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Abstract. In the context of Fully Homomorphic Encryption, which
allows computations on encrypted data, Machine Learning has been one
of the most popular applications in the recent past. All of these works,
however, have focused on supervised learning, where there is a labeled
training set that is used to configure the model. In this work, we take
the first step into the realm of unsupervised learning, which is an impor-
tant area in Machine Learning and has many real-world applications, by
addressing the clustering problem. To this end, we show how to imple-
ment the K-Means-Algorithm. This algorithm poses several challenges
in the FHE context, including a division, which we tackle by using a
natural encoding that allows division and may be of independent inter-
est. While this theoretically solves the problem, performance in practice
is not optimal, so we then propose some changes to the clustering algo-
rithm to make it executable under more conventional encodings. We show
that our new algorithm achieves a clustering accuracy comparable to the
original K-Means-Algorithm, but has less than 5% of its runtime.

Keywords: Machine Learning · Clustering
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1 Introduction

1.1 Motivation

Fully Homomorphic Encryption (FHE) schemes can in theory perform arbitrary
computations on encrypted data. Since the discovery of FHE, many applica-
tions have been proposed, ranging from medical over financial to advertising
scenarios. The underlying idea is mostly the same: Suppose Alice has some con-
fidential data X which she would like to utilize, and Bob has an algorithm A
which he could apply to Alice’s data for money. However, conventionally, either
Alice would have to give her confidential data to Bob, or run the algorithm her-
self, for which she may not have the know-how or computational power. FHE
allows Alice to encrypt her data to C := Enc(X) and send it to Bob. Bob
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can convert his algorithm A into a function A′ over the ciphertext space and
apply it to the encrypted data, resulting in R := A′(C). He can then send this
result back to Alice, who can decrypt it with her secret key. FHE promises that
indeed Dec(R) = Dec(A′(Enc(X))) = A(X). Since Alice’s data was encrypted
the whole time, Bob learns nothing about the data entries. Note that the func-
tionality where Bob’s algorithm is also kept secret from Alice is not traditionally
guaranteed by FHE, but can in practice be achieved via a property called circuit
privacy, in the sense that Alice learns nothing except the result A(X).

One of the most popular applications of FHE has been Machine Learning,
with many works focusing on Neural Networks and different variants of regres-
sion. To our knowledge, all works in this line are concerned with supervised
learning. This means that there is a training set with known outcomes, and the
algorithm tries to build a model that matches the desired outputs to the inputs as
well as possible. When the training phase is done, the algorithm can be applied to
new instances to predict unknown outcomes. However, there is a second branch
in Machine Learning that has not been touched by FHE research: Unsupervised
learning. For these kinds of algorithms, there are no labeled training examples,
there is simply a dataset on which some kind of analysis shall be performed.
An example of this is clustering, where the aim is to group data entries that
are similar in some way. The number of clusters might be a parameter that the
user enters, or it may be automatically selected by the algorithm. Clustering has
numerous applications like genome sequence analysis, market research, medical
imaging or social network analysis, to name a few, some of which inherently
involve sensitive data – making a privacy-preserving evaluation with FHE even
more interesting.

1.2 Contribution

In this work, we approach this unexplored branch of Machine Learning and show
how to implement the K-Means-Algorithm, an important clustering algorithm,
on encrypted data. We discuss the problems that arise when trying to evaluate
the K-Means-Algorithm on encrypted data, and show how to solve them. To this
end, we first present a natural encoding that allows the execution of the algorithm
as it is (including the usually challenging division by an encrypted value), but is
not optimal in terms of performance. We then present a modification to the K-
Means-Algorithm that performs comparably in terms of clustering accuracy, but
is much more FHE-friendly in that it avoids division by an encrypted value. We
include another modification that trades accuracy for efficiency in the involved
comparison operation, and compare the runtimes of these approaches.

2 Related Work

Encryption schemes that allow one type of operation on ciphertexts have been
around for some time and have a comprehensive security characterization [3].
Fully Homomorphic Encryption however, which allows both unlimited additions
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and multiplications, was only first solved in [19]. Since then, many other schemes
have been developed, for example [8,12–15,18,20,37], to name just a few. An
overview can be found in [2]. There are several libraries offering FHE implemen-
tations, like [11,16,23], and the one we use, [38].

Machine Learning as an application of FHE was first proposed in [35], and
subsequently there have been numerous works on the subject, to our knowledge
all concerned with supervised learning. The most popular of these applications
seem to be (Deep) Neural Networks (see [7,10,21,26,36]) and (Linear) Regression
(e.g., [4,17,32] or [22]), though there is also some work on other algorithm classes
like decision trees and random forests [41], or logistic regression ([5,6,29,30]). In
contrast, our work is concerned with the clustering problem from unsupervised
Machine Learning.

The K-Means-Algorithm has been a subject of interest in the context of
privacy-preserving computations for some time, but to our knowledge all pre-
vious works like [9,24,25,31,42] require interaction between several parties, e.g.
via Multiparty Computation (MPC). For a more comprehensive overview of the
K-Means-Algorithm in the context of MPC, we refer the reader to [34]. While
this interactivity may certainly be a feasible requirement in many situations, and
indeed MPC is likely to be faster than FHE in these cases, we feel that there are
several reasons why a non-interactive solution as we present it is an important
contribution.

