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Abstract. Representing points of elliptic curves in a way that no pat-
tern can be detected by sensors in the transmitted data is a crucial prob-
lem in elliptic curve cryptography. One of the methods that we can rep-
resent points of the elliptic curves in a way to be indistinguishable from
random bit strings is using injective encoding function. So far, several
injective encodings to elliptic curves have been presented, but the pre-
vious encoding functions have not supported the binary elliptic curves.
More precisely, the only injective encoding to binary elliptic curves was
given for Hessian curves, the family of elliptic curves with a point of order
3. In this paper, we propose approaches for constructing injective encod-
ing algorithms to the ordinary binary elliptic curves y2+xy = x3+ax2+b
with Tr(a) = 1 as well as those with Tr(a + 1) = 0.
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1 Introduction

The problem of finding encoding functions from a finite field Fq into the Fq-
rational points of the given curve was stated by Schoof in 1985 [16]. Such an
encoding function is a crucial requirement in the curve-based cryptosystems.
For instance, the public key for identity id ∈ {0, 1}∗ in the IBE scheme, is
a Fq-rational point Qid = H(id), where H is the desired encoding function.
This function is also a requirement for PAKE (Password Authenticated Key
Exchange) [5] such as SPEKE (Simple Password Exponential Key Exchange)
[13], and PSI (Private Set Intersection) protocols [15].

Bernstein et al. in [3] explained that the traditional methods for encoding
to elliptic curves do not disguise the points properly so the encoded points are
distinguishable from uniform random bit strings, and consequently, censors can
recognize patterns in the transmitted data. To avoid this important drawback,
they suggested using a bijection between bit strings and about half of all Fq-
rational points of an elliptic curve E (of j-invariant not equal to 1728) over Fq
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with odd q, where E has a Fq-rational point of order 2. In the other word, they
suggested using injective encoding function, which allows to correspond the set of
bit strings {0, 1}n to a subset of E(Fq). When we use injective encoding function
f : {0, 1}n → E(Fq), instead of transferring a point P ∈ f({0, 1}n) ⊂ E(Fq) we
easily transfer the corresponding bit string of P . So far, injective encoding func-
tions are presented for ordinary elliptic curves with non-trivial 3 torsion point
by Farashahi [8], non-trivial 4 torsion point by Fouque et al. [9] and non-trivial 2
torsion point by Bernstein et al. [3]. However, for binary ordinary elliptic curves,
up to now the only injective encoding function is proposed for binary Hessian
elliptic curves [8]. After that, Aranha et al. in [2] using λ-affine coordinate and
some computational tricks improved the algorithm in [4] [Appendix E]. But, they
did not propose any injective encoding function to binary elliptic curves. To the
best of our knowledge, no injective encoding function to ordinary binary elliptic
curves has been presented, and this is the main contribution of this paper.

The motivation of this paper is constructing injective encoding function for
all ordinary binary elliptic curves, because the previous injective encoding is
restricted to binary elliptic curves with a point of order 3 [8]. Two approaches will
be proposed in this paper, the first one is applicable to ordinary binary elliptic
curves y2 + xy = x3 + ax2 + b where Tr(a) = 1. And, the second is for ordinary
binary elliptic curves y2+xy = x3+ax2+b where Tr(a+1) = 0. In fact, ordinary
elliptic curves y2+xy = x3+ax2+b over prime extensions of F2 with Tr(a) = 1,
which are of paramount importance in binary elliptic curve cryptography, belong
to both classes at the same time. For instant, all of the five recommended binary
elliptic curves by NIST have cofactor 2 i.e. the recommended curves are of the
form y2 + xy = x3 + ax2 + b with Tr(a) = 1. The proposed algorithms can
be applied in protocols which require admissible encoding function to binary
elliptic curves. Moreover, since the encoding is injective it behaves as the same
as Elligator 2 in [3].

This paper is organized as follows: In Sect. 2, we talk about some different
encoding methods from F2n to binary elliptic curves and explain what kind
of encoding functions are appropriate for cryptography. Besides, we explain an
injective function from bit strings to binary finite fields. In Sect. 3, we briefly
review the injective encoding function to the binary Hessian curves, and then
we will explain our approaches for finding injective encodings to binary elliptic
curves.

Throughout the paper, the cardinality of a finite set S is shown by #S and ||
denote the concatenation. Also, H shows a standard hash function.

