a transition is defined as (a S−→ b) and has a probability
c then we add the following clause

T = N(a1, α1) ∨ . . . ∨ N(an, αn)∨
N(b1, β1) ∨ . . . ∨ N(b1, βn)∨
N(c1, w1) ∨ . . . ∨ N(cn, wn)

(9)

where

N(xi, yi) =

{
¬yi, if xi = 0

yi, if xi = 1
. (10)

This clause is only satisfiable if the variables of the corresponding S-box are not
set to the invalid assignment. For example let a = (1, 0, 1, 1), b = (0, 0, 0, 0) and
c = (0, 0, 0, 0) then we add the clause

(¬α0 ∨ α1 ∨ ¬α2 ∨ ¬α3 ∨ β0 ∨ β1 ∨ β2 ∨ β3 ∨ w0 ∨ w1 ∨ w2 ∨ w3). (11)
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We implemented this approach to generate the SMT models for 4- and 8-bit
S-boxes, where most of the lightweight ciphers actually use 4-bit S-boxes which
allows a very compact description (i.e., to represent the 4-bit S-box of Skinny
we need 12 variables and about 3999 clauses in CNF). Note that our method is
limited to S-boxes which have a DDT with entries that are a power of 2. For
other S-boxes a similar method could be used by using l additional variables for
encoding probabilities of the form 2−0.5, 2−0.25, . . . to get an approximation of
the actual probability.

Linear Layers. The diffusion layers of Substitution Permutation Networks
in lightweight ciphers are often constructed with simple bit-permutations (e.g.,
Present) or by multiplication with matrices having only binary coefficients (e.g.,
Midori, Skinny). ARX-based ciphers (e.g., Speck) use the diffusion properties
of XOR combined with rotations. Feistel networks (e.g., Simon, LBlock, Twine)
also mix the state by switching parts of the states on every Feistel switch.

For modeling rotations and bit-permutations in an SAT/SMT solver, we
simply have to re-index the variables accordingly before they are input to another
function. This can be achieved using SMT predicates (ASSERT and equality) in
the CVC language. Rotations can be realized using predicates for shifting words
and the word-wise or function that are available in the CVC language. The
multiplication by a binary matrix can be modeled using the xor predicate at the
word-level.

ARX Designs. ARX designs use modular additions (modulo 2n), XOR and
rotations. As modular addition is the only non-linear component, that is not
already available in the SMT solver, we use an algorithm proposed by Lipmaa
and Moriai [36] to efficiently compute the differential probability of modular
addition. Let xdp+(α, β → γ) be the XOR differential probability of modular
addition, where α, β are input differences and γ is the output difference, then it
holds that a differential is valid if and only if:

eq(α � 1, β � 1, γ � 1) ∧ (α ⊕ β ⊕ γ ⊕ (β � 1)) = 0 (12)

where
eq(x, y, z) := (¬x ⊕ y) ∧ (¬x ⊕ z). (13)

The weight of a valid differential is defined as:

w(α, β, γ) := − log2 (xdp+(α, β → γ)) = wt′(¬eq(α, β, γ)). (14)

where wt′(·) denotes the Hamming weight omitting the most significant bit. We
implemented this algorithm to calculate the differential probability of modular
additions.

3.3 Finding the Best Characteristics and Differentials

We use the open-source tool CryptoSMT [45] for the automated search of differ-
ential characteristics and implemented several missing functionalities for block
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ciphers (i.e., support for S-boxes as described in Sect. 3.2, and binary diffusion
matrices). CryptoSMT is based on the state-of-the-art SAT/SMT solvers, Cryp-
toMiniSat [40] and STP [50].

The tool offers a simple API that allows cryptanalysts and designers to
formulate various cryptanalytic problems and solve them with the underlying
SAT/SMT solver. We added the models for the block ciphers Skinny, Midori,
Rectangle, Present, Prince, Sparx, Twine and LBlock (Note that some of
these are block cipher families and we focused on a subset of parameters) to
CryptoSMT and use the following two functionalities provided by the tool:

– Decide if a differential characteristic with probability p exists.
– Enumerate all differential characteristics with a probability of p.

Based on this we can achieve our two goals, namely finding the best differential
characteristic and estimating the probability of the differential.