1. Client Economics: In MPC, the computation is split between different par-
ties, each performing computations every round and combining the results.
In FHE computations, the entire computation is performed by the service
provider. Even if this computation on encrypted data is more expensive than
the total MPC computation, the client reduces his effort to zero this way,
making this solution attractive to him and thus generating a demand for it.

2. Function Privacy: Imagine the K-Means-Algorithm in this paper as a place-
holder for a more complex proprietary algorithm that the service provider
executes on the client’s data as a service. This algorithm could utilize build-
ing blocks from the K-Means-Algorithm that we present in this paper, or
involve the K-Means-Algorithm as a whole in the context of pipelining sev-
eral algorithms together, or be something completely new. Here, the service
provider would want to prevent the user from learning the details of this
algorithm, as it is his business secret. While FHE per se does not guarantee
this functionality, all schemes today fulfill the requirement of circuit privacy
needed to achieve it. Thus for this case, FHE would be the preferred solution.

3. Future Efficiency Gain: MPC is much older than FHE, and efficiency for
the latter has increased by a factor of 104 in the last six years alone. To argue
that MPC is faster and thus FHE solutions are superfluous seems premature
at this point, and our contributions are not specific to any implementation,
but work on all FHE schemes that support a {0, 1} plaintext space.

Also, many of these interactive solutions rely on a vertical (in [40]) or hor-
izontal (in [28]) partitioning of the data for security. In contrast, FHE allows
a non-interactive setting with a single database owner who wishes to outsource
the computation.
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3 Preliminaries

In this section, we cover underlying concepts like the K-Means-Algorithm, encod-
ing issues, our choice of implementation library, and the datasets we use.

3.1 The K-Means Algorithm

The K-Means-Algorithm is one of the most well-known clustering algorithms in
unsupervised learning. Published in [33], it is considered an important bench-
mark algorithm and is frequently the subject of current research to this day.
It takes as input the data X = {x1, . . . , xm} and a number K of clusters to
be used, and begins by choosing K randomly chosen data entries as so-called
cluster centroids ck. Then, in a step called Cluster Assignment, it computes
for each data entry xi which cluster centroid ck is nearest, and assigns the data
entry to that centroid. When this has been done for all data entries, the second
step begins: During the Move Centroids step, the cluster centroids are moved
by setting each centroid as the average of all data entries that were assigned to
it in the previous step. These two steps are repeated for a set number of times
T or until the centroids do not change anymore. We use the first method.

The output of the algorithm is the values of the centroids, or the cluster
assignment for the data entries (which can easily be computed from the former).
We opt for the first approach. The pseudocode for the algorithm as we use it
can be found in AppendixA, along with a visualization. Accuracy can either be
measured in terms of correctly classified data entries, which assumes that the
correct classification is known (there might not even exist a unique best solution),
or via the so-called cost function, which measures the (average) distance of the
data entries to their assigned cluster centroids. We opt for the first approach
because our datasets are benchmarking sets for which the labels are indeed
provided, and it allows better comparability between the different algorithms.

3.2 Encoding

FHE schemes generally have finite fields as a plaintext space, and any rational
numbers (which can be scaled to integers) must be embedded into this plaintext
space. There are two main approaches in literature, which we quickly compare
side by side in Table 1. Note that for absolute value computation and comparison,
we need to use the digitwise encoding.

3.3 FHE Library Choice

In [27], it was shown that among all bases p for digitwise p-adic encoding in
FHE computations, the choice p = 2 is best in terms of the number of additions
and multiplications to be performed on the ciphertexts. Hence, we use an FHE
scheme with a plaintext space of {0, 1}. The currently fastest FHE implemen-
tation for this plaintext space, TFHE [38], states that “an optimal circuit for
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Table 1. Two mainstream encoding approaches.

Digitwise Embedded

Description For a base p, display the
number in p-adica

representation and
encrypt each digit
separately

Choose the plaintext space large enough to
accommodate all computations

Supports
comparison?

� ×

Supports
absolute
value?

� ×

Supports
division?

× ×

Efficiency Slower Faster

Flexibility Full The function that is being computed must
be known (at least a bound) at setup, as
computations fail if the result gets too big.
This is actually Somewhat Homomorphic
Encryption, not Fully Homomorphic
Encryption

a This can be extended to plaintext spaces GF (pk) if the scheme supports them.

TFHE is most likely a circuit with the smallest possible number of gates” – thus,
this library is a perfect choice for us, and we will use the binary encoding for
signed integers and tweaks presented in [26] for maximum efficiency.

3.4 Datasets

To evaluate performance, we use four datasets from the FCPS dataset [39]:

– The Hepta dataset consists of 212 data points of 3 dimensions. There are 7
clearly defined clusters.

– The Lsun dataset is 2-dimensional with 400 entries and 3 classes. The clusters
have different variances and sizes.

– The Tetra dataset is comprised of 400 entries in 3 dimensions. There are 4
clusters, which almost touch.

– The Wingnut dataset has only 2 clusters, which are side-by-side rectangles in
2-dimensional space. There are 1016 entries.