2 Background

2.1 Elliptic Curves

An elliptic curve is a smooth projective genus 1 curve over a field F, with a given
F-rational point. Traditionally, an elliptic curve E over a field F is presented by
the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1)
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where the coefficients a1, a2, a3, a4, a6 ∈ F. Using suitable change of variables,
Eq. (1) can be written in the following forms

E : y2 = x3 + ax2 + bx + c, char(F) �= 2,

E : y2 + xy = x3 + ax2 + b, char(F) = 2, j(E) �= 0, Δ(E) = b, (2)

E : y2 + cy = x3 + ax + b, char(F) = 2, j(E) = 0, Δ(E) = a3, (3)

where Δ(E) and j(E) are the discriminant and the j-invariant of the elliptic
curve. Elliptic curves in Eqs. (2) and (3) are called ordinary and supersingular
binary elliptic curves, respectively. Elliptic curves can be represented by several
other models such as Edwards, Hessian, Montgomery, Jacobi intersection, and
Jacobi quartic ([1, Chap. 13], [19, Chap. 2], [17]).

The trace function Tr : F2n → F2 is a linear transformation that is defined
as follows:

Tr(a) =
n−1∑

k=0

a2k .

In addition, for n odd, the half trace is the function HTr : F2n → F2n , where

HTr(c) =

n−1
2∑

k=0

c2
2k

.

An ordinary binary elliptic curve such as E can be transformed into the
equation z2 + z = g(x), where z = y

x and g(x) = x3+ax2+b
x2 . Consequently, points

on E can be found using the solutions of equation z2 + z = g(x). Also, It is
well-known that the equation z2 + z = c over F2n has solution if and only if
Tr(c) = 0. And, if z0 is a solution of this equation then z0 +1 is one other. More
precisely, let y ∈ F2n be an element of trace 1. If Tr(c) = 0 then the solution of
equation z2 + z = c is as follows:

Z(c) =

{∑n−3
2

k=0 c2
2k+1

if n is odd,∑n−1
k=0(

∑k
j=0 c2

j

)y2k if n is even,
(4)

Hence, having an element y ∈ F2n , where Tr(y) = 1, we can deterministically
compute the roots of quadratic equation z2 + z = c where Tr(c) = 0.

It is well-known that two ordinary elliptic curves

E1 : y2 + xy = x3 + ax2 + b, Δ(E1) = b,

E2 : y2 + xy = x3 + ax2 + b, Δ(E2) = b,

over F2n are isomorphic over F2n if and only if b = b and Tr(a) = Tr(a) [11]. As
a result, we conclude that the number of isomorphism classes of ordinary elliptic
curves over F2n is 2n+1 − 2. More precisely, fix two elements μ, γ ∈ F2n with
Tr(μ) = 0 and Tr(γ) = 1. The set of representative of the isomorphism classes is

I = Iμ ∪ Iγ ,
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where Ia = {y2 + xy = x3 + ax2 + b | b ∈ F
∗
2n} for a ∈ F2n .

Also, any given elliptic curve E ∈ I has a non-trivial 2 torsion group, and
#E(F2n) is divisible by 4 if and only if E ∈ Iμ.

Now, we partition I in terms of n as follows, because we want to investigate
different cases separately, according to the requirement of Algorithms 4 and 6.

1. n is odd. Since, Tr(1) = 1 we have

I = I1 ∪ I0,

2. n is even. Since, Tr(1) = 0 we have

I = Iγ ∪ I1,

where Tr(γ) = 1.

In Sect. 3, we provide injective encoding algorithms for all ordinary binary
elliptic curves y2 + xy = x3 + ax2 + b over F2n with Tr(a) = 1 as well as those
with Tr(a + 1) = 0.

2.2 Encoding into Elliptic Curves

Encoding into Elliptic Curves: Boneh, et al. in [7] proposed the try-and-
increment method. This method is probabilistic, hence it does not run in a
constant time so is vulnerable to timing attacks. A variant form of the try-and-
increment for elliptic curves over F2n with n odd is as follows:

Algorithm 1 Try-and-Increment Algorithm for Ordinary Binary Elliptic Curves
Input: M ∈ {0, 1}∗, a random oracle H := {0, 1}∗ → F2n × {0, 1}, n odd,

E/F2n : y2 + xy = x3 + ax2 + b, and k ∈ N.
Output: (x, y) ∈ E(F2n) or ⊥.

1: i = 0;
2: while i < k do
3: (x, v) = H(M ||i); � v is the least significant bit of H(M ||i)
4: g(x) = x3+ax2+b

x2 ;
5: if Tr(g(x)) = 0 then return (x, x(HTr(g(x)) + v));
6: end if
7: i = i+ 1;
8: end while

return ⊥.

The probability of success for any arbitrary M ∈ {0, 1}∗ is close to 1
2 . Hence,

the probability of failure after up to k rounds is about 2−k, and by taking k ≈ 128
we are sure that the algorithm will be successful unless in a very rare situations.

Boneh and Franklin in [6] suggested a deterministic method of encoding
into elliptic curves, but their method was restricted to the supersingular elliptic
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curves of the form E : y2 = x3 + b over Fq, where q ≡ 2 (mod 3). Although
their method was efficient, the MOV attack [14] can be used for transforming
the elliptic curve discrete logarithm problem to the finite field version, which
has subexponential complexity. They also introduced the following notion of
admissible encoding.