Best Differential Characteristic. In order to find the characteristic Q with
maximum probability pmax for r rounds of a block cipher we start by checking
whether our model is satisfiable for a probability of p, starting at p = 1. If
our model is not satisfiable we continue by checking whether there is a valid
assignment for p = 2−1. Note that for all our block ciphers the probability of the
differential transitions are powers of two and therefore there does not exist any
differential characteristic which has a probability p′ such that 2−(t+1) < p′ < 2−t

for any integer t. We continue this process until we reach a model which is
satisfiable, which gives us an assignment of all variables of the state forming a
valid differential characteristic with probability pmax = 2−t. Considering that
we start with probability p = 1 and then we constantly increase the weight, and
finish as soon as we found an valid assignment, we can ensure that we found the
best differential characteristic.

Estimate for the Probability of a Differential. In order to find a good
differential we can use a tool assisted approach to compute an approximation
for Eq. 6, as shown in [41]. We first obtain the best single characteristic Q with
probability p = 2−t which gives us the input difference α1 and output difference
αr. Subsequently we modify our model and fix the input and output difference
to α1 respectively αr. Note that this restricts the search space significantly and
results in a much faster time for solving any subsequent SMT instances.

The next step is to find all differential characteristics Q, such that DP(Q) =
2−u, for u = t, t + 1, . . ., under this new constraints. This allows us to collect
more and more terms of the sum in Eq. 6, improving our approximation for
the differential. By doing this process we always search for those differential
characteristics which contribute the most to the probability of the differential
first.

Here we assume that the input and output difference imposed by the best
differential characteristic correspond to a good differential. While this assump-
tion might not always hold and some of the differentials we found significantly
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improve the best differential distinguishers there could still exist better start-
ing points for our search, for example as shown in [32] against the block cipher
Simeck.

4 Analysis of the Gap in Lightweight Ciphers

The construction of cryptographic primitives optimized for resource constrained
devices has received a lot of attention over the last decade and various design
strategies and optimisation targets have been explored. All these primitives
exhibit the idea of using simpler operations in order to save costs and therefore
often exhibit a simpler algebraic structure compared to other symmetric-key
algorithms.

For some design strategies this leads to a significant larger gap between single
characteristics and differentials. This gap becomes especially relevant for aggres-
sively optimised designs with minor security margins. Table 1 gives an overview
of all the block ciphers we analysed with the methodology outlined in Sect. 3
and their security margins as well as the best known differential attacks.

Table 1. Best attacks and security margins (active S-boxes) for various design strate-
gies for symmetric cryptographic primitives. D/MD/RK/ID/R/TD = differential, mul-
tiple differential, related-key, impossible differential, rectangle, truncated differential

Group Design strategy Cipher Block size Key size Rounds Margin

(active

S-boxes)

Best differential attack Exploit

differentials

SPN AES-like Midori 64 128 16 9 rounds Full rounds (RK) [26] ✗

Skinny 64 64 32 24 rounds 19 rounds (ID) [38] �
Skinny 64 128 36 28 rounds 23 rounds (ID) [3,38] �
Skinny 64 192 40 32 rounds 27 rounds (R) [38] �

Bit-sliced Rectangle 64 80/128 25 - 18 rounds (D) [48,54] Section 4.6

Present-like Present 64 80/128 31 12 rounds 26 rounds (D) [37,51] �
Reflection Prince 64 128 12 - 10 rounds (MD) [17] �
ARX Sparx 64 128 24 9 rounds 16 rounds (TD) [4] �

Feistel AND-RX Simon 64 96 42 - 26 rounds (D) [2] �
Simon 64 128 44 - 26 rounds (D) [2] �

ARX Speck 64 96 26 - 19 rounds (D) [44] �
Speck 64 128 27 - 20 rounds (D) [44] �

GFN Twine 64 80 36 21 rounds 23 rounds (ID) [10] ✗

Twine 64 128 36 21 rounds 25 rounds (ID) [10] ✗

Two-branched LBlock 64 80 32 17 rounds 24 rounds (ID) [52] ✗

4.1 Designs Strategies

We categorise these lightweight ciphers according to their design strategies as
this has the largest influence on the gap. In general one can distinguish between
two main design families: Substitution-Permutation Networks (SPN) and Feis-
tel Networks. Within these families we can gather ciphers according to other
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structural properties. These are for SPN: AES-like, Bit-sliced S-boxes, Bit-based
Permutation Layers, Reflection Ciphers, ARX-based and for Feistel: ARX-based,
Generalized Feistel Networks and Two-branched.