For accuracy measurements, each version of the algorithm was run 1000 times
(with varying starting centroids) for number of iterations T = 5, 10, ..., 45, 50 on
each dataset. For runtimes on encrypted data, we used the Lsun dataset.
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4 Approach 1: Implementing the Exact
K-Means-Algorithm

We now show a method of implementing the K-Means algorithm largely as it
is. To this end, we first discuss challenges that arise in the context of FHE
computation of this algorithm. We then address these challenges by changing
the distance metric, and then present an encoding that supports the division
required in computing the average in the MoveCentroid-step. As this method
is in no way restricted to the K-Means-Algorithm, the result is of independent
interest. As it turns out, there are some issues with this approach, which we will
also discuss.

4.1 FHE Challenges

Fully homomorphic encryption schemes can easily compute additions and mul-
tiplications on the underlying plaintext space, and most also offer subtraction.
Using these operations as building blocks, more complex functionalities can be
obtained. However, there are three elements in the K-Means-Algorithm that
pose challenges, as it is not immediately clear how to obtain them from these
building blocks. We list these (with the line numbers referring to the pseudocode
on page 20 in AppendixA.2) and quickly explain how we solve them.

– The distance metric (Line 9, Δ(x, y) = ||x − y||2 :=
√∑

i(xi − yi)2): To our
knowledge, taking the square root of encrypted data has not been imple-
mented yet. In Sect. 4.2, we will argue that the Euclidean norm is an arbi-
trary choice in this context and solve this problem by using the L1-distance
Δ(x, y) = ||x − y||1 :=

∑
i(|xi − yi|) instead of the Euclidean distance.

– Comparison (Line 10, Δ̃ < Δ) in finding the centroid with the smallest dis-
tance to the data entry: This has been constructed from bit multiplications
and additions in [26] for bitwise encoding, so we view this issue as solved. A
detailed explanation can be found in the extended version of this paper.

– Division (Line 25, ck = ck/dk) in computing the new centroid value as the
average of the assigned data points: In FHE computations, division by an
encrypted value is usually not possible (whereas division by an unencrypted
value is no problem). We present a way of implementing the division with a
new encoding in Sect. 4.3, and propose a modified version of the Algorithm
in Sect. 5 that only needs division by a constant.

4.2 The Distance Metric

Traditionally, the distance measure used with the K-Means Algorithm is the
Euclidean Distance Δ(x, y) = ||x − y||2 :=

√∑
i(xi − yi)2, also known as the

L2-Norm, as it is analytically smooth and thus reasonably well-behaved. How-
ever, in the context of K-Means Clustering, smoothness is irrelevant, and we
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may look to other distance metrics. Concretely, we consider the L1-Norm1 (also
known as the Manhattan-Metric) Δ(x, y) :=

∑
i(|xi − yi|). This has a consid-

erable advantage over the Euclidean distance: Firstly, we do not need to take a
square root, which to our knowledge has not yet been achieved on encrypted data.
Secondly, of course one could apply the standard trick and not take the root,
working instead with the sum of squared distances. However, this would mean
a considerable efficiency loss due to numerous multiplications and the greatly
increased bitlengths of their results. These long numbers are then summed up,
and the result is input into the algorithm that finds the minimum (Algorithm2
on page 12). These two steps already constitute bottlenecks in the entire com-
putation when working with short numbers in the L1 norm, so an increase in
the bitlengths would greatly increase computation time.

Taking the absolute value can easily be achieved through a digit-wise encod-
ing like the binary encoding which we use: We can use the MSB as the conditional
(it is 1 if the number is negative and 0 if it is positive) and use a multiplexer2

gate applied to the value and its negative. The concrete algorithm can be seen in
the extended version of this paper. Thus, using the L1-Norm is not only justified
by the arbitrariness of the Euclidean Norm, but is also much more efficient. We
compare the clustering accuracy in Fig. 1.
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Fig. 1. Difference in percent of data points mislabeled for L1-norm compared to the
L2-norm

(
(% mislabeled L1) − (% mislabeled L2)

)
.

1 [1] in fact argues that for high-dimensional spaces, the L1-Norm is more meaningful
than the Euclidean Norm.

2 MUX(c, a, b) =

{
a, c = 1

b, c = 0
.
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For both versions of the distance metric, we calculated the percentage of
wrongly labeled data points for 1000 runs, which we can do because the datasets
we use come with the correct labels. We plotted histograms of the difference (in
percent mislabeled) between the L1-norm and the L2-norm for each run. Thus, a
value of 0.5 means that the L1 norm version misclassified 0.5% more data entries
than the L2-version, and −2 means that the L1 version misclassified 2% less
entries than the L2-version. Each subplot corresponds to one of the four datasets.
We see that indeed, it is impossible to say which metric is better – for the Hepta
dataset, the performance is very balanced, for the Lsun dataset, the L1-norm
performs much better, for the Tetra dataset, they nearly always perform exactly
the same, and for the Wingnut dataset, the L2-norm is consistently better.

4.3 Fractional Encoding

Suppose we have routines to perform addition, multiplication and comparison on
bitwise encoded numbers. The idea is to express the number we wish to encode
as a fraction and encode the numerator and denominator separately. Concretely,
we choose the denominator ad randomly in a certain range (like ad ∈ [2k, 2k+1)
for some k) and compute the nominator an as an = �a·ad�. We then encode both
separately, so we have a = (an, ad). If we then want to perform computations
(including division) on values encoded in this way, we can express the operations
using the subroutines from the binary encoding through the regular computation
rules for fractions. The details can be seen in AppendixB.

