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Abstract. Bel-T is the national block cipher encryption standard of
the Republic of Belarus. It has a 128-bit block size and a variable key
length of 128, 192 or 256 bits. Bel-T combines a Feistel network with a
Lai-Massey scheme to build a complex round function with 7 S-box lay-
ers per round then iterate this round function 8 times to construct the
whole cipher. In this paper, we present integral attacks against Bel-T-
256 using the propagation of the bit-based division property. Firstly, we
propose two 2-round integral characteristics by employing a Mixed Inte-
ger Linear Programming (MILP) (Our open source code to generate the
MILP model can be downloaded from https://github.com/mhgharieb/
Bel-T-256) approach to propagate the division property through the
round function. Then, we utilize these integral characteristics to attack
3 2
7

rounds (out of 8) Bel-T-256 with data and time complexities of 213

chosen plaintexts and 2199.33 encryption operations, respectively. We also
present an attack against 3 6

7
rounds with data and time complexities of

233 chosen plaintexts and 2254.61 encryption operations, respectively. To
the best of our knowledge, these attacks are the first published theoretical
attacks against the cipher in the single-key model.

Keywords: Bel-T · Integral attacks · Bit-based division property
MILP

1 Introduction

In 2011, the Republic of Belarus, formerly known by its Russian name Byelorus-
sia, has approved the Bel-T block cipher family as the state standard cryp-
tographic encryption algorithm [1]. The Bel-T family consists of three block
ciphers, denoted as Bel-T-k, with the same block size of 128 bits and key length
k = 128, 192 or 256 bits. Bel-T merges a Lai-Massey scheme [8] with a Feistel
network [5]. To the authors’ knowledge, there are only two published cryptanal-
ysis results on Bel-T’s; fault-based attacks are considered in [6], and related-key
differential attack on round-reduced Bel-T-256 are presented in [2]. In this paper,
we present the first published single-key attack against Bel-T-256. Table 1 con-
trasts the result of our attacks with the related-key differential attack in [2].
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Table 1. Attack results on Bel-T-256

Model Attack #Round Data Time Reference

Related key Differential 5 6
7

2123.28 2228.4 [2]

Single key Integral 3 2
7

213 2199.33 Sect. 3.3

3 6
7

233 2254.61 Sect. 3.4

Integral Attacks. In [4], Daemen et al. proposed a new cryptanalysis technique
to analyze the security of the block cipher SQUARE. Subsequently, Knudsen and
Wagner [7] formalized this technique and called it integral attack. The integral
attack is a chosen-plaintext attack where the set of plaintext used in the attack
is chosen to have XOR sum of 0. Firstly, the cryptanalyst constructs a multiset
of plaintext such that it has a constant value at some bits while the other bits
vary through all possible values. After that, the cryptanalyst calculates the XOR
sum of all bits (or some of them) on the corresponding ciphertext after r rounds.
If it is always 0 irrespective of the used secret key, we conclude that the cipher
under test has an integral distinguisher.

The major techniques used to construct an integral characteristic include esti-
mating the algebraic degree of the nonlinear parts of the cipher, and evaluating
the propagation characteristic of the following integral properties [7]: ALL (A)
where every member appears the same number in the multiset; BALANCE (B)
where the XOR sum of all members in the multiset is 0; CONSTANT (C) where
the value is fixed to a constant for all members in the multiset; and UNKNOWN
(U) where the multiset is indistinguishable from one of n-bit random values.

Recently, Todo and Morii [16] proposed a generalization of the integral prop-
erty called bit-based integral property. Unfortunately, the searching algorithm
which they proposed to construct the integral distinguisher is restricted to
ciphers whose block size is less than 32 bits due to its exponential time and
memory complexities. To overcome this problem, Xiang et al. [17] proposed sys-
tematic rules to easily search for such integral distinguishers by employing a
Mixed Integer Linear Programming (MILP) approach.

The rest of this paper is organized as follows. In Sect. 2, we briefly revisit
the bit-based division property and summarize how to present its propagation
through the basic cipher operations with MILP models. We also describe our
approach to model the modular subtraction operation. In Sect. 3, we investigate
the security of Bel-T block cipher against the integral attacks utilizing this MILP
approach, finally, the conclusion is presented in Sect. 4.

2 Bit-Based Division Property

The division property, introduced by Todo [14], is a generalization of the inte-
gral property to utilize the hidden relations between the traditional A and B
properties by exploiting the algebraic degree of the nonlinear components of the
block cipher. Later, Todo in [15] proposed the first theoretical attack against the
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full round MISTY1 based on a 6-round integral distinguisher. To construct this
distinguisher, Todo utilized an improved version of the division property after
analyzing the Algebraic Normal Form (ANF) of the S-boxes.

Recently, Todo and Morii [16] proposed a special case of the division property,
called bit-based division property, in which each bit is traced independently. The
bit-based division property allows us to exploit both of the algebraic degree and
the details of the round function’s structure. The bit-based division property is
defined as follows:

Definition 1 (Bit-based Division Property [14]). Let X be a multiset whose
elements take a value of Fn

2 . When the multiset X has the division property D1n

K
,

where K denotes a set of n-dimensional vectors whose i-th element takes 0 or 1,
it fulfills the following conditions:

⊕

x∈X

xu =

{
unknown if there exists k ∈ K s.t. u � k,

0 otherwise.

where xu =
∏n

i=1 x[i]u[i], u � k if u[i] ≥ k[i] ∀i, and x[i], u[i] are the i-th bits
of x and u, respectively.