Definition 1. ([6]) A function f : S → R, where S and R are two finite sets,
is an admissible encoding if it satisfies the following conditions:
1: Computable: f is computable in deterministic polynomial time.
2: l to 1: for any r ∈ R, #f−1(r) = l.
3: Samplable: there exists a probabilistic polynomial time algorithm that for any
r ∈ R, it returns a random element s ∈ f−1(r).

Let f : F2n → f(F2n) ⊂ E(F2n) be an admissible encoding and h : {0, 1}∗ →
F2n be a random oracle. Brier et al. in [4] proved that h : {0, 1}∗ → E(F2n),
where h(m) = f(h(m)), is indifferentiable from a random oracle to f(F2n) ⊆
E(F2n). So, having an admissible encoding function f : F2n → f(F2n) ⊂ E(F2n)
is required for having a random oracle into E(F2n). Also, the inverse function of
injective encoding functions can be used in representing points of binary elliptic
curves in a way that the preimage is indistinguishable from a uniform bit-string.
Now, we review important encoding methods and state their drawbacks.

Icart’s Method: As it was stated above, the Boneh et al.’s encoding function
can just be applied to supersingular elliptic curves y2 = x3 + b. Icart in [12]
extended their method and proposed an explicit encoding to elliptic curves y2 =
x3 + ax + b over Fq where q ≡ 2 (mod 3), and ordinary elliptic curves E :
y2 + xy = x3 + ax2 + b over F2n where n is odd. His binary encoding function is
as follows:

fa,b : F2n → E(F2n)

u → (x, ux + v2),

where v = a + u + u2 and x = (v4 + v3 + b)
1
3 + v. In addition, #fa,b

−1(P ) ≤ 4
so it is not l : 1, for some small positive integer, and as a result it is not an
admissible encoding.

SW Method: Another completely different method that was given before Icart’s
method is the Shallue-Woestijne’s method. Their method covers all isomorphism
classes of elliptic curves over all finite fields [18], but it was at most 8:1 and as
a result it is not an admissible encoding. Here, we recall the binary case of the
SW method for ordinary elliptic curves.

Let E be an ordinary binary elliptic curve y2 + xy = x3 + ax2 + b, g(x) =
(x3 + ax2 + b)/x2 and

X1(t, w) = t(a+w+w2)
1+t+t2 , X2(t, w) = t.X1(t, w) + (a + w + w2),

X3(t, w) = X1(t,w).X2(t,w)
X1(t,w)+X2(t,w) ·

(5)
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Then
g(X1(t, w)) + g(X2(t, w)) + g(X3(t, w)) ∈ h(F2n),

where h : F2n → F2n and h(z) = z2 + z. Since the trace function is a linear
transformation on F2n , then either one or all of g(Xi) ∈ h(F2n). In the other
words, we have Tr(g(Xi)) = 0 for either one of i ∈ {1, 2, 3} or all of them.
Given such Xi, the solutions of equation z2 + z = g(Xi) is computable, so the
Algorithm 2 always returns 2 or 6 solutions.

Remark 1. We use Z(c) for computing the root of the equation z2 + z = c in
all of the following algorithm. However, for n odd Z(c) is exactly the same as
the HTr(c).

Algorithm 2 is the Shallue-Woestijne algorithm for binary elliptic curves over
F2n , where n is odd and w is fixed.

Algorithm 2 Binary SW Algorithm
Input: a, b, t ∈ F2n , c = a+ w + w2 �= 0, n odd, and E : y2 + xy = x3 + ax2 + b.
Output: (x, y) ∈ E(F2n).

1: if t2 + t+ 1 = 0 then return O;
2: end if
3: X1(t) = tc

1+t+t2
; X2(t) = tX1(t) + c; X3(t) = X1(t)X2(t)

X1(t)+X2(t)
;

4: for i = 1 to 3 do

5: g(Xi) =
X3

i +aX2
i +b

X2
i

;

6: if Tr(g(Xi)) = 0 then return (Xi, XiHTr(g(Xi)));
7: end if
8: end for

The equation of elliptic curve y2+xy = x3+ax2+b in the λ−affine coordinate
is of the form (λ2 + λ + a)x2 = x4 + b, where λ = x + y

x . Aranha et al. in [2]
improved Algorithm 2 using the λ−affine coordinate of elliptic curves. More
precisely, they fixed t and considered w as the variable parameter and showed
that the number of inversions in the Eq. 5 can be decreased to one inversion
by using the pre-computed values t

t2+t+1 , t+1
t2+t+1 , t2+t

t2+t+1 . They also used the
λ−affine coordinates as a computational trick to eliminate computing inversion
to have more efficient binary elliptic curve arithmetic.