Controlling the Bitlength. Every single one of these operations requires a
multiplication of some sort, which means that the bitlengths of the nomina-
tors and denominators double with each operation, as there is no cancellation
when the data is encrypted. However, in bitwise encoding, deleting the last k
least significant bits corresponds to dividing by 2k and truncating. Doing this
for both nominator and denominator yields roughly the same result as before,
but with lower bitlengths. As an example, suppose that we have encoded our
integers with 15 bits, and after multiplication we thus have 30 bits in nominator
and denominator, e.g. 651049779/1053588274 ≈ 0.617936. Then dividing both
nominator and denominator by 215 and truncating yields 19868/32152, which
evaluates to 0.617939 ≈ 0.617936. The accuracy can be set through the original
encoding bitlength (15 here).

4.4 Evaluation

While this new encoding theoretically allows us to perform the K-Means-
Algorithm and solves the division problem in FHE, we now discuss the practical
performance in terms of accuracy and runtime.

Accuracy. To see how the exact algorithm performs, we use the four datasets
from Sect. 3.4. We ran the exact algorithm 1000 times for number of iterations
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T = 5, 10, ..., 45, 50, and for sake of completeness we include both distance met-
rics. The results in this section were obtained by running the algorithms in
unencrypted form. We first examine the effect of T on the exact version of the
algorithm by looking at the average (over the 1000 runs) misclassification rate
for both metrics. The result can be seen in Fig. 2 – we see that the rate levels
off after about 15 rounds in all cases, so there is no reason to iterate further.
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Fig. 2. Misclassification rate with increasing rounds for exact algorithms.

In practice, however, our Fractional Encoding does have some problems: The
first issue is the procedure to shorten the bitlengths from Subsect. 4.3. While it
works reasonably well for short computations, we found it nearly impossible to
set the number of bits to delete such that the entire algorithm ran correctly. The
reason is simple: If not enough bits are cut off, the bitlength grows, propagating
with each operation and resulting in an overflow when the number becomes too
large for the allocated bitlength. If too many bits are cut off, one loses too much
accuracy or may even end with a 0 in the denominator. Both these cases result
in completely arbitrary and unusable results. The reason why it is so hard to set
the shortening parameter properly is that generally, nominator and denominator
will not require the same number of bits. Also, because the data is encrypted, we
cannot see the actual size of the underlying data, so the shortening parameter
cannot be set dynamically – in fact, if this were possible, it would imply that the
FHE scheme is insecure. Even setting the parameter roughly requires extensive
knowledge about the encrypted data, which the data owner may not want to
share with the computing party.

Runtime. The second issue with this encoding is the runtime. Even though
TFHE is the most efficient FHE library with which many computational tasks
approach practically feasible runtimes, the fact that this encoding requires sev-
eral multiplications on binary numbers for each elementary operation slows it
down considerably. We compare the runtimes of all our algorithms in Sect. 7, and
as we will see, running the K-Means-Algorithm on a real-world dataset with this
Fractional Encoding would take almost 1.5 years on our computer.
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4.5 Conclusion

In conclusion, this encoding is theoretically possible, but we would not recom-
mend it for practical use due to its inefficiency and hardness of setting the short-
ening parameter (or even higher inefficiency if little to no shortening is done).
However, for very flat computations (in the sense that there are not many suc-
cessive operations performed), this encoding that allows division may still be of
interest. For the K-Means-Algorithm, we instead change the algorithm in a way
that avoids the problematic division, which we present in the rest of this paper.

5 Approach 2: The Stabilized K-Means-Algorithm

In this section, we present a modification of the K-Means algorithm that avoids
the division in the MoveCentroid-step. Recall that conventional encodings in
FHE, like the binary one we will use, do not allow the computation of c1/c2
where c1 and c2 are ciphertexts, but it is possible to compute c1/a where a is
some unencrypted number. We use this fact to exchange the ciphertext division
in Line 25 of Algorithm 3 (page 20) for a constant division, resulting in a variant
that can be computed with more established and efficient encodings than the
one from Sect. 4.3. We present this new algorithm in Sect. 5.2, and compare the
accuracy of the results to the original K-Means-Algorithm in Sect. 5.3.

5.1 Encoding

The dataset we use to evaluate our algorithms consists of rational numbers. To
encode these so that we can encrypt them bit by bit, we scaled them with a fac-
tor of 220 and truncated to obtain an integer. We then used Two’s Complement
encoding to accommodate signed numbers, and switched to Sign-Magnitude
Encoding for multiplication. Note that deleting the last 20 bits corresponds
to dividing the number by 220 and truncating, so the scaling factor can remain
constant even after multiplication, where it would normally square.

5.2 The Algorithm

Recall that in the original K-Means-Algorithm, the MoveCentroid-step consists
of computing each centroid as the average of all data entries that have been
assigned to it. More specifically, suppose that we have a (m × K)-dimensional
cluster assignment matrix A, where

Aik =

{
1, Data entry xi is assigned to centroid ck

0 else.