In the following, we present some propagation rules of the division property
and show how to utilize MILP for automating the search for integral distinguish-
ers based on the bit-based division property.

2.1 MILP Modeling for Propagation Rules of the Bit-Based
Division Property

The advantage of the bit-based division property, over the traditional one, is its
ability to exploit both the algebraic degree and the details of the round function
structure by tracing each bit independently. The technique presented in [16] to
find such distinguishers, however, is restricted to primitives whose block sizes
are less than 32 bits due to its time and memory complexities. As mentioned
above, to overcome this limitation, Xiang et al. [17] defined a new notation
called Division Trail. With the division trail, it becomes easy to employ MILP
for constructing the integral distinguisher. Later, Sun et al. complemented this
work by handling ARX-based ciphers (modulo operations) [10] and ciphers with
non-bit-permutation linear layers [11].

In the following subsection, we briefly describe how to model the division
trail through several operations using MILP constraints. We firstly start by
introducing the notation of a division trail.

Definition 2 (Division Trail [17]). Let fr denote the round function of an
iterated block cipher. Assume that the input multiset to the block cipher has the
initial division property D1n

{k}, and denote the division property after i-round
propagation through fr by D1n

Ki
. Thus, we have the following chain of division

property propagations:

{k} def= K0
fr−→ K1

fr−→ K2
fr−→ · · · fr−→ Kr.
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Moreover, for any vector k∗
i ∈ Ki(i ≥ 1), there must exist a vector k∗

i−1 ∈ Ki−1

such that k∗
i−1 can propagate to k∗

i by the division property propagation rules.
Furthermore, for (k0,k1, . . . ,kr) ∈ K0 × K1 × · · · × Kr, if ki−1 can propagate
to ki for all i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.
Thus, the set of the last vectors of all r-round division trails which start with
{k} is equal to Kr. Then, the i-th bit of r-round ciphertext is balanced if ei (a
unit vector whose i-th element is 1) does not exist in Kr.

The propagation rules of the bit-based division property through basic oper-
ations in block ciphers can be found in [15]. In here, we only summarize the
MILP models associated with such rules.

Model for COPY [11]. Let (a) COPY−−−−→ (b1, b2, . . . , bm) denote the division
trail through COPY function, where one bit is copied to m bits. Then, it can be
described using the following MILP constraints:

{
a − b1 − b2 − · · · − bm = 0,
a, b1, b2, . . . , bm are binary variables

Model for XOR [11]. Let (a1, a2, . . . , am) XOR−−−→ (b) denote the division trail
through an XOR function, where m bits are compressed to one bit using an XOR
operation. Then, it can be described using the following MILP constraints:

{
a1 + a2 + · · · + am − b = 0,
a1, a2, . . . , am, b are binary variables

Model for AND [17]. Let (a0, a1)
AND−−−→ (b) denote the division trail though an

AND function, where two bits are compressed using an AND operation. Then,
it can be described using the following MILP constraints:

⎧
⎪⎨

⎪⎩

b − a0 ≥ 0,
b − a1 ≥ 0,
a0, a1, b are binary variables

MILP Model for S-Boxes. The original version of the bit-based division
introduced in [16] is limited to bit-oriented ciphers and cannot be applied to
ciphers with S-boxes. Xiang et al. overcome this problem by representing the
S-Box using its algebraic normal form (ANF) (Algorithm 2 in [17]), also see [9].

The division trail though an n-bit S-box can be represented as a set of
2n-dimensional binary vectors ∈ {0, 1}2n which has a convex hull. The H-
Representation of this convex hull can be computed using readily available func-
tions such as inequality generator() function in Sage1 which returns a set of
linear inequalities that describe these vectors. We use this set of inequalities as
MILP constraints to present the division trail though the S-box.
1 http://www.sagemath.org/.

http://www.sagemath.org/
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MILP Model for Modular Addition. In [10], Sun et al. proposed a system-
atic method to deduce an MILP model for the modular addition operation of
4-bit variables by expressing the operation at the bit-level. Then this method is
generalized for n-bit variables in [12].

Let x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1), and z = (z0, z1, . . . ,
zn−1)2 be n-bit vectors where z = x � y. Then, zi can be iteratively expressed
as follows:

zn−1 = xn−1 ⊕ yn−1 ⊕ cn−1, cn−1 = 0,
zi = xi ⊕ yi ⊕ ci, ci = xi+1yi+1 ⊕ (xi+1 ⊕ yi+1)ci+1, i = n − 2, n − 3, . . . , 0.

Consequently, the division trail through the modular addition can be deduced
in terms of COPY, AND, and XOR operations [12].