2.3 Injective Functions from Bit Strings to F2n

To construct an injective encoding function to binary elliptic curves we require
an injective encoding from {0, 1}n−1 to a determined subset S of F2n . Here, we
explain function κl for l ∈ {0, 1} and we use it in Sect. 3.

Let Λ = {λ1, . . . , λn} be an arbitrary basis for F2n . Then every element
b ∈ F2n is uniquely represented by a bit string b1, b2, · · · , bn with b =

∑n
j=1 bjλj .
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In particular, 1 =
∑n

j=1 cjλj , with ci �= 0 for a fixed i. Let Bl, for l ∈ {0, 1}, be
the subset of F2n given by

Bl = {b : b ∈ F2n | bi = l}.

Now, we can define the function κl : {0, 1}n−1 → Bl ⊂ F2n , where

κl(b1, · · · , bi−1, bi+1, · · · , bn) =
n∑

j=1

bjλj

and bi = l. Clearly, function κl is a bijective function and none of the elements
of b = (b1, · · · , bi−1, bi+1, · · · , bn) ∈ {0, 1}n−1 is sent to

∑n
j=1(bj + cj)λj =

1 +
∑n

j=1 bjλj . As a result, for any w ∈ F2n one and only one of w or w + 1
belongs to Bl.

For example, if Λ = {1, α, α2, · · · , αn−1} is the polynomial basis of F2n ,
then Bl is the set of elements in F2n with the least significant bit l, where
l ∈ {0, 1}. Now, we can define the bijective functions κl : {0, 1}n−1 → Bl ⊂ F2n

for l ∈ {0, 1}, where

κl(b2, b3, · · · , bn) = l +
n∑

j=2

bjα
j−1.

Hereafter, we let κ = κ0.

3 Injective Encoding to Binary Elliptic Curves

In this section, we first recall the injective encoding function to binary elliptic
curves with a point of order 3 [8]. Then, we present two Algorithms which bring
about injective encoding for all ordinary binary elliptic curves E : y2 + xy =
x3 + ax2 + b with Tr(a) = 1 or Tr(a + 1) = 0, respectively.

3.1 Encoding into Hessian Curves

Up to now, the only injective encoding to binary elliptic curves has been given
for the Hessian form of elliptic curves over F2n with n odd [8]. A binary Hessian
elliptic curve has a point of order 3, therefore that injective encoding is applicable
only to the family of binary elliptic curves with a point of order 3. More precisely,
let

Hd : x3 + y3 + 1 = dxy,

where d ∈ F2n and d3 �= 1, be an Hessian curve over a finite field F2n with n odd
[10]. It is shown in [8] that there is an injective function elt : {0, 1}n−1 → F2n

in which Tr(d3(elt(b)2 + elt(b))) = 0, for all b ∈ {0, 1}n−1. Therefore, the
following map is well defined and injective.

id : {0, 1}n−1 −→ Hd(F2n)
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where id(b) = (x, y) if elt(b) �= 0, and x = duv, y = d(u + v) with

u =
1
d

(
w

elt(b)

)1/3

, v =
1
d

(
w + 1
elt(b)

)1/3

,

w2 + w = d3(elt(b)2 + elt(b)),

and id(b) = (1, 0) if elt(b) = 0.

3.2 Injective Encoding to Binary Elliptic Curves with Tr(a) = 1.

Let E be the following ordinary binary elliptic curve

E : y2 + xy = x3 + ax2 + b, Tr(a) = 1. (6)

Here, we explain our first approach for finding injective encoding function from
{0, 1}n−1 to elliptic curves with Eq. (6).

As we recall, Eq. (5) is a two variables function in w and t. The main idea for
finding a new injective encoding from {0, 1}n−1 to the ordinary binary elliptic
curves, is fixing t and going through all w ∈ F2n . However, to achieve such
injective encoding we require to have Tr(a) = 1, and binary elliptic curves which
are used in elliptic curve cryptography are exactly ordinary binary elliptic curves
with Tr(a) = 1. SW algorithm for binary elliptic curves y2 + xy = x3 + ax2 + b,
when we fix t ∈ F2n and consider w ∈ F2n as a variable, is the following algorithm
and we use the notation f for Algorithm 3 to call it in Algorithm 4.

Algorithm 3 Encoding to Binary Elliptic Curves y2 + xy = x3 + ax2 + b.
Input: w, a, b ∈ F2n , where t(t+ 1)(t2 + t+ 1) �= 0, s = t

t2+t+1
, r = t+1

t
,

and E/F2n : y2 + xy = x3 + ax2 + b.
Output: (x, y) ∈ E(F2n).

1: c = a+ w + w2;
2: if c(1 + c) = 0 then, Return O;
3: end if
4: X1 = sc; X2 = rX1; X3 = trX1;

5: for i = 1 to 3 do

6: g(Xi) =
X3

i +aX2
i +b

X2
i

;

7: if Tr(g(Xi)) = 0 then x = Xi; y = Xi.Z(g(Xi));

8: end if
9: end for

return (x, y).

