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Abstract. The security of the Jao-De Feo Supersingular Isogeny Diffie-
Hellman (SIDH) key agreement scheme is based on the intractability of
the Computational Supersingular Isogeny (CSSI) problem—computing
Fp2 -rational isogenies of degrees 2e and 3e between certain supersin-
gular elliptic curves defined over Fp2 . The classical meet-in-the-middle

attack on CSSI has an expected running time of O(p1/4), but also has
O(p1/4) storage requirements. In this paper, we demonstrate that the van
Oorschot-Wiener golden collision finding algorithm has a lower cost (but
higher running time) for solving CSSI, and thus should be used instead
of the meet-in-the-middle attack to assess the security of SIDH against
classical attacks. The smaller parameter p brings significantly improved
performance for SIDH.

1 Introduction

The Supersingular Isogeny Diffie-Hellman (SIDH) key agreement scheme was
proposed by Jao and De Feo [14] (see also [9]). It is one of 69 candidates being
considered by the U.S. government’s National Institute of Standards and Tech-
nology (NIST) for inclusion in a forthcoming standard for quantum-safe cryptog-
raphy [13]. The security of SIDH is based on the difficulty of the Computational
Supersingular Isogeny (CSSI) problem, which was first defined by Charles, Goren
and Lauter [4] in their paper that introduced an isogeny-based hash function.
The CSSI problem is also the basis for the security of isogeny-based signature
schemes [11,30] and an undeniable signature scheme [15].

Let p be a prime, let � be a small prime (e.g., � ∈ {2, 3}), and let E and
E′ be two supersingular elliptic curves defined over Fp2 for which a (separable)
degree-�e isogeny φ : E → E′ defined over Fp2 exists. The CSSI problem is that
of constructing such an isogeny. In [9], the CSSI problem is assessed as having a
complexity of O(p1/4) and O(p1/6) against classical and quantum attacks [26],
respectively. The classical attack is a meet-in-the-middle attack (MITM) that
has time complexity O(p1/4) and space complexity O(p1/4). We observe that the
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(classical) van Oorschot-Wiener golden collision finding algorithm [19,20] can
be employed to construct φ. Whereas the time complexity of the van Oorschot-
Wiener algorithm is higher than that of the meet-in-the-middle attack, its space
requirements are smaller. Our cost analysis of these two CSSI attacks leads to
the conclusion that, despite its higher running time, the golden collision finding
CSSI attack has a lower cost than the meet-in-the-middle attack, and thus should
be used to assess the security of SIDH against (known) classical attacks.

The remainder of this paper is organized as follows. The CSSI problem and
relevant mathematics background are presented in Sect. 2. In Sects. 3 and 4,
we report on our implementation of the meet-in-the-middle and golden collision
search methods for solving CSSI. Our implementations confirm that the heuristic
analysis of these CSSI attacks accurately predicts their performance in practice.
Our cost models and cost comparisons are presented in Sect. 5. Finally, in Sect. 6
we make some concluding remarks.

2 Computational Supersingular Isogeny Problem

2.1 Mathematical Prerequisites

Let p = �eA

A �eB

B − 1 be a prime1, where �A and �B are distinct small primes and
�eA

A ≈ �eB

B ≈ p1/2. Let E be a (supersingular) elliptic curve defined over Fp2 with
#E(Fp2) = (p + 1)2. Then E(Fp2) ∼= Zp+1 ⊕ Zp+1, whence the torsion groups
E[�eA

A ] and E[�eB

B ] are contained in E(Fp2).
In the following, we write (�, e) to mean either (�A, eA) or (�B , eB). All iso-

genies φ considered in this paper are separable, whereby deg φ = #Ker(φ).
Let S be an order-�e subgroup of E[�e]. Then there exists an isogeny φ : E →

E′ (with both φ and E′ defined over Fp2) with kernel S. The isogeny φ is unique
up to isomorphism in the sense that if φ̃ : E → Ẽ is another isogeny defined
over Fp2 with kernel S, then there exists an Fp2-isomorphism ψ : E′ → Ẽ with
φ̃ = ψ ◦ φ.