MILP Model for Modular Addition with a Constant. In [10], Sun et al.
explain how to deduce an MILP model for the modular addition of a 4-bit vari-
able with a constant. The authors expressed the operation at the bit-level and
exploited that the operations of XOR/AND with a constant do not influence the
division property [10]. We can generalize this method for n-bit variables as fol-
lows. Let (a0, a1, . . . , an−1) → (d0, d1, . . . , dn−1) denote the division trail through
n-bit modular addition with a constant, the division property propagation can
be decomposed as COPY, AND, and XOR operations as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(an−1)
COPY−−−−→ (dn−1, f0, g0)

(an−2)
COPY−−−−→ (an−2,0, an−2,1, an−2,2)

(an−2,0, f0)
XOR−−−→ (dn−2)

(an−2,1, g0)
AND−−−→ (e0)

(an−2,2, e0)
XOR−−−→ (v0)

(vi−1)
COPY−−−−→ (fi, gi)

(an−2−i)
COPY−−−−→ (an−2−i,0, an−2−i,1, an−2−i,2)

(an−2−i,0, fi)
XOR−−−→ (dn−2−i)

(an−2−i,1, gi)
AND−−−→ (ei)

(an−2−i,2, ei)
XOR−−−→ (vi)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

iterated for i = 1, ..., n − 3

(a0, vn−3)
XOR−−−→ (d0)

where the intermediate variables ai,0, ai,1, ai,2, fi, gi, ei, and vi are as shown
in Table 2.

MILP Model for Modular Subtraction. In this section, we present an
approach to deduce an MILP model for the modular subtraction operation using
the same methodology used for Modular Addition. For consistency, we use the
same notation as in [10].
2 Big-endian representation.
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Table 2. The intermediate variables for modular addition with a constant

zn−1
︸ ︷︷ ︸

dn−1

xn−1
︸ ︷︷ ︸

an−1

zn−2
︸ ︷︷ ︸

dn−2

xn−2
︸ ︷︷ ︸

an−2,0

⊕ cn−2
︸︷︷︸

f0

cn−2 xn−1

zn−3
︸ ︷︷ ︸

dn−3

xn−3
︸ ︷︷ ︸

an−3,0

⊕ cn−3
︸︷︷︸

f1

cn−3
︸︷︷︸

v0

xn−2
︸ ︷︷ ︸

an−2,2

⊕
e0

︷ ︸︸ ︷

xn−2
︸ ︷︷ ︸

an−2,1

cn−2
︸︷︷︸

g0

zn−4
︸ ︷︷ ︸

dn−4

xn−4
︸ ︷︷ ︸

an−4,0

⊕ cn−4
︸︷︷︸

f2

cn−4
︸︷︷︸

v1

xn−3
︸ ︷︷ ︸

an−3,2

⊕
e1

︷ ︸︸ ︷

xn−3
︸ ︷︷ ︸

an−3,1

cn−3
︸︷︷︸

g1

· · · · · ·

z1
︸︷︷︸

d1

x1
︸︷︷︸

a1,1

⊕ c1
︸︷︷︸

fn−3

c1
︸︷︷︸

vn−4

x2
︸︷︷︸

a2,2

⊕
en−4

︷ ︸︸ ︷

x2
︸︷︷︸

a2,1

c2
︸︷︷︸

gn−4

z0
︸︷︷︸

d0

x0
︸︷︷︸

a0

⊕ c0 c0
︸︷︷︸

vn−3

x1
︸︷︷︸

a1,2

⊕
en−3

︷ ︸︸ ︷

x1
︸︷︷︸

a1,1

c1
︸︷︷︸

gn−3

Let x, y and z be n-bit vectors where z = x � y. This relation can be
rewritten as z = x � (2’s complement of y) = x � (ȳ � 1), where ȳ is the 1’s
complement of y. Therefore, the division trail through the modular subtraction
can be modelled as a division trail through a modular addition followed by a
modular addition with a constant. This representation has two issues. The first
issue is that two operations are used to present one operation which requires
the use of more MILP constraints and variables, and consequently slowing down
the search process. The second issue is that the information about the value
of the constant, which is 1, in the modular addition with a constant is not
utilized. This may lead the search process to conclude that some bits are not
balanced even that they are balanced, as we show in Appendix A. Instead,
at the bit level implementation, the modular subtraction operation is handled
as a modular addition operation with two modifications: the first carry to the
modular addition will be 1 instead of 0 (cn−1 = 1), and the second input to the
modular addition will be the 1’s complement of the second operand (ȳ).

Let x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1), and z = (z0, z1, . . . , zn−1).
Then, zi can be iteratively expressed as follows:

zn−1 = xn−1 ⊕ ȳn−1 ⊕ cn−1, cn−1 = 1,
zi = xi ⊕ ȳi ⊕ ci, ci = xi+1ȳi+1 ⊕ (xi+1 ⊕ ȳi+1)ci+1, ∀i = n − 2, n − 3, . . . , 0.
where ȳi = yi ⊕ 1

The operation of XOR/AND with a constant does not influence the division
property [10]. Therefore, the division property of ȳ is the same of y. Conse-
quently, we can generalize the modular subtraction operation for n-bit variables
as follows:
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Proposition 1. Let ((a0, a1, . . . , an−1), (b0, b1, . . . , bn−1)) → (d0, d1, . . . , dn−1)
be a division trail through n-bit modular subtraction operation. The division
property propagation can be decomposed as COPY, AND, and XOR operations
as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(an−1)
COPY−−−−→ (an−1,0, an−1,1, an−1,2)

(bn−1)
COPY−−−−→ (bn−1,0, bn−1,1, bn−1,2)