Remark 2. Clearly, f(w) = P if and only if f(w + 1) = P , so for a given point
P ∈ f(F2n), VP = {w1, w1+1, w2, w2+1, w3, w3+1} ⊂ F2n is the largest possible
preimage set of P and by considering the set WP = {w1, w2, w3} ⊂ VP as the
preimage set of P , we do not lose information about the preimages of P .
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The following proposition shows that there is an interesting feature in Algo-
rithm 3 which can be used for providing a 2:1 encoding from F2n to binary
elliptic curves of Eq. (6).

Proposition 3. If Tr(a) = 1, then Algorithm 3 is at most 4 : 1.

Proof. Since Tr(a) = 1 we conclude that at most two elements of F2n are sent
to O. Now, suppose that we are given a point P = (x0, y0) ∈ f(F2n) ⊂ E(F2n).
We consider two possibilities.

1. If X1 = t
t2+t+1 (a + w + w2) �= x0 for all w ∈ F2n . Clearly, #f−1(P ) ≤ 4

because deg(X2) = deg(X3) = 2, and we are done.
2. If X1(w1) = X1(w1 + 1) = t

t2+t+1 (a + w1 + w2
1) = x0. In this case, it is

impossible that we have X2(w2) = t+1
t2+t+1 (w2

2 + w2 + a) = x0 and X3(w3) =
t(t+1)
t2+t+1 (w2

3 + w3 + a) = x0 simultaneously.
Because, if this happens then f−1(P ) = {w1, w1 +1, w2, w2 +1, w3, w3 +1} ⊂
F2n and we have

x0 =
t

t2 + t + 1
(w2

1 + w1 + a) =
t + 1

t2 + t + 1
(w2

2 + w2 + a), (7)

x0 =
t

t2 + t + 1
(w2

1 + w1 + a) =
t(t + 1)

t2 + t + 1
(w2

3 + w3 + a), (8)

or equivalently

w2
2 + w2 + (

t(w2
1 + w1) + a

t + 1
) = 0, (9)

w2
3 + w3 + (

w2
1 + w1 + ta

t + 1
) = 0. (10)

Now, if we let A = t(w2
1+w1)+a
t+1 and B = w2

1+w1+ta
t+1 , we see that A + B =

w2
1 + w1 + a and Tr(A + B) = Tr(w2

1 + w1 + a) = Tr(a) = 1. Therefore, we
conclude that one and only one of the Eqs. (9) or (10) has solution. Hence,
one of the Eqs. (7) or (8) is held and #f−1(P ) = 4. �

Now, let we are given a point P ∈ f(F2n). Since P has at most four preimages,
we have to first modify Algorithm 3 to have a 2:1 encoding function then using
the bijective function in Sect. 2.3 we can construct our desired injective encoding
from {0, 1}n−1 to E(F2n).

Theorem 4. Let E be the elliptic curve of Eq. (6). There is a function g :
F2n → E(F2n) which is 2:1. In addition, g−1 is computable.

Proof. Since Tr(a) = 1, by Proposition 3 we conclude that Algorithm 3 is at
most 4 : 1. So, we have two main possibilities for the preimage set of any point
P = (x0, y0) ∈ f(F2n).

1. #f−1(P ) = 4. Let WP = {w, λ} be the preimage set of f−1(P ), then WP =
{wi, wj}, where i, j ∈ {1, 2, 3} and i �= j. Also, the index i of wi refers to the
index of Xi which produces point P . So, we have the following three cases.
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(a) {w, λ} = {w1, w2}. Let R1 and R31 be the sets of roots of equations

x2 + x + (
t(w2 + w) + a

t + 1
) = 0,

x2 + x +
(t + 1)(w2 + w) + a

t
= 0.

These two equations are related to each other, in the sense that if we
simplify the first equation regarding to w and swap x with w, we get the
other equation and vice versa. Now, there are two cases
i. If w = w1 and λ = w2 then R1 ⊆ {λ, λ + 1} and R31 ⊆ {ζ, ζ + 1}.
ii. If w = w2 and λ = w1 then R1 ⊆ {ζ, ζ + 1} and R31 ⊆ {w,w + 1},

where {ζ, ζ + 1} ∩ f−1(P ) = ∅. In each case, we can use the function f of
Algorithm 3 to investigate which set is the suitable set. For the first case,
we define g(w) = f(w), and for the second case we define g(w) = −f(w).