In our study, we then analyzed the differential gaps for Midori [6], Skinny
[8], Rectangle [54], Present [14], Prince [15], Sparx [23], Simon [7], Speck [7],
Twine [47], and LBlock [47] where Table 1 categorises the ciphers according their
aforementioned structural properties.

4.2 Skinny

Skinny [8] is an AES-like tweakable block cipher, based on the Tweakey frame-
work [28]. The aim of Skinny is to achieve the hardware performance of
the AND-RX-cipher Simon and have strong security bounds against differen-
tial/linear attacks (this includes the related-key scenario), while also having com-
petitive software performance. The resistance against differential/linear attacks
in Skinny is based on counting the minimal number of active S-boxes, in the
single-key and related-tweakey models. As the design of Skinny is based on a few
very simple but highly efficient cryptographic building blocks it seems intuitive
that one can expect that a large number of differential characteristics will con-
tribute to a differential. Recent attacks [3,38] exploited the low branch number
of the binary diffusion matrix, as well as properties of the tweakey schedule.

Using our tool-assisted approach we analysed this gap in Skinny-64 (see
Fig. 1) and can provide some new insights to the security of Skinny-64. For
example the best 8-round single differential characteristic Q8

max suggests a prob-
ability of 2−72 while the differential D8 defined by the input/output difference
of Q8

max consists of a large cluster of characteristics leading to the differential

0x0104401000C01C00
8−round Skinny−64−−−−−−−−−−−−−→ 0x0606060000060666 (15)

with a probability larger than 2−56.55 by taking all 821896 characteristics3 into
account which have DP > 2−99. Note that the probabilities and the number
of characteristics are obtained with a fixed input/output difference as noted in
Eq. 15. This suggests that estimates from active S-boxes should be taken with
care as the gap is fairly large. However, the number of rounds in Skinny-64 is
chosen very conservatively and it provides a large security margin.

In particular the probability of the differential improves very quickly when
adding more characteristics, as the distribution of the number of characteristics
with a probability 2−t is very flat over the choice of t (see Fig. 1). For example
there are 39699 characteristics with DP = 2−75 and 25413 characteristics with
DP = 2−76 and the probability of the differential only improves marginally by
considering more characteristics with a lower probability. On the contrary, for
designs like Simon (see Fig. 5) this distribution grows exponentially as the proba-
bility of the single characteristics decreases as has also been noted in [31], and one

3 This process took in total 23.5 h on a single core, however after 1 h the estimate for
the differential probability improves by less than 2−0.9.
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has to take a much larger number of characteristics into account before getting
a good approximation. For a detailed overview over how many characteristics
contribute to each differential see AppendixA.

Fig. 1. Probability for the best single characteristics and differentials for Skinny-64
(left), and the distribution of the number of characteristics with a fixed probabil-
ity contributing to the best 8-round differential for Skinny-64 (right). The green line
indicates the probability of the differential when summing up the probability of all
characteristics up to this probability, which highlights the small improvement when
adding all lower probability characteristics. (Color figure online)

4.3 Midori

Midori is an AES-like lightweight block cipher optimized for low-energy usage
using a binary near-MDS matrix combined with a generic cell permutation for
diffusion. Despite that Midori-64 has a large number of 232 weak keys, for which
Midori-64 can be practically broken with invariant subspace attacks [27], there
has been no differential attacks on even reduced versions of Midori, apart from
a related-key attack by Gérault and Lafourcade [26].

The gap between the differential probability of a single characteristic and a
differential behaves similar to Skinny-64, i.e., counting the active S-boxes gives
an inaccurate bound against differential distinguishers. For example we found
new differentials for Midori-64 where the 8-round single differential characteris-
tic suggests a probability of 2−76 and the corresponding 8-round differential

0x0A000000A0000005
8−round Midori−64−−−−−−−−−−−−−→ 0x000000000000A0AA (16)

has a probability larger than 2−60.86 by summing all 693730 characteristics up to
a probability of 2−114. Similar to Skinny the distribution of the contributing
characteristics is very flat, which means that we quickly approach a good esti-
mate for the probability of the differential (see Fig. 2).