(an−1,0, bn−1,0)
XOR−−−→ (dn−1)

(an−1,2, bn−1,2)
XOR−−−→ (t0)

(an−1,1, bn−1,1)
AND−−−→ (t1)

(t0, t1)
XOR−−−→ (v0)

(v0)
COPY−−−−→ (g0, r0)

(an−2)
COPY−−−−→ (an−2,0, an−2,1, an−2,2)

(bn−2)
COPY−−−−→ (bn−2,0, bn−2,1, bn−2,2)

(an−i,0, bn−i,0, gi−2)
XOR−−−→ (dn−i)

(an−i,1, bn−i,1)
AND−−−→ (vi−1)

(an−i,2, bn−i,2)
XOR−−−→ (mi−2)

(mi−2, ri−2)
AND−−−→ (qi−2)

(vi−1, qi−2)
XOR−−−→ (wi−2)

(wi−2)
COPY−−−−→ (gi−1, ri−1)

(an−i−1)
COPY−−−−→ (an−i−1,0, an−i−1,1, an−i−1,2)

(bn−i−1)
COPY−−−−→ (bn−i−1,0, bn−i−1,1, bn−i−1,2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

iterated for i = 2, ..., n − 2

(a1,0, b1,0, gn−3)
XOR−−−→ (d1)

(a1,1, b1,1)
AND−−−→ (vn−2)

(a1,2, b1,2)
XOR−−−→ (mn−3)

(mn−3, rn−3)
AND−−−→ (qn−3)

(vn−2, qn−3)
XOR−−−→ (wn−3)

(a0, b0, wn−3)
XOR−−−→ (d0)

where the intermediate variables ai,0, ai,1, ai,2, t0, t1, vi, gi, ri, mi, qi, and
wi are as shown in Table 3.

In AppendixA, we present the results of an experiment we performed on a
toy cipher to validate the model of the modular subtraction and show the effect
of the first carry.
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Table 3. The intermediate variables for modular subtraction

zn−1
︸ ︷︷ ︸

dn−1

= xn−1
︸ ︷︷ ︸

an−1,0

⊕ ȳn−1
︸ ︷︷ ︸

bn−1,0

⊕ 1

zn−2
︸ ︷︷ ︸

dn−2

= xn−2
︸ ︷︷ ︸

an−2,0

⊕ ȳn−2
︸ ︷︷ ︸

bn−2,0

⊕
g0

︷︸︸︷

cn−2

v0
︷︸︸︷

cn−2 =

t1
︷ ︸︸ ︷

xn−1
︸ ︷︷ ︸

an−1,1

ȳn−1
︸ ︷︷ ︸

bn−1,1

⊕(

t0
︷ ︸︸ ︷

xn−1
︸ ︷︷ ︸

an−1,2

⊕ ȳn−1
︸ ︷︷ ︸

bn−1,2

)

zn−3
︸ ︷︷ ︸

dn−3

= xn−3
︸ ︷︷ ︸

an−3,0

⊕ ȳn−3
︸ ︷︷ ︸

bn−3,0

⊕
g1

︷︸︸︷

cn−3

w0
︷︸︸︷

cn−3 =

v1
︷ ︸︸ ︷

xn−2
︸ ︷︷ ︸

an−2,1

ȳn−2
︸ ︷︷ ︸

bn−2,1

⊕

q0
︷ ︸︸ ︷

(

m0
︷ ︸︸ ︷

xn−2
︸ ︷︷ ︸

an−2,2

⊕ ȳn−2
︸ ︷︷ ︸

bn−2,2

) ⊕
r0

︷︸︸︷

cn−2

zn−4
︸ ︷︷ ︸

dn−4

= xn−4
︸ ︷︷ ︸

an−4,0

⊕ ȳn−4
︸ ︷︷ ︸

bn−4,0

⊕
g2

︷︸︸︷

cn−4

w1
︷︸︸︷

cn−4 =

v2
︷ ︸︸ ︷

xn−3
︸ ︷︷ ︸

an−3,1

ȳn−3
︸ ︷︷ ︸

bn−3,1

⊕

q1
︷ ︸︸ ︷

(

m1
︷ ︸︸ ︷

xn−3
︸ ︷︷ ︸

an−3,2

⊕ ȳn−3
︸ ︷︷ ︸

bn−3,2

) ⊕
r1

︷︸︸︷

cn−3

· · · · · ·

z1
︸︷︷︸

d1

= x1
︸︷︷︸

a1,0

⊕ ȳ1
︸︷︷︸

b1,0

⊕
gn−3
︷︸︸︷

c1

wn−4
︷︸︸︷

c1 =

vn−3
︷ ︸︸ ︷

x2
︸︷︷︸

a2,1

ȳ2
︸︷︷︸

b2,1

⊕

qn−4
︷ ︸︸ ︷

(

mm−4
︷ ︸︸ ︷

x2
︸︷︷︸

a2,2

⊕ ȳ2
︸︷︷︸

b2,2

) ⊕
rn−4
︷︸︸︷

c2

z0
︸︷︷︸

d0

= x0
︸︷︷︸

a0

⊕ ȳ0
︸︷︷︸

b0

⊕ c0

wn−3
︷︸︸︷

c0 =

vn−2
︷ ︸︸ ︷

x1
︸︷︷︸

a1,1

ȳ1
︸︷︷︸

b1,1

⊕

qn−3
︷ ︸︸ ︷

(

mm−3
︷ ︸︸ ︷

x1
︸︷︷︸

a1,2

⊕ ȳ1
︸︷︷︸

b1,2

) ⊕
rn−3
︷︸︸︷

c1

3 Integral Attack on Bel-T-256

In this Section, we investigate the security of the Bel-T block cipher against the
integral attack based on the bit-based division property.