(b) {w, λ} = {w1, w3}. Let R2 and R32 be the sets of roots of equations

x2 + x +
w2 + w + ta

t + 1
= 0,

x2 + x + (t + 1)(w2 + w) + ta = 0.

i. If w = w1 and λ = w3 then R2 ⊆ {λ, λ + 1} and R32 ⊆ {ζ, ζ + 1}.
ii. If w = w3 and λ = w1 then R2 ⊆ {ζ, ζ + 1} and R32 ⊆ {w,w + 1},

where again {ζ, ζ + 1} ∩ f−1(P ) = ∅. Similar to the first case, we use the
function f to investigate which set is the suitable set. For the first case,
we define g(w) = f(w), and for the second case we define g(w) = −f(w).

(c) {w, λ} = {w2, w3}. Let R4 and R5 be the sets of roots of equations

x2 + x +
w2 + w + (t + 1)a

t
= 0,

x2 + x + t(w2 + w) + (t + 1)a = 0.

i. If w = w2 and λ = w3 then R4 ⊆ {λ, λ + 1} and R5 ⊆ {ζ, ζ + 1}.
ii. If w = w3 and λ = w2 then R4 ⊆ {ζ, ζ + 1} and R5 ⊆ {w,w + 1}.

Like the previous cases, for the first case we define g(w) = f(w), and for
the second case we define g(w) = −f(w).

2. #f−1(P ) = 2. Let WP = {w}.
In this case, none of the sets of R1, R2, R31, R32, R4 and R5 are allowed to
output. So, we just define g(w) = f(w).

For computing g−1(P ), where P = (x, y) ∈ g(F2n), we consider the list

L = [a + x(t + 1 + s1), a + x(t + s2), a + x(1 + s1s2)],

where s1 = 1
t , s2 = 1

t+1 and since t is fixed we only use the precomputed value of
s1 and s2. The preimage of P is the element l ∈ L which satisfies the necessary
property Tr(l) = 0. For such l ∈ L, we accept the solution w0 = Z(l) of the
equation w2 + w + l = 0 as the desired preimage if g(w0) = P . �
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Algorithm 4 Encoding to Binary Elliptic curves y2 + xy = x3 + ax2 + b with
Tr(a) = 1.

Input: w, a, b ∈ F2n , where Tr(a) = 1, t(t+ 1)(t2 + t+ 1) �= 0, s = t
t2+t+1

,
r = t+1

t
, s1 = 1

t
, s2 = 1

t+1
and E : y2 + xy = x3 + ax2 + b.

Output: (x, y) ∈ E(F2n).

1: if (1 + a+ w + w2) = 0 then, return O;
2: end if
3: L = [(t(w2 +w) + a)s2, ((t+ 1)(w2 +w) + a)s1, (w2 +w+ ta)s2, (t+ 1)(w2 +w) +

ta, (w2 + w + (t+ 1)a)s1, t(w2 + w) + (t+ 1)a];
4: for i = 1 to 6 do
5: if Tr(L[i]) = 0 then z = Z(L[i]));
6: if f(w) = f(z) then return (−1)i+1f(w);
7: end if
8: end if
9: end for

return f(w);

Algorithm 5 explains details of computing the preimage of a point P ∈
g(F2n). It should be mentioned that we don’t require the exact preimage of
a point P . In fact, since g−1(P ) = {w,w +1} we are able to find another preim-
age of P using output of Algorithm 5 and that is sufficient for constructing our
injective encoding function.

The following proposition describes how we can extract an injective encoding
function by composing the functions g and κ : {0, 1}n−1 → F2n .

Proposition 5. Function g ◦ κ : {0, 1}n−1 → E(F2n) is an injective encoding
function.

Proof. Function g is 2:1 with this property that, for all w ∈ F2n , g(w) = g(w+1).
On the other hand, the injective function κ : {0, 1}n−1 → F2n covers one and only
one of the elements w or w + 1. Therefore, function g ◦ κ : {0, 1}n−1 → E(F2n)
will be the desired injective encoding function. �
Algorithm 5 Computing the preimage of P ∈ g(F2n).

Input: E : y2+xy = x3+ax2+b,where a, b ∈ F2n , Tr(a) = 1, t(t+1)(t2+t+1) �= 0,
s1 = 1

t
, s2 = 1

t+1
and P ∈ E(F2n).

Output: w ∈ F2n , where g(w) = P , or ∅.

1: if P = O then, return w = Z(a+ 1);
2: end if
3: L = [a+ x(t+ 1 + s1), a+ x(t+ s2), a+ x(1 + s1s2)];
4: for i = 1 to 3 do
5: if Tr(L[i]) = 0 then w = Z(L[i]));
6: if g(w) = P then return w;
7: end if
8: end if
9: end for

return ∅



Injective Encodings to Binary Ordinary Elliptic Curves 445

3.3 Injective Encoding to Binary Elliptic Curves with Tr(a+1) = 0

Here, we describe our second simple approach for finding an injective encoding
to the family of binary elliptic curves

E : y2 + xy = x3 + ax2 + b, Tr(a + 1) = 0. (11)

We remark that, this method can be seen as simplified SW algorithm.