Then computing the new centroid value ck consists of multiplying the data
entries xi with the corresponding entry Aik and summing up the results before
dividing by the sum over the respective column k of A:

ck =
m∑

i=1

xi · Aik

/ m∑

i=1

Aik.
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Algorithm 1. The Stabilized K-Means-Algorithm
Input: Data set X = {x1, . . . , xm} // xi ∈ R

� for some �
Input: Number of clusters K
Input: Number of iterations T
// Initialization

1 Randomly reorder X;
2 Set centroids ck = xk for k = 1 to K;

// Keep track of centroid assignments
3 Generate (m × K)-dimensional boolean matrix A set to 0;
4 for j = 1 to T do

// Cluster Assignment
5 for i = 1 to m do
6 Δ = ∞;
7 for k = 1 to K do

// Compute distances to all centroids
8 Δk := ||xi − ck||1;
9 end

// The ith row of A has all 0’s except at the column corresponding to the
centroid with the minimum distance

10 A[i, ·] ← FindMin(Δ1, . . . , ΔK);

11 end
// Move Centroids

12 for k = 1 to K do
// Keep old centroid value

13 c̄k = ck;
14 ck = 0;
15 for i = 1 to m do

// If Aik == 1, add xi to ck, otherwise add c̄k to ck

16 ck = ck + MUX(Aik, xi, c̄k);

17 end
// Divide by number of terms m

18 ck = ck/m

19 end

20 end
Output: {c1, . . . , cK}

Our modification now replaces this procedure with the following idea: To
compute the new centroid ck, add the corresponding data entry xi to the running
sum if Aik = 1, otherwise add the old centroid value c̄k if Aik = 0. This can be
easily done with a multiplexer gate (or more specifically, by abuse of notation,
a multiplexer gate applied to each bit of the two inputs) with the entry Aik as
the conditional boolean variable:

ck =
m∑

i=1

MUX(Aik, xi, c̄k)
/
m.

The sum now always consists of m terms, so we can divide by the unen-
crypted constant m. It is also now obvious why we call it the stabilized K-
Means-Algorithm: We expect the centroids to move much more slowly, because
the old centroid values stabilize the value in the computation. The details of this
new algorithm can be found in Algorithm1, with the changes compared to the
original K-Means-Algorithm shaded.
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Computing the Minimum. As the reader may have noticed in Line 10, we
have replaced the comparison step in finding the nearest centroid for a data entry
with a new function FindMin(Δ1, . . . ,ΔK) due the change in data structure of
A (from an integer vector to a boolean matrix). This new function outputs

A[i, ·] ← FindMin(Δ1, . . . ,ΔK)

such that the ith row of A, A[i, ·], has all 0’s except at the column corresponding
to the centroid with the minimum distance to xi. The idea is to run the Compare
circuit to obtain a Boolean value: Compare(x, y) = 1 if x < y, and 0 otherwise.

We start by comparing the first two distances Δ1 and Δ2 and setting the
Boolean value as C := Compare(Δ1,Δ2). Then we can write A[i, 1] = C and
A[i, 2] = ¬C and keep track of the current minimum through minval :=
MUX(C,Δ1,Δ2). We then compare minval to Δ3 etc. until we have reached ΔK .
Note that we need to modify all entries A[i, k] with k smaller than the current
index by multiplying them with the current Boolean value, preserving the indices
if the minimum doesn’t change through the comparison, and setting them to 0
if it does. The exact workings can be found in Algorithm2, and an example of
how the algorithm works can be found in the extended version of this paper.

If the encryption scheme is one where multiplicative depth is important, it is
easy to modify FindMin to be depth-optimal: Instead of comparing Δ1 and Δ2,
then comparing the result to Δ3, then comparing that result to Δ4 etc., we could
instead compare Δ1 to Δ2 and Δ3 to Δ4 and then compare those two results
etc., reducing the multiplicative depth from linear in the number of clusters K to
logarithmic. Since depth is not important for our implementation choice TFHE,
we implemented the function as described in Algorithm 2.

Algorithm 2. FindMin(Δ1, . . . ,ΔK)
Input: Distances Δ1, . . . , ΔK of current data entry i to all centroids c1 . . . , cK

Input: Row i of Cluster Assignment matrix A, denoted A[i, ·]
// Set all entries 0 except the first

1 Set A[i, ·] = [1, 0, . . . , 0];
// Set the minimum to Δ1

2 Set minval = Δ1;
3 for k = 2 to K do

// C is a Boolean value, C = 1 iff minval ≤ Δk

4 C = Compare(minval, Δk);
5 for r = 1 to k − 1 do

// Set all previous values to 0 if new min is Δk, don’t change if new min is
old min

6 A[i, r] = A[i, r] · C;

7 end
// Set A[i, k] to 1 if Δk is new min, 0 otherwise

8 A[i, k] = ¬C ;
9 if k �= K then

// Update the minval variable unless we’re done
10 minval = MUX(C, minval, Δk);

11 end

12 end
Output: A[i, ·]
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5.3 Evaluation

In this section, we will investigate the performance of our Stabilized K-Means-
Algorithm compared to the traditional K-Means-Algorithm.

Accuracy. The results in this section were obtained by running the algorithms
in unencrypted form. As we are interested in relative rather than absolute per-
formance, we merely care about the difference in the output of the modified and
exact algorithms on the same input (i.e., datasets and starting centroids), not so
much about the output itself. Recall that we obtained T = 15 as a good choice
for number of rounds for the exact algorithm – however, as we have already
explained above, the cluster centroids converge more slowly in the stabilized
version, so we will likely need more iterations here. We now compare the perfor-
mance of the stabilized version to the exact version. We perform this comparison
by examining the average (over the 1000 iterations) difference in the misclassifi-
cation rate. Thus, a value of 2 means that the stabilized version mislabeled 2%
more instances than the exact version, and a difference of −1 means that the
stabilized version misclassified 1% less data points than the exact version.
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Fig. 3. Average difference in misclassification rate between the stabilized and the exact
algorithm

(
(average % mislabeled stabilized) − (average % mislabeled exact)

)
.