3.1 Bel-T Specification

The official Bel-T specification is available only in Russian and the only version
of the specification available in English is the one provided in its fault-based
attacks analysis [6]. Bel-T has a 128-bit block size and a variable key length of
128, 192 or 256 bits. The 128-bit plaintext is divided into 4 32-bit words, i.e.,
P = A0||B0||C0||D0. Then, the round function illustrated in Fig. 1, is repeated
eight times for all versions of Bel-T. Three mappings G5, G13 and G21: {0, 1}32 →
{0, 1}32 are used, where Gr maps a 32-bit word u = u1||u2||u3||u4, with ui ∈
{0, 1}8, as follows: Gr(u) = (H(u1)||H(u2)||H(u3)||H(u4)) ≪ r. Here, H is an
8-bit S-box and ≪r stands for left shift rotation by r positions. The specification
of the 8-bit S-box can be found in [6].

Key Schedule. In all versions of Bel-T, the 128-bit plaintext block P is
encrypted using a 256-bit encryption key denoted as K1|| . . . ||K8, where Ki is a
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32-bit word for 1 ≤ i ≤ 8. The encryption key is distributed among the round
keys as shown in Table 4. The encryption key is extracted from the master key
as follows:

– Bel-T-256: the encryption key is identical to the master key.
– Bel-T-192: the master key is formatted as K1|| . . . ||K6 and K7,K8 are set to
K7 := K1 ⊕ K2 ⊕ K3 and K8 := K4 ⊕ K5 ⊕ K6.

– Bel-T-128: the master key is formatted as K1|| . . . ||K4 and K5,K6,K7,K8

are set to K5 := K1, K6 := K2, K7 := K3 and K8 := K4.

3.2 Integral Distinguishers of Bel-T

As shown in Fig. 1, the Bel-T round function includes 7 S-boxes, modular addi-
tions, modular additions with key and modular subtractions. We construct an
MILP model for the bit-based division property through Bel-T as follows. Firstly,
we generate the division trail of the S-box using Algorithm 2 in [17]. Then, we
deduce the inequalities of the S-box using inequality generator() function
in Sage. In the case of the Bel-T S-box, the number of generated inequalities is
71736, which is very large set to be handled by any MILP optimizer. Therefore,
we reduce this set using a Greedy Algorithm which is proposed by Sun et al. in
[13]. The size of the reduced set of the S-box representation inequalities is 28
and can be found in AppendixB.

Then, we implement the MILP model for modular addition and deduce the
model for subtraction. Finally, we use the Gurobi3 optimizer to search for the
longest integral distinguisher for Bel-T. Based on our implementation, we found
several 2-round integral distinguishers. Our code that is used to generate the
MILP model for Bel-T and to search for an integral distinguisher can be down-
loaded from github.4

In here, we present two such distinguishers which are chosen in order to
minimize the attack data and time complexities.

IC1 : ((C0−31), (C0−31), (C0−17||A18−18||C19−31), (A0−7||C8−31))
2R−−→ ((U0−31), (U0−31), (U0−26||B27−31), (U0−31))

IC2 : ((C0−31), (C0−31), (C0−10||A11−26||C27−31), (A0−15||C16−31))
2R−−→ ((U0−26||B27−31), (U0−31), (B0−31), (U0−31))

where Ci−j/Ai−j/Bi−j/Ui−j denote CONSTANT/ALL/BALANCE/UNKN-
OWN from bit number i to bit number j respectively counting from the most
significant bit of the branch. Both of these integral distinguishers have been
verified experimentally using a set of 256 randomly generated keys.

3 http://www.gurobi.com/.
4 https://github.com/mhgharieb/Bel-T-256.

http://www.gurobi.com/
https://github.com/mhgharieb/Bel-T-256
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Table 4. Encryption key schedule of Bel-T, where i and K7i−j denote the round
number and the round key, respectively.

i K7i−6 K7i−5 K7i−4 K7i−3 K7i−2 K7i−1 K7i

1 K1 K2 K3 K4 K5 K6 K7

2 K8 K1 K2 K3 K4 K5 K6

3 K7 K8 K1 K2 K3 K4 K5

4 K6 K7 K8 K1 K2 K3 K4

5 K5 K6 K7 K8 K1 K2 K3

6 K4 K5 K6 K7 K8 K1 K2

7 K3 K4 K5 K6 K7 K8 K1

8 K2 K3 K4 K5 K6 K7 K8

Fig. 1. Bel-T round function, where ⊕,�,� denote bit-wise XOR, arithmetic addition
and subtraction modulo 232 respectively, and (i)32 denotes the round number repre-
sented as 32-bit word.
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3.3 Integral Cryptanalysis of 32
7
-Round Bel-T-256

In this section, we present our Integral attack on 32
7 -round Bel-T-256 by append-

ing one round and two S-box layers on the above derived integral distinguisher
IC1 as illustrated in Fig. 2.