Proposition 6. Let E be an elliptic curve over F2n given by the Eq. (11). Then,
for every t ∈ F2n there exits a point P on E with x(P ) equals t, t + 1 or t2 + t.

Proof. For t where t2 + t = 0 we have the point P = (0,
√

b). Now, let g(x) =
x+a+ b

x2 . Then, for all t ∈ F
∗
2n , we have g(t)+g(t+1)+g(t2+t) = t2+t+a+1.

Using the linearity of Trace function, we have

Tr(g(t)) + Tr(g(t + 1)) + Tr(g(t2 + t)) = Tr(t2 + t + a + 1) = 0.

So, there exist a point P on E where x(P ) ∈ {t, t + 1, t2 + t} and y(P ) =
x(P )Z(g(x(P ))) (see Eq. 4). �

The trivial solution to correspond an element t ∈ F2n to a point on binary
elliptic curve E, is to check whether there is a point with x-coordinate equals t
or t + 1. But, what about the case if it fails? For the family of elliptic curves E
of the form (11), Proposition 6 shows there is a point on E with x-coordinate
equals t2 + t if there is no points with x-coordinate equal to t and t+1. To make
this encoding uniform 2:1, the first step is to find a point on E for the value
t2 + t and if it fails the second step is for the values t and t + 1. Here the output
of encoding is the same for input values t and t + 1. Also, the main technical
point is using the negation map on E to make a distinction between these two
steps.

Now, we present Algorithm 6 which is 2:1 from F2n to E(F2n), where E is
the elliptic curve with Eq. (11). Using Algorithm 6 we can construct our desired
injective encoding from {0, 1}n−1 to E(F2n).

Algorithm 6 Encoding to Binary Elliptic Curves y2 + xy = x3 + ax2 + b with
Tr(a+ 1) = 0.

Input: t, a, b ∈ F2n , E : y2 + xy = x3 + ax2 + b, with Tr(a+ 1) = 0.
Output: (x, y) ∈ E(F2n).

1: X1 = t; X2 = t+ 1; X3 = t2 + t;
2: if X3 = 0 then return (0,

√
b);

3: end if
4: g1 = X1 + a+ b

X2
1
; g2 = X2 + a+ b

X2
2
; g3 = X3 + a+ b

X2
3
;

5: if Tr(g3) = 0 then return (X3, X3(Z(g3) + 1));
6: else
7: if Tr(g1) = 0 then return (X1, X1Z(g1));
8: else return (X2, X2Z(g2));
9: end if
10: end if
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Theorem 7. Function e : F2n → E(F2n) given by Algorithm 6 is 2:1. Further-
more, e−1(P ) is computable.

Proof. Let P = (u, v) be an affine point of E(F2n). Clearly P = (u, v) ∈ e(F2n)
only if there exists some t ∈ F2n such that u equals t, t + 1 or t2 + t. In other
words e−1(P ) ⊂ {u, u + 1, w, w + 1}, where w ∈ F2n and w2 + w = u. Obviously,
to compute e−1(P ), we find elements t ∈ {u, u + 1, w, w + 1} that is mapped to
P by e.

If u = 0 then P = (0,
√

b). Clearly, e−1(P ) = {0, 1}. From now on, we
assume u �= 0. For x ∈ F

∗
2n , let g(x) = x+a+b/x2 and T (x) = Tr(g(x)). Clearly

there exists a point P = (u, v) on E if and only if T (u) = 0. Then we have,
v = uZ(g(u)) or v = u(Z(g(u))+1) (see Sect. 2.1). For the point P = (u, v) on E
with u �= 0, let c(P ) = v/u + Z(g(u)). Then, P = (u, u(Z(g(u)) + c(P))). Clearly
the compression of point P or −P is given by x(P ) = x(−P ) = u and the bit
c(P ) or 1 + c(P ) respectively.

We consider the following cases for u.

1. Let u be such that Tr(u) = 0, then let fix w ∈ F2n such that w2 + w = u.
Then

e−1(P ) ⊂ {u, u + 1, w, w + 1}.

For the point P with u = 1, we have e−1(P ) = {w,w + 1} if c(P ) = 1 and
e−1(P ) = ∅ otherwise. Now, we assume u �= 1. From Proposition 6, we have

T (u) + T (u + 1) + T (u2 + u) = 0, T (w) + T (w + 1) + T (u) = 0.

Since T (u) = 0, there are 4 possibilities for the values T (w), T (w+1), T (u+1)
and T (u2 + u).
From Algorithm 6, we check the output of e for following cases of the input t.

– For all t ∈ {u, u+1}, if T (u2 +u) = 0 we have x(e(t)) = u2 +u �= u, since
u �= 0, so e(t) �= ±P . Also, if T (u2 + u) = 1, we have e(t) = P if c(P ) = 0
and e(t) = −P if c(P ) = 1.