4.4 Sparx

Sparx [23] is based on the long-trail strategy, introduced alongside with Sparx,
which can be seen as combining the ARX approach with an SPN, allowing to
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Fig. 2. Probability for the best single characteristics and differentials for various rounds
of Midori-64 (left), and distribution of the characteristics contributing to the best 8-
round differential for Midori-64 (right).

provide bounds on the differential resistance of an ARX cipher by counting
the active S-boxes. While it is also feasible to prove such a bound using the
methodology from Sect. 3, it is often computationally infeasible or the bounds
are not very tight [41]. The designers of Sparx used the YAARX toolkit [12]
to show truncated characteristics, that they used to compute the differential
bounds. One of the main design motivations of Sparx was that it should be
very difficult to find differential characteristics for a large number of rounds for
ARX-based ciphers with a state of more than 32 bits [22].

In general ARX ciphers do not have a very strong differential effect compared
to the previous lightweight SPN constructions, however as Sparx is in-between
those it is an interesting target. Our results suggest that Sparx-64 has a differ-
ential effect comparable to other ARX designs like Speck-64 (see Fig. 3). The
major limitation for applying our approach to Sparx is that the search for opti-
mal differential characteristics on Sparx is computationally very costly. While
single-characteristics up to 6 rounds can be found in less then 5 min, the 10-round
single-characteristic took already 32 days, on a single core4.

Fig. 3. Comparison of the best single characteristics and differentials for various rounds
of Speck-64 (left), and Sparx-64 (right).

4 Note that this process can not easily be parallelized as most SAT solvers are inher-
ently serial.
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4.5 Results for Other Lightweight Ciphers

Table 2 summarizes the gaps between single-characteristics and differentials for
all lightweight block ciphers we analyzed. We observed that for most ciphers
a large gap between the probability for single-characteristics and differentials
exists and that a higher number of rounds is required for the block ciphers to
be differential resistant. The gaps also increase significantly with the number
of rounds, which is not surprising as with more rounds there are more valid
differential characteristics for a given input/output difference.

The biggest gap, in term of number of rounds, occurs for Simon-64 with a gap
of five rounds. There is also a 2-round gap for ciphers like Present, Midori and
Twine. However, it seems that the gap for Simon-64 grows faster, considering
that the differentials and characteristics seem to follow an exponential growth
as also observed in [31]. In comparison Present, Midori and Twine seem to
grow in a linear way. In relation to the number of rounds, the gap for Midori
also has quite a significant impact and allows to extend the distinguisher by two
rounds. Further we observed that there seem to be nearly no gaps for ciphers like
Rectangle and Speck. We illustrate the gaps for the analyzed ciphers in Fig. 4
and we provide Fig. 5 showing the distribution of valid differential characteristics
that contribute to the probability of the best differential for each cipher.

Table 2. Gap between the number of rounds required for a cipher to be differential
characteristic resistant (DCR) and differential resistant (DR). Note that DR is only a
lower bound and there might still exist better differentials.

Group Design strategy Cipher Block size Key size Rounds DCR DR

SPN AES-like Midori 64 128 16 7 9

Skinny 64 64/128/192 32 8 9

Bit-sliced Rectangle 64 80/128 25 15 15

Present-like Present 64 80/128 31 15 17

Reflection Prince 64 128 12 6 8

ARX-based Sparx 64 128 24 15 15a

Feistel AND-RX Simon 64 96/128 42 19 24b

ARX Speck 64 96/128 26 >15 >15c

GFN Twine 64 80/128 36 14 16

Two-branched LBlock 64 80 32 15 16
aSingle-characteristic differentials of Sparx [23] are proven to reach 15 rounds, while
the authors mention that they don’t expect the bound to be tight.
bThe best differentials for Simon-64 reach 23 rounds with 2−63.91 [39].
cThe best differentials for Speck-64 reach 15 rounds with 2−60.56 [44].
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Fig. 4. Probability for the best single characteristics and differentials for various rounds
of different block ciphers. 1st row: Simon-64 (left) and Present (right), 2nd row:
Rectangle (left) and Prince (right), 3rd row: Speck-64 (left) and Twine (right), 4th
row: LBlock (left)