The results for both distance metrics can be seen in Fig. 3. We see that
while behavior varies slightly depending on the dataset, T = 40 iterations is a
reasonable choice since the algorithms do not generally seem to converge further
with more rounds. We will fix this parameter from here on, as it also exceeds
the required amount of iterations for the exact version to converge.

While the values in Fig. 3 do converge, they do not generally reach a difference
of 0, which would imply similar performance. However, this is not surprising - we
significantly modified the original algorithm, not with the intention of improving
clustering accuracy, but rather to make it executable under an FHE scheme at
all. This added functionality comes as a tradeoff, and we will now examine the
magnitude of the loss in accuracy in Fig. 4. The corresponding histogram for the
L2-norm can be found in the extended version of this paper.

We can see that in the vast majority of instances, the stabilized version per-
forms exactly the same as the the original K-Means-Algorithm. We also see that
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Fig. 4. Distribution of the difference in misclassification rate for stabilized vs. exact
K-Means-Algorithm

(
(% mislabeled stabilized) − (% mislabeled exact)

)
, L1-norm.

concrete performance does depend on the dataset. In some cases, the modified
version even outperforms the original one: Interestingly, for the Lsun dataset, the
stabilized version is actually slightly better than the original algorithm in about
30% of the cases. However, most of the time, we feel that there will be a slight
performance decrease. The fact that there are some outliers where performance
is drastically worse can easily be solved by running the algorithm several times
in parallel, and only keeping the best run. This can be done under homomor-
phic encryption much like computing the minimum in Sect. 5.2, but will not be
implemented in this paper.

Runtime. While we will have a more detailed discussion of the runtime of all
our algorithms in Sect. 7, we would like to already present the performance gain
at this point: Recall that we estimated that running the exact algorithm from
Sect. 4 would take almost 1.5 years. In contrast, our Stabilized Algorithm can
be run in 25.93 days, or less than a month. This is less than 5% of the runtime
of the exact version.

Conclusion. In conclusion to this section, we feel that by modifying the K-
Means-Algorithm, we have traded a very small amount of accuracy for the ability
to perform clustering on encrypted data in a more reasonable amount of time,
which is a functionality that has not been achieved previously. The next section
will deal with an idea to improve runtimes even more.
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6 Approach 3: The Approximate Version

We now present another modification which trades in a bit of accuracy for
improved runtime. Due to space constraints, the details have been moved to
AppendixC and we give only a high-level sketch at this point: Since the Compare
function is linear in its inputs lengths, speeding up this building block would
make the entire computation more efficient. First recall that we encode our
numbers bitwise after having scaled them to integers. This means that we
have access to the individual bits and can delete the S least significant bits,
which corresponds to dividing the number by 2S and truncating. Let X̃ denote
this truncated version of a number X, and Ỹ that of a number Y . Then
Compare(X̃, Ỹ ) = Compare(X,Y ) if |X−Y | ≥ 2S , and may or may not return the
correct result if |X − Y | < 2S . However, correspondingly, if the result is wrong,
the centroid that is wrongly assigned to the data entry is no more than 2S fur-
ther from the data entry than the correct one. We propose to pick an initial S
and decrease it over the course of the algorithm, so that accuracy increases as we
near the end. We call this variant of the (stabilized) algorithm the approximate
version.

In our experiments with S = 5, we saw that accuracy is comparable to the
stabilized version, and the gain is around 210.7 min for the entire algorithm.
Unfortunately, this is swallowed by the magnitude of the total computation
time, as the main bottlenecks lie elsewhere. However, running just the compari-
son and approximate comparison functions with the same parameters as in our
implementation of the K-Means-Algorithm (35 bits, 5 bits deleted for approx-
imate comparison) yielded a drop in average runtime from 3.24 to 1.51 s. We
see that this does make a big difference and may be of independent interest for
computations involving many comparisons, which is why we choose to present
the modification even though the effect was outweighed by other bottlenecks in
the K-Means-Algorithm computation.

7 Implementation Results

We now present runtimes for the stabilized and approximate versions of the K-
Means-Algorithm, and the times for the exact version using Fractional Encoding.
Computations were done in a virtual machine with 20 GB of RAM and 4 cores,
running an Intel i7-3770 processor with 3.4 GHz. We used the TFHE library [38]
without the SPQLIOS FMA-option, as our processor did not support this.

The dataset we used was the Lsun dataset from [39], which consists of 400
rational data entries of 2 dimensions, and K = 3 clusters. We encoded the binary
numbers with 35 bits and scaled to integers using 220. The timings measured
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were for one round, and the approximate version used a deletion parameter of
S = 5. For the Fractional Encoding, the data was encoded with nominator in
[211, 212) and denominator in roughly the same range. We allotted 35 bits total
for nominator and denominator each to allow a growth in required bitlength, and
set the shortening parameter to 12, but shortened by 11 every once in a while
(we derived this approach experimentally, see the discussion of the shortcoming
of this approach in Sect. 4.4). The Fractional exact version was so slow that we
ran it only on the first 10 data entries of the dataset - we will extrapolate the
runtimes in Sect. 7.1.