– For all t ∈ {w,w + 1}, we have x(e(t)) = w2 + w = u. Then y(e(t)) =
u(Z(g(u)) + 1) �= y(P) if c(P ) = 0, and y(e(t)) = u(Z(g(u)) + 1) = y(P)
if c(P ) = 1. In other words, for all t ∈ {w,w + 1}, we have e(t) = −P if
c(P ) = 0 and e(t) = P if c(P ) = 1.

Then, we compute e−1(P ) for all possible cases of c(P ) and T (u2 + u).
– If c(P ) = 0 and T (u2 + u) = 0, then we have e−1(P ) = ∅.
– If c(P ) = 0 and T (u2 + u) = 1, then we see that e−1(P ) = {u, u + 1}.
– If c(P ) = 1 then e−1(P ) = {w,w + 1}.

2. If Tr(u) = 1, then there is no element w ∈ F2n such that w2 + w = u. So,

e−1(P ) ⊂ {u, u + 1}.

Similar to the previous case, we have T (u) + T (u + 1) + T (u2 + u) = 0. Also,
e−1(P ) = {u, u+1} if T (u2 +u) = 1 and c(P ) = 0 and e−1(P ) = ∅ otherwise.
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Briefly, for all P = (u, v) ∈ e(F2n), we have

e−1(P ) =

⎧
⎪⎪⎨

⎪⎪⎩

{u, u + 1} if u = 0,
{u, u + 1} if c(P ) = 0 and Tr(a + b

u4+u2 ) = 1, u �= 0, 1,

{w,w + 1} if c(P ) = 1 and Tr(u) = 0,
∅ otherwise.

Hence, the function e is 2:1. �

Algorithm 7 describes computing preimage of a point P ∈ e(F2n).

Proposition 8. Function e ◦ κ : {0, 1}n−1 → E(F2n), l ∈ {0, 1}, is an injective
encoding function.

Proof. The proof line is the same as Proposition 5. �

Note that Algorithm 7 for a given point P ∈ E(F2n) outputs an element
t in F2n or gives nothing. Notice, t is represented by a bit string of length n.
For computing the preimage of P by e ◦ κ, the required output is a bit sting
of length n − 1, where simply is obtained by removing a single bit of t in the
suitable fixed position. More precisely, for the basis Λ = {λ1, . . . , λn} of F2n , let
fix i such that 1 =

∑n
j=1 cjλj , with ci �= 0. From Sect. 2.3, we recall the injective

functions κl : {0, 1}n−1 → F2n , for l = 0, 1. The preimage of t =
∑n

j=1 tjλj by
one of these functions is the required output bit string (t1, · · · , ti−1, ti+1, · · · , tn)
in {0, 1}n−1.

Algorithm 7 Computing the preimage of P ∈ E(F2n).
Input: E : y2 + xy = x3 + ax2 + b, where a, b ∈ F2n , Tr(a + 1) = 0, and
P = (x, y) ∈ E(F2n).
Output: t ∈ F2n , where e(t) = P , or ∅.

1: u = x(P );
2: if u = 0 then return 0;
3: end if
4: v = y(P );
5: Tu = Tr(u);
6: if Tu = 0 then, w = Z(u);
7: end if
8: if v

u
= Z(u+ a+ b/u2) then cP = 0;

9: else cP = 1;
10: end if
11: if u = 1 then T = 0;
12: else T = Tr(a+ b

(u4+u2)
);

13: end if
14: if cP = 0 and T = 1 then return u;
15: end if
16: if cP = 1 and Tu = 0 then return w;
17: end if

return ∅
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4 Concluding Remarks

It is well-known that the encoding functions from F2n to the binary elliptic curves
are non-uniform. In fact, the SW-method and the Icart’s method, are at most
6:1 and 4:1, respectively. But, we require to have uniform encoding function,
because the transmitted data have to be indistinguishable from the uniform bit
strings. In this regard, we can use the injective encoding function to the binary
elliptic curves as an admissible encoding. So far, the only injective encoding
function to binary elliptic curves is given for those with a point of order 3. In
this paper, we studied the general case of binary elliptic curves, and we proposed
encoding algorithms which provide us injective encoding functions into binary
elliptic curves. Algorithms 4 and 6 covers elliptic curves with equation y2 +xy =
x3+ax2+b with Tr(a) = 1 and Tr(a+1) = 0, respectively. These algorithms are
both 2:1 and the preimage of a point P in the image of functions is {w,w + 1},
for some w ∈ F2n . So using a suitable injective function κ : {0, 1}n−1 → F2n ,
which covers one and only one of the elements of the set {w,w+1}, we construct
injective encoding function from {0, 1}n−1 to the given elliptic curves.
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