4.6 Application of the Differential Gaps to the Best Published
Differential Attacks

In the following, we analyze the best published attacks and discuss improvements
of the attacks when possible:
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Fig. 5. Distribution of the characteristics contributing to the best differential for var-
ious block ciphers. 1st row: Simon-64 (left) and Present (right), 2nd row: Rectangle
(left) and Prince (right), 3rd row: Speck-64 (left) and Twine (right), 4th row: LBlock
(left) and Sparx-64 (right)
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Midori-64. Gérault and Lafourcade [26] proposed related-key differential
attacks on full-round Midori-64, where they use 16 15-round and 4 · 14-round
related-key differential characteristics to recover the key. In their attacks they
do not exploit differentials. In comparison, the best differential that we found
reaches 8 rounds with a probability of 2−60.86.

Skinny-64. Liu et al. [38] propose related-tweakey rectangle attacks on 26
rounds of Skinny-64-192 and they use optimal single differential characteristics
based on truncated differential characteristics. The authors exploit the differen-
tial gap of Skinny by using 5000 single differential characteristics to compute
the differential for a 22-round distinguisher. In comparison, the best differen-
tial characteristic with no differences in the tweak/key that we found reaches 8
rounds with a probability of 2−56.55.

Rectangle. Zhang et al. [54] studied the differential effect and showed an 18-
round differential attack, where they used a 14-round differential with a proba-
bility of 2−62.83. In our analysis we found a better differential for 14 rounds with
probability of 2−60.63 by summing up 40627 single-characteristics which would
improve the complexity of these attacks. For more rounds the distinguisher are
below 2−64.

Present. Liu and Jin [37] presented an 18-round attack based on slender-
sets. Wang et al. [51] further presented normal differential attacks on 16-round
Present where they used a differential with probability 2−62.13 by summing up
91 differential characteristics which is comparable to our differentials.

Prince. Canteaut et al. [17] showed differential attacks on 10 rounds of Prince,
by considering multiple differential characteristics. In their attack they use 12
differentials for 6 rounds with a probability of 2−56.42 by summing up 1536 single-
characteristics. The differential we found for 6 rounds only has a probability of
about 2−62, but does not lead to further improvements of the attack.

Sparx-64. Ankele and List [4] studied truncated differential attacks on 16 rounds
of Sparx-64/128 and used single differential characteristics, for the first part of
the 14-round distinguisher, and truncated the second part of the distinguisher.
The designers of Sparx-64 claim that Sparx is differential secure for 15 rounds,
however, by considering the differential effect of Sparx-64, also in comparison
with Speck-64, it seems likely that there exist differentials with more than 15
rounds with a data complexity below using the full codebook.

Simon-64. Abed et al. [2] presented differential attacks on Simon-64, where they
used a 21-round distinguisher with a probability of 2−61.01. Better distinguishers
are reported by [39] for 23 rounds with a probability of 2−63.91. The differentials
we found are in line with previous results.

Speck-64. Song et al. [44] presented 20-round attacks on Speck-64 by construct-
ing a distinguisher from two short characteristics where they concatenated the
two characteristics to a 15-round characteristic with probability 2−60.56. The
distinguishers used in the attack are already based on differentials and the dif-
ferentials we found do not lead to any improvement.
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Twine. Biryukov et al. [10] showed a 25-round impossible differential attack and
a truncated differential attack on 23 rounds by chaining several iterated 4-round
characteristics together. In the paper the authors also considered differentials for
12 rounds with a probability of 2−52.08 and 16 rounds with probability 2−67.59.
The best differential that we found reaches 15 rounds with a probability of
2−62.89.

LBlock. Wang et al. [52] published a 24-round impossible differential attack on
LBlock. Due to the nature of impossible differential attacks, characteristics with
probability 1 are used for constructing these. The best differential that we found
reaches 15 rounds with a probability of 2−61.43.