Data Collection. We select m structures of plaintexts. In each structure, the
9 bits (bit number 18 in branch C0 and bits 0-7 in branch D0) vary through all
29 possible values and all other bits are fixed to an arbitrary constant value.

This ensures that each structure satisfies the required input division property
of the integral distinguisher IC1. After that, we query the encryption oracle to
obtain the corresponding ciphertexts. Subsequently, we apply the following key
recovery procedure.

Fig. 2. 3 2
7
-round attack on Bel-T-256
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Key Recovery. For ciphertexts in each structure obtained in the data collection
phase, we apply the following procedure:

1. Guess K8 and K4 and partially decrypt the ciphertext to obtain b2.
2. Guess K6 and K5 and partially decrypt the ciphertext to obtain c2.
3. Recall that b1 = b2 − G21(b1 + c1 + K2) ⊕ (3)32 and c1 = c2 + G21(b1 + c1 +

K2)⊕(3)32. Hence b1+c1 = b2+c2. Therefore, by guessing K2, we can deduce
G21(b1 + c1 +K2) = G21(b2 + c2 +K2) and then compute c1 from b2 and c2.

4. Guess K3 and use the previous guessed value of K8 to compute c0 from c1
and c2.

5. For each bit in the 5 least significant bits of the 32-bit word c0, check that its
XOR sum over the structure is zero. The probability that all these 5 bits are
balanced is 2−5. Therefore the probability that a key is survived after this
test is also 2−5. This means that the number of 192-bit key candidates passed
this check is 2192 × 2−5.

After repeating the above procedure for m structures, the number of surviving
192-bit key candidates will be 2192 × (2−5)m = 2192−5m. After that, we recover
the 256-bit master key by testing the 2192−5m 192-bit surviving key candidates
along with the remaining 264 values for K1 and K7 using 2 plaintext/ciphertext
pairs.

Attack Complexity. The data complexity of the above attack is m×29 chosen
plaintexts. The dominant part of time complexity is coming from deducing 192-
bit key candidates after checking m structures. This part is equal to 7

23 × 29 ×
2192× [1+2−5+(2−5)2+ · · ·+(2−5)m−1] = 7

23 ×2201× 1 − (2−5)m

1 − 2−5
. Additionally,

the part due to exhaustively searching for the master key which is equal to
2 × 264 × 2192−5m = 2257−5m. To balance the attack between data and time
complexities, we take m = 16. This means that the data complexity will be
16 × 29 = 213 chosen plaintexts and the time complexity will be 7

23 × 2201 ×
1 − 2−80

1 − 2−5
+ 2177 ≈ 2199.33 encryption operations.

It should be noted that other choices of m can lead to possible data and time
trade-off. For example, if we set m = 1, the data complexity will be reduced to
29 chosen plaintexts at the expense of increasing the time complexity to 2252.
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3.4 Integral Cryptanalysis of 36
7
-Round Bel-T-256

In this section, we present our integral attack on 36
7 -round Bel-T-256 by append-

ing one round and six S-box layers on the above derived integral distinguisher
IC2, which is the only distinguisher makes the attack feasible, as illustrated in
Fig. 3.

Fig. 3. 3 6
7
-round attack on Bel-T-256
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Data Collection. We select m structures of plaintexts. In each structure, the
32 bits (bits 11–26 in branch C0 and bits 0–15 in branch D0) vary through all
232 possible values and all other bits are fixed to an arbitrary constant value.
This ensures that each structure satisfies the required input division property
of the integral distinguisher IC2. After that, we query the encryption oracle to
obtain the corresponding ciphertexts. Subsequently, we apply the following key
recovery procedure.

Key Recovery. For ciphertexts in each structure obtained in the data collec-
tion, we apply the following procedure:

1. Guess K4 and partially decrypt the ciphertext to obtain c5.
2. Recall that b4 = b5 − G21(b4 + c4 + K1) ⊕ (4)32 and c4 = c5 + G21(b4 + c4 +

K1)⊕(4)32, hence b4+c4 = b5+c5. Therefore, by guessing K1, we can deduce
G21(b4 + c4 + K1) = G21(b5 + c5 + K1) and then compute b4 and c4 from b5
and c5.

3. Guess K2,K6,K7 and K8 and deduce each 32-bit words a2, b3, c3 and d1.
4. Use the previous guessed value of K4 to get the value of b2 from a2 and b3.
5. Guess K5 and get the value of c2 from c3 and d1.
6. Recall that b1 = b2 − G21(b1 + c1 + K2) ⊕ (3)32 and c1 = c2 + G21(b1 + c1 +

K2)⊕(3)32, hence b1+c1 = b2+c2. Therefore, by guessing K2, we can deduce
G21(b1 + c1 +K2) = G21(b2 + c2 +K2) and then compute b1 from b2 and c2.

7. Use the previous guessed value of K1 to compute a1 from a2 and b1.
8. For each bit in the 5 least significant bits of 32-bit word a1, check that the

XOR sum of it over the structure is zero. The probability that all these 5 bits
are balanced is 2−5. Therefore the probability that a key is survived after
this test is also 2−5. This means that the number of 224-bit key candidates
passed this check is 2224 × 2−5.