7.1 Runtimes for the Entire Algorithm on a Single Core

We now present the runtimes for the entire K-Means-Algorithm on encrypted
data on our specific machine with single-thread computation. There is some
extrapolation involved, as the measured runtimes were for one round (so we
multiplied by the round number, which differs between the exact version and
the other two), and in the Fractional (exact) case, only for 10 data entries,
so we multiplied that time by 40. Note that these times (which are with no
parallelization) can be found in Table 2. We see that even though the stabilized
version needs more rounds than the exact version, the latter is still significantly
slower due to the Fractional Encoding. The approximate version (always with
S = 5 deleted bits in the comparison) would save about 210.7 min.

Table 2. Single-thread runtimes (extrapolated) on our machine.

Exact (fractional) Stabilized Approximate

Runtime per round 873.46 h (36.39

days)

15.56 h 15.47 h

Rounds required 15 40 40

Total runtime 545.91 days

≈ 17.95 months

25.93 days

≈ 0.85 months

25.79 days

≈ 0.85 months

7.2 Further Speedup

We would now like to address the subject of parallelism. At the moment (last
accessed April 24th 2018), the TFHE library only supplies single-thread compu-
tations - i.e., there is no parallelism. However, version 1.5 is expected soon, and
this will allegedly support multithreading. We first explain the huge difference
this would make for the runtime, and then quantify the involved timings.



Unsupervised Machine Learning on Encrypted Data 469

Parallelism. It is easy to see that all our versions of the K-Means-Algorithm are
highly parallelizable: The Cluster Assignment step trivially so over the data
entries (without any time needed for recombination), and the Move Centroids
similarly over the cluster centroids (also over the data entries with very small
recombination effort). Since both steps are linear in the number K of centroids,
the number m of data entries, and the number T of round iterations, we present
our runtimes in this subsection as per centroid, per data entry, per round, per
core. This allows a flexible estimate for when multithreading is supported.

Round Runtimes. We now present the runtime results for each of the three
variants on encrypted data per centroid, per data entry, per round, per core
in Table 3. We do not include runtimes for encoding/encryption and decryp-
tion/decoding, as these would be performed on the user side, whereas the com-
putation would be outsourced (encoding/encryption is ca. 1.5 s, and decod-
ing/decryption is around 5 ms). We see that the Fractional Encoding is extremely
slow, which motivated the Stabilized Algorithm in the first place.

Table 3. Runtimes per centroid, per data entry, per round, per core.

Exact (fractional) Stabilized Approximate

Cluster Assignment 1650.91 s ≈ 27.5 min 35.59 s 35.39 s

Move Centroids 969.47 s ≈ 16.2 min 11.09 s 11.03 s

Total 2620.38 s ≈ 43.7 min 46.68 s 46.42 s

A Supplementary Material for the K-Means-Algorithm

This appendix contains some supplemental material for the K-Means-Algorithm.

A.1 Visualization of the K-Means-Algorithm

We first present a visualization of the K-Means-Algorithm in Fig. 5.
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Fig. 5. An illustration of the K-Means-Algorithm.

A.2 Pseudocode

We now present the exact workings of the K-Means-Algorithm in Algorithm3,
where operations like addition and division are performed component-wise if
applied to vectors.
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Algorithm 3. The K-Means-Algorithm
Input: Data set X = {x1, . . . , xm} // xi ∈ R

� for some �
Input: Number of clusters K
Input: Number of iterations T
// Initialization

1 Randomly reorder X;
2 Set centroids ck = xk for k = 1 to K;

// Keep track of centroid assignments
3 Generate m-dimensional vector A;

// Keep track of denominators in average computation
4 Generate K-dimensional vector d = (d1, . . . , dK);
5 for j = 1 to T do

// Cluster Assignment
6 for i = 1 to m do
7 Δ = ∞;
8 for k = 1 to K do

9 Δ̃ := ||xi − ck||2;
// Check if current cluster is closer than previous closest

10 if Δ̃ < Δ then
// If so, update Δ and assign data entry to current cluster

11 Δ = Δ̃;
12 Ai = k;

13 end

14 end

15 end
// Move Centroids

16 for k = 1 to K do
17 ck = 0;
18 dk = 0;

19 end
20 for i = 1 to m do

// Add the data entry to its assigned centroid
21 c

Ai
= c

Ai
+ xi ;

// Increase the appropriate denominator
22 dAi

= dAi
1

23 end
24 for k = 1 to K do

// Divide centroid by number of assigned data entries to get average
25 ck = ck/dk;

26 end

27 end
Output: {c1, . . . , cK}

B Operations for Fractional Encoding

This section presents how to build the elementary operations for Fractional
Encoding from routines to perform addition, multiplication and comparison on
numbers that are encoded in binary fashion. We denote these routines with
Add(a, b), Mult(a, b) and Comp(a, b), where the latter returns 1 (encrypted) if
a < b and 0 otherwise. Then if we want to operate on values encoded in this
way, we can express the operations using the subroutines from the binary encod-
ing as follows:
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– a + b : FracAdd((an, ad), (bn, bd))
=