5 Experimental Verification and the Influence of Keys

In Sect. 2 we made several assumptions in order to compute DP(Q) and in this
section we compare the theoretical estimates with experiments for reduced-round
versions. This serves two purpose: First we want to see how close our estimate
for DP(α, β) is and secondly we want to see the distribution over the choice of
keys. Specifically, we are interested in the number of pairs

δK(α, β) = #{x ∈ F
n
2 | EK(x) ⊕ EK(x ⊕ α) = β}. (17)

This number of good pairs will vary over the choice of the key. For a random
process we would expect that the number of valid pairs is about DP · 2n and
follows a Poisson distribution.

Definition 5. Let X be a Poisson distributed random variable representing the
number of pairs (a, b) with values in F

n
2 following a differential D = (α

f−→ β),
that means f(a) ⊕ f(a ⊕ α) = β, then

Pr(X = l) =
1
2
(2np)l e

−(2np)

l!
(18)

where p is the probability of the differential.

In the following, we experimentally verify differentials for Skinny, Speck and
Midori for a large number of random pairs of plaintexts and a random choice of
keys to see how good this approximation is.

5.1 Skinny

As a first example we look at Skinny-64. We use the 6-round differential

D = (0x0000010010000041, 0x4444004040044044)

for Skinny-64. The best characteristic which is part of D has a probability of
2−32 and by collecting all characteristics (100319) contributing to this differential
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Fig. 6. Distribution of δK(D) over a random choice of K for 6-round Skinny-64.

we estimate DP(D) ≈ 2−23.52. We try out 230 randomly selected pairs for 10000
keys and count the number of pairs following D. From our estimate we would
expect that on average we get about 89 pairs for a key.

As one can see from Fig. 6 our estimate of DP(D) provides a good approxi-
mation for the distribution over the keys, although the distribution has a larger
variance than we expected.

5.2 Speck

For Speck-64 we look at the differential

D = ((0x40004092, 0x10420040), (0x8080A080, 0x8481A4A0))

over 7 rounds. The best characteristic in D has a probability of 2−21 and this
only slightly improves to about 2−20.95 using 6 additional characteristics. We
again run our experiments for 230 randomly selected pairs for 10000 keys and
count the number of pairs following D. On average we would expect 530 pairs.

Fig. 7. Distribution of δK(D) over a random choice of K for 7-round Speck-64.

In Fig. 7 it can be seen that for 7-round Speck-64 the distribution is bimodal
and we over- respectively underestimate the number of valid pairs for most keys.
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5.3 Midori

For Midori-64 we look at the differential

D = (0x0200200000020000, 0x0202220020020020)

over 4 rounds. The best characteristic in D has a probability of 2−32 and this
improves to about 2−23.79 using 896 additional characteristics. We again run our
experiments for 230 randomly selected pairs for 3200 keys and count the number
of pairs following D. On average we would expect about 74 pairs.

Fig. 8. Distribution of δK(D) over a random choice of K for 4-round Midori-64. We
omitted the 2545 keys with 0 good pairs in this plot.

In Fig. 8 it can be seen that for 4-round Midori-64 the distribution is very
different from the previous cases. For some keys the probability is significantly
higher and for about 80% of the keys we get 0 good pairs. This means that for a
large fraction of keys we actually found an impossible differential and one should
be careful when constructing differential distinguishers for Midori. In particular
it would be interesting to classify this set of impossible keys and we leave this
as an open problem. Moreover, this also implies the existance of a large class
of weak keys, that has also been observed in the invariant subspace attacks on
Midori-64 [27,34,49].

6 Conclusions

In this work we showed for several lightweight block ciphers that the gap between
single characteristics and differentials can be surprisingly large. This leads to
significantly higher probability of differentials in several designs and allows us
to have differential distinguishers covering more rounds.

We provided a simple framework to automate the process of collecting many
differential characteristics that are contributing to the probability of a differen-
tial. We hope this will encourage future designs of cryptographic primitives to
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apply our methodology in order to provide better bounds on the security against
differential cryptanalysis.

Further we verified differentials for a reduced number of rounds experimen-
tally and showed that our improved estimates of the probability of differentials
of Skinny closely resembles what happens in experiments. However, we can also
observe that some commonly made assumptions on the distribution of good pairs
following a differential over the choice of keys has to be made very carefully. For
instance, the results for Speck and Midori indicate that one needs to be very
careful in presuming that the estimates apply to all key values.