After repeating the above procedure for m structures, the number of surviving
224-bit key candidates will be 2224 × (2−5)m = 2224−5m. After that we recover
the 256-bit master key by testing the 2224−5m 192-bit surviving key candidates
along with the remaining 232 values for K3 using 2 plaintext/ciphertext pairs.

Attack Complexity. The data complexity is m × 232 chosen plaintexts. The
dominant part of time complexity is coming from deducing 224-bit key candi-
dates after checking m structure. This part is equal to 10

27 ×232×2224× [1+2−5+

(2−5)2 + · · ·+(2−5)m−1] = 10
27 ×2256 × 1 − (2−5)m

1 − 2−5
. Additionally, the part due to

exhaustively searching for the master key which is equal to 2 × 232 × 2224−5m =
2257−5m. To balance the attack between data and time complexities, we take
m = 2. This means that the data complexity will be 2 × 232 = 233 chosen plain-

texts and the time complexity will be 10
27 × 2256 × 1 − 2−10

1 − 2−5
+ 2247 ≈ 2254.61

encryption.
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4 Conclusion

In this paper, we investigated the security of Bel-T-256 against integral attacks
based on the bit-based division property. In particular, we have built a MILP
model for the Bel-T round function to automate the search for integral distin-
guishers based on the bit-based division property. Using two of the obtained
integral distinguishers, we presented attacks on 32

7 and 36
7 rounds of Bel-T-256

with data and time complexities of 213, 233 chosen plaintexts and 2199.33, 2254.61

encryption operations, respectively.

A Validation of the MILP Model for the Division Trail
Through a Modular Subtraction Operation

In this appendix, we provide the result of our experiments on a toy cipher in order
to validate the MILP model for the division trail through a modular subtraction
operation. Moreover, we show that the proposed model of the division trail
through the modular subtraction at the bit-level (z = x�y) gives better results
than modelling it as a division trail through a modular addition followed by a
modular addition with a constant (z = x � ȳ � 1).

The round function of the toy cipher used during the experiments is a small
version of the SPECK round function [3] with modular subtraction instead of
modular addition as shown in Fig. 4 where the block size is 8 bits, (Xi

L,X
i
R) is

the input of the i-th round, and ki is the subkey used in the i-th round.
We follow the same approach used in [10] to validate their MILP model for

modular addition. The experimental procedure is as follows:

1. For an initial division property, use our MILP model for the modular sub-
traction at the bit-level (z = x � y) to find the set of balanced bits at the
output of the toy cipher.

2. Use the other MILP model (z = x � ȳ � 1) to find the balanced bits corre-
sponding the same initial division property.

3. Exhaustively search for the balanced bits as follows:
(a) Divide the space of the plaintexts (28 plaintexts) to a group of multi-

sets of plaintexts. Each one of these multi-sets satisfies the initial division
property.

(b) Encrypt each multi-set of the plaintexts using a randomly chosen key and
find the bits with zero-sum over all the corresponding ciphertexts of that
multi-set, and then find the common zero-sum bits over all the multi-sets.

(c) Repeat the previous step 210 iterations and find the common zero-sum
bits at the output of the toy cipher over all the iterations.
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4. Compare the results from the previous three steps for the same initial division
property.

5. Repeat the previous steps for all possible values of the initial division property
and for a toy cipher consists of up to 6 rounds similar to the one in the Fig. 4.

Fig. 4. The round function of the toy cipher.

Table 5. Comparison of zero-sum bits found by using three methods for the toy cipher,
where #{Bits} is the number of balanced bits and ‘Bits’ is the position of these bits
counted from the most significant bit.

Input Division
property

Rounds
Exhaustive search

MILP-aided Bit-based Division property
z = x � y z = x � ȳ � 1

#{Bits} Bits #{Bits} Bits #{Bits} Bits

D18

{[01111111]}

1 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
2 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
3 6 1 ∼ 3,5 ∼ 7 6 1 ∼ 3,5 ∼ 7 4 2 ∼ 3,6 ∼ 7
4 1 3 1 3 0 -
5 0 - 0 - 0 -

D18

{[11111110]}

1 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
2 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
3 6 1 ∼ 3,5 ∼ 7 6 1 ∼ 3,5 ∼ 7 6 1 ∼ 3,5 ∼ 7
4 3 2 ∼ 3, 6 1 3 1 3
5 0 - 0 - 0 -

D18

{[00001111]}

1 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
2 4 2 ∼ 3,6 ∼ 7 4 2 ∼ 3,6 ∼ 7 4 2 ∼ 3,6 ∼ 7
3 0 - 0 - 0 -

D18

{[11110000]}

1 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
2 8 0 ∼ 7 8 0 ∼ 7 6 1 ∼ 3, 5 ∼ 7
3 2 3, 7 2 3, 7 1 3
4 0 - 0 - 0 -
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From the result of the experiments, we can conclude that the balanced bits found
by the MILP-aided bit-based division property are indeed balanced. Moreover,
the MILP model for the division trail through the modular subtraction at the
bit-level (z = x � y) also uses less number of constraints and gives same or
better results (in terms of number of the balanced bits) than modelling it as a
division trail through a modular addition followed by a modular addition with
a constant (z = x � ȳ � 1). A sample of our results can be found in Table 5
and the mismatch between the two approaches for modelling the division trail
through a modular subtractions is summarized in Table 6.