(
Add(Mult(an, bd), Mult(ad, bn)), Mult(ad, bd)

)

– a · b : FracMult((an, ad), (bn, bd)) =
(
Mult(an, bn), Mult(ad, bd)

)

– a/b : FracDiv((an, ad), (bn, bd)) =
(
Mult(an, bd), Mult(ad, bn)

)

– a ≤ b : FracComp((an, ad), (bn, bd)) :
This is slightly more involved. Note that the MSB determines the sign of the
number (1 if it is negative and 0 otherwise). Let

c := Sign(ad) ⊕ Sign(bd),

and let

MUX(c, a, b) =

{
a, c = 1
b, c = 0

be the multiplexer gate.
Then we set

d := MUX(c, Mult(an, bd), Mult(ad, bn))

and
e := MUX(c, Mult(ad, bn), Mult(an, bd))

and output the result as Comp(e, d).
A more detailed explanation can be found in the extended version of this
paper.

C Details of the Approximate Algorithm

In this section, we present the details of the approximate version of our algorithm.

C.1 The Algorithm

Recall the main idea: Since the Compare function is linear in the length of
its inputs, speeding up this building block would make the entire computa-
tion more efficient. To do this, first recall that we encode our numbers in a
bitwise fashion after having scaled them to integers. This means that we have
access to the individual bits and can, for example, delete the S least significant
bits, which corresponds to dividing the number by 2S and truncating. Let X̃
denote this truncated version of a number X, and Ỹ that of a number Y . Then
Compare(X̃, Ỹ ) = Compare(X,Y ) if |X − Y | ≥ 2S , and may or may not return
the correct result if |X − Y | < 2S . However, correspondingly, if the result is
wrong, the centroid that is wrongly assigned to the data entry is no more than
2S further from the data entry than the correct one. We propose to pick an initial
S and decrease it over the course of the algorithm, so that accuracy increases as
we near the end. The exact workings of this approximate comparison, denoted
ApproxCompare, can be seen in Algorithm 4.
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Algorithm 4. ApproxCompare(X,Y, S)
Input: The two arguments X, Y , encoded bitwise
Input: The accuracy factor S
// Corresponds to X̃ = 	X/2S


1 Remove last S bits from X, denote X̃;

// Corresponds to Ỹ = 	Y/2S

2 Remove last S bits from Y , denote Ỹ ;

// Regular comparison function, C ∈ {0, 1}
3 C = Compare(X̃, Ỹ );

Output: C

C.2 Evaluation

In this section, we compare the performance of the stabilized K-Means-
Algorithm using this approximate comparison, denoted simply by “Approximate
Version”, to the original and stabilized K-Means-Algorithm on our data sets.

Accuracy. Recall from Sect. 5.1 that we scaled the data with the factor 220

and truncated to obtain the input data. This means that for S = 5, a wrongly
assigned centroid would be at most 25 further from the data entry than the
correct centroid on the scaled data - or no more than 2−15 on the original data
scale. We set S = min{7, (T/5) − 1} where T is the number of iterations, and
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reduce S by one every 5 rounds. We again examine the average (over 1000
iterations) difference in the misclassification rate to both the exact algorithm
and the stabilized algorithm.

The results for both distance metrics can be seen in Figs. 6 and 7. We see
that again, T = 40 iterations is a reasonable choice because the algorithms
do not seem to converge further with more rounds. We now again look at
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the distribution of the ratios in Fig. 8 (for the approximate versus the exact
K-Means-Algorithm) and Fig. 9 (for the approximate versus the stabilized K-
Means-Algorithm). Figures for the L2-norm can be found in the extended version
of this paper.

We see that usually, the approximate version performs only slightly worse
than the stabilized version. There is still the effect in the Lsun dataset that the
approximate version outperforms the original K-Means-Algorithm in a signifi-
cant amount of cases (though this effect mostly occurs for the L1-norm), but it
rarely does better than the stabilized version. This is not surprising, as it is in
essence the stabilized version but with an opportunity for errors.

Runtime. We now examine how much gain in terms of runtime we have from
this modification. Recall that it took about 1.5 years to run the exact algorithm,
and 25.93 days to run the stabilized version. The approximate version runs in
25.79 days, which means a difference of about 210.7 min.

Obviously, the effect of the approximate comparison is not as big as antic-
ipated. This is due to the bottleneck actually being the computation of the
L1-norm rather than the FindMin-procedure. Thus, for this specific application,
the approximate version may not be the best choice - however, for an algorithm
that has a high number of comparisons relative to other operations, there can
still be huge performance gains in terms of runtime. To see this, we ran just the
comparison and approximate comparison functions with the same parameters
as in our implementation of the K-Means-Algorithm (35 bits, 5 bits deleted for
approximate comparison). The average (over 1000 runs each) runtime was 3.24 s
for the regular comparison and 1.51 s for the approximate comparison. We see
that this does make a big difference, which is why we choose to present the
modification even though the effect was outweighed by other bottlenecks in the
K-Means-Algorithm computation.

Conclusion. In conclusion, the approximate comparison provides the user with
an easy method of trading in accuracy for faster computation, and most impor-
tantly, this loss of accuracy can be decreased as computations near the end.
However, for the specific application of the K-Means-Algorithm, these gains
were unfortunately swallowed by the rest of the computation.
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