A Detailed Data for Midori, Skinny and Sparx

In the following we give a more detailed overview over the analysis on Midori,
Skinny and Sparx. In particular we give the following metrics

– Best differential characteristic for r rounds.
– Estimate of the differential with the input/output difference of the best dif-

ferential characteristic found.
– Number of differential characteristics we used for the estimate.
– The maximum weight of the differential characteristics we use for the esti-

mate.
– Search time to find the best single differential characteristic and all the dif-

ferential characteristics for the best differential (Tables 3 and 4).

Table 3. Detailed results on the differentials found for Midori-64.

r Prchar Prdiff #Characteristics Max weight Timechar Timediff

4 2−32 2−23.79 896 36 31 m 36 s 2 m 4 s

5 2−46 2−35.13 55168 54 56 m 42 s 1 h 10 m

6 2−60 2−48.36 11072 71 1 h 54 m 29 m

7 2−70 2−57.43 28588 99 3 h 12 m 1 h 32 m

8 2−76 2−60.87 693730 114 1 h 6 m 23 h 36 m

9 2−82 2−66.52 104694 90 56 m 3 h 12 m

10 2−100 2−83.86 120181 106 5 h 12 m 4 h 36 m

11 2−114 2−98.04 87055 119 10 h 56 m 3 h 18 m

12 2−124 2−108.59 88373 131 1 d 02 h 4 h 54 m

13 2−134 2−118.70 56596 139 22 h 02 m 3 h 06 m

14 2−144 2−131.18 13932 149 1 d 16 h 9 h 36 m

15 2−150 2−137.07 25680 155 20 h 30 m 1 h 48 m

16 2−168 2−155.58 11815 172 3 d 21 h 1 h 12 m
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Table 4. Detailed results on the differentials found for Skinny-64.

r Prchar Prdiff #Characteristics Max weight Timechar Timediff

6 2−32 2−23.51 100319 45 22 m 54 s 1 h 38 m

7 2−52 2−39.49 141800 58 1 h 03 m 5 h 13 m

8 2−72 2−56.55 821896 98 1 h 24 m 23 h 20 m

9 2−82 2−65.36 277464 89 1 h 06 m 29 h 25 m

10 2−92 2−75.98 66438 92 1 h 42 m 2 h 59 m

11 2−102 2−86.63 64339 103 2 h 36 m 3 h 14 m

12 2−110 2−95.00 62382 113 3 h 12 m 3 h 37 m

13 2−116 2−100.06 165079 124 2 h 42 m 24 h 42 m

14 2−122 2−106.71 100457 127 3 h 30 m 10 h 25 m

15 2−132 2−114.65 326404 142 7 h 23 m 37 h 21 m

16 2−150 2−135.41 24598 150 30 h 35 m 1 h 44 m

17 2−164 2−150.07 21524 165 60 h 09 m 1 h 53 m

18 2−176 2−161.64 20903 177 92 h 04 m 1 h 54 m

19 2−184 2−168.27 54245 185 60 h 22 m 3 h 38 m

20 2−192 2−176.74 39169 193 60 h 10 m 2 h 59 m

. . .

B Differentials for Midori, Skinny and Sparx

In the following we give the best differentials that we found for Midori, Skinny
and Sparx. The differentials for many other lightweight ciphers together with the
source code to generate the differential models is publicly available at: https://
github.com/TheBananaMan/cryptosmt (Tables 5, 6, 7 and 8).

Table 5. Detailed results on the differentials found for Sparx-64.

r Prchar Prdiff #Characteristics Max weight Timechar Timediff

1 1 1 1 1 0.02 s 0.03 s

2 2−1 2−1 1 2 0.1 s 0.07 s

3 2−3 2−3 1 4 0.5 s 0.09 s

4 2−5 2−4.99 8 49 2.4 s 3.36 s

5 2−9 2−8.99 12944 58 25 s 2 m 12 s

6 2−13 2−12.99 70133 51 3 m 48 s 3 h 06 m

7 2−24 2−23.95 56301 60 47 h 48 m 28 m

8 2−29 2−28.53 37124 60 15 d 5 h 17 m

9 2−35 2−32.87 233155 58 22 d 7 h 7 h 42 m

10 2−42 2−38.12 1294158 73 32 d 12 h 35 h 18 m

. . .