Table 6. Mismatch between the two approaches for modelling the division trail through
a modular subtraction.

Rounds Inputs Division property
MILP-aided Bit-based Division property

z = x � y z = x � ȳ � 1

#{Bits} Bits #{Bits} Bits

1 {[10000011]}, {[11000010]}, {[11000011]} 8 0 ∼ 7 6 1 ∼ 3, 5 ∼ 7

2

{[01101101]}, {[01111001]}, {[10100101]},
{[10101100]}, {[10110001]}, {[10111000]},

{[11100100]}, {[11110000]}
8 0 ∼ 7 6 1 ∼ 3, 5 ∼ 7

{[10001111]}, {[10011011]}, {[11001110]},
{[11001111]}, {[11011010]}, {[11011011]} 6 1 ∼ 3, 5 ∼ 7 4 2 ∼ 3, 6 ∼ 7

{[10000011]}, {[11000010]} 2 3,7 1 3

{[11000011]} 4 2 ∼ 3, 6 ∼ 7 1 3

3

{[01110111]}, {[01111111]}, {[10110110]},
{[10110111]}, {[10111101]}, {[10111110]},

{[11110110]}, {[11111100]}
6 1 ∼ 3, 5 ∼ 7 4 2 ∼ 3, 6 ∼ 7

{[01101101]}, {[01111001]}, {[10100101]},
{[10101100]}, {[10110001]}, {[10111000]},

{[11100100]}, {[11110000]}
2 3,7 1 3

{[10001111]}, {[10011011]}, {[11001110]},
{[11001111]}, {[11011010]}, {[11011011]} 1 3 0 -

4

{[11111011]} 6 1 ∼ 3, 5 ∼ 7 4 2 ∼ 3, 6 ∼ 7

{[01110111]}, {[01111111]}, {[10110110]},
{[10110111]}, {[10111101]}, {[10111110]},

{[11110110]}, {[11111100]}
1 3 0 -

5 {[11111011]} 1 3 0 -
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B Division Trail Representation of Bel-T S-Box

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 36 1 1 1 1 −6 −6 −6 −6 −6 −6 −6 −6 5
1 1 39 1 1 1 1 1 −7 −7 −7 −7 −6 −6 −6 −6 6
2 68 2 2 2 2 2 2 −11 −11 −12 −12 −12 −11 −12 −11 10
1 1 1 1 1 1 35 1 −6 −6 −6 −6 −6 −6 −6 −5 5
14 0 0 0 0 0 0 0 −1 −1 −3 −3 −3 −2 −3 −1 3
0 0 0 0 9 0 0 0 −2 −2 −1 0 −2 −1 −2 −1 2

−6 −2 0 0 −5 2 2 1 −7 −6 −6 −6 30 −5 −7 −5 20
−8 −12 −6 −11 −8 −6 −13 −2 −6 −10 −5 −5 −12 −2 32 4 70
−1 −2 −2 −3 −2 −2 −2 −4 16 16 17 17 17 14 17 15 0
0 −1 −2 0 0 1 0 0 −2 2 5 −3 −3 −2 −3 2 6
1 1 −1 2 0 2 0 2 −1 −6 −7 19 1 −7 −7 −7 8

−9 −1 0 −1 −1 3 3 −2 −7 −7 −6 −7 −2 29 −5 −8 21
0 −3 −1 −1 −3 −1 0 2 −4 10 −4 −3 −1 −1 2 −5 13

−2 −1 −8 −2 −5 −5 −8 −12 10 −15 3 3 −11 3 4 −7 53
−23 −24 −23 −21 −21 −23 −22 −26 4 5 2 3 4 −1 4 4 158
−2 −4 0 −5 −2 −1 −6 −1 −4 −4 −4 −5 −6 3 14 2 25
−10 1 3 2 2 0 3 3 −13 −12 −13 47 0 −12 −12 −12 23
−1 −2 0 −2 −2 −1 0 −2 3 3 3 3 2 3 3 1 7
−6 −3 −5 −7 −6 −6 −6 −4 4 3 4 5 5 4 2 1 35
−1 −2 −3 −2 0 −1 −3 −3 15 15 14 14 15 12 15 13 0
−9 3 −9 −9 0 1 −9 −9 −2 −2 8 −3 −2 8 −2 −12 48
−1 −1 −3 0 0 −1 −1 −1 −2 1 3 −4 −3 −2 −2 6 11
−2 −2 0 −2 −2 3 −2 −2 −1 −1 −1 −1 2 −3 −1 2 13
−1 −2 −1 0 −1 −1 −1 1 −2 −3 0 0 −2 0 3 1 9
0 0 −1 −1 −1 −1 −1 −1 −3 3 1 −2 −1 1 1 −2 8

−1 −1 0 −1 0 −1 −1 −1 0 0 0 −1 0 1 0 0 6
−1 −1 0 −1 −1 −1 −1 1 0 0 0 0 1 0 −1 0 6
−2 −1 −2 −2 −2 −2 0 −2 2 2 0 2 2 1 2 1 11

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7
b0
b1
b2
b3
b4
b5
b6
b7
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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