https://github.com/TheBananaMan/cryptosmt
https://github.com/TheBananaMan/cryptosmt
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Table 6. The best differentials that we found for various rounds of Midori-64.

r Differential PrDifferential

4 0x0000020000022000 → 0x0020220002022002 2−23.79

5 0x0004100000000100 → 0x0222220222222022 2−35.13

6 0x0550000000005000 → 0x0000AA0000007707 2−48.36

7 0x0AA00500700A0000 → 0x00005AFF0000AAA0 2−57.43

8 0x0A000000A0000005 → 0x000000000000A0AA 2−60.87

9 0x0000000A050000A0 → 0x770700000AAAA0AA 2−66.52

10 0x0500005050000000 → 0xDD7A7D0D25727A7D 2−83.86

11 0x0000A00000500500 → 0xAAA0AAA50AAAAA0A 2−98.04

12 0xA0A00A0A00007000 → 0x0000DD7A00007077 2−108.59

13 0x0000A0070A000AA0 → 0x00000555A5AFAF5F 2−118.70

14 0x0000000000000500 → 0x000070777707AAA0 2−131.18

15 0x0A0000A00000000A → 0x05550000AA0AAAA0 2−137.07

16 0xAA00A0A0AAA00A70 → 0x00007077AA0A7770 2−155.58

Table 7. The best differentials that we found for various rounds of Skinny-64.

r Differential PrDifferential

6 0x0041C00001000000 → 0x4044400400404444 2−23.51

7 0x002220222B222000 → 0x0444004404004444 2−39.49

8 0x0104401000C01C00 → 0x0606060000060666 2−56.55

9 0x0020000200020200 → 0x0060000100600160 2−65.36

10 0x0008200020000020 → 0x0008808000880088 2−75.98

11 0x0002200000000200 → 0x0444004404004444 2−86.63

12 0x0004000000000000 → 0x0001000100000001 2−95.00

13 0x0200000000002000 → 0x0001001100000001 2−100.06

14 0x4000040000400000 → 0x0404040000040444 2−106.71

15 0x8008080000800000 → 0x1066100600601666 2−114.65

16 0x0020000220000000 → 0x8880088080008888 2−135.41

17 0x004C400004000000 → 0x2002022022020022 2−150.07

18 0x400C0000C00C0000 → 0x0077001100660077 2−161.64

19 0x2200000000002008 → 0x0077001100660077 2−168.27

20 0x8800000000008009 → 0x8800080900008800 2−176.74

. . .
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Table 8. The best differentials that we found for various rounds of Sparx-64.

r Differential PrDifferential

1 (0x0040, 0x8000, 0x0000, 0x0000) → (0x0000, 0x0002, 0x0000, 0x0000) 1

2 (0x0010, 0x2000, 0x0000, 0x0000) → (0x8000, 0x8002, 0x0000, 0x0000) 2−1

3 (0x2800, 0x0010, 0x0000, 0x0000) → (0x8300, 0x8302, 0x8100, 0x8102) 2−3

4 (0x0000, 0x0000, 0x2800, 0x0010) → (0x8000, 0x840A, 0x0000, 0x0000) 2−4.99

5 (0x0000, 0x0000, 0x0211, 0x0A04) → (0x8000, 0x840A, 0x0000, 0x0000) 2−8.99

6 (0x0000, 0x0000, 0x0211, 0x0A04) → (0xAF1A, 0xBF30, 0x850A, 0x9520) 2−12.99

7 (0x0000, 0x0000, 0x7448, 0xB0F8) → (0x8004, 0x8C0E, 0x8000, 0x840A) 2−23.95

8 (0x0000, 0x0000, 0x0050, 0x8402) → (0x0040, 0x0542, 0x0040, 0x0542) 2−28.53

9 (0x2800, 0x0010, 0x2800, 0x0010) → (0x5761, 0x1764, 0x5221, 0x1224) 2−32.87

10 (0x2800, 0x0010, 0x2800, 0x0010) → (0x8081, 0x8283, 0x8000, 0x8002) 2−38.12

. . .
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