Given E and S, an isogeny φ with kernel S and the equation of E′ can
be computed using Vélu’s formula [27]. The running time of Vélu’s formula is
polynomial in #S and log p. Since #S ≈ p1/2, a direct application of Vélu’s
formula does not yield a polynomial-time algorithm for computing φ and E′.
However, since #S is a power of a small prime, one can compute φ and E′ in
time that is polynomial in log p by using Vélu’s formula to compute a sequence
of e degree-� isogenies (see Sect. 2.2).

We will denote the elliptic curve that Vélu’s formula yields by E/S and the
(Vélu) isogeny by φS : E → E/S. As noted above, φS is unique up to isomor-
phism. Thus, for any fixed E, there is a one-to-one correspondence between order-
�e subgroups of E[�e] and degree-�e isogenies φ : E → E′ defined over Fp2 . It fol-
lows that the number of degree-�e isogenies φ : E → E′ is �e +�e−1 = (�+1)�e−1.

1 More generally, one can take p = �eAA �eBB d ± 1 where d is a small cofactor.
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2.2 Vélu’s Formula

Vélu’s formula (see [4]) can be used to compute degree-� isogenies. We present
Vélu’s formula for � = 2 and � = 3.

Consider the elliptic curve E/Fp2 : Y 2 = X3+aX+b, and let P = (XP , YP ) ∈
E(Fp2) be a point of order two. Let v = 3X2

P + a, a′ = a − 5v, b′ = b − 7vXP ,
and define the elliptic curve E′/Fp2 : Y 2 = X3 + a′X + b′. Then the map

(X,Y ) �→
(

X +
v

X − XP
, Y − vY

(X − XP )2

)

is a degree-2 isogeny from E to E′ with kernel 〈P 〉.
Let P = (XP , YP ) ∈ E(Fp2) be a point of order three. Let v = 6X2

P + 2a,
u = 4Y 2

P , a′ = a − 5v, b′ = b − 7(u + vXP ), and define the elliptic curve
E′/Fp2 : Y 2 = X3 + a′X + b′. Then the map

(X,Y ) �→
(

X +
v

X − XP
+

u

(X − XP )2
, Y

(
1 − v

(X − XP )2
− 2u

(X − XP )3

))

is a degree-3 isogeny from E to E′ with kernel 〈P 〉.
Suppose now that R ∈ E(Fp2) has order �e where � ∈ {2, 3} and e ≥ 1. Then

the isogeny φ : E → E/〈R〉 can be efficiently computed as follows. Define E0 = E
and R0 = R. For i = 0, 1, . . . , e − 1, let φi : Ei → Ei+1 be the degree-� isogeny
obtained using Vélu’s formula with kernel 〈�e−1−iRi〉, and let Ri+1 = φi(Ri).
Then φ = φe−1 ◦ · · · ◦ φ0.

Remark 1 (cost of computing an �e-isogeny). As shown in [9], a ‘balanced strat-
egy’ for computing a degree-�e isogeny requires approximately e

2 log2 e point
multiplications by �, e

2 log2 e degree-� isogeny evaluations, and e constructions of
degree-� isogenous curves. Also presented in [9] is a slightly faster ‘optimal strat-
egy’ that accounts for the relative costs of a point multiplication and a degree-�
isogeny evaluation.

2.3 SIDH

In SIDH, the parameters �A, �B , eA, eB , p and E are fixed and public, as are
bases {PA, QA} and {PB , QB} for the torsion groups E[�eA

A ] and E[�eB

B ].
In (unauthenticated) SIDH, Alice selects mA, nA ∈R [0, �eA

A − 1], not both
divisible by �A, and sets RA = mAPA + nAQA and A = 〈RA〉; note that A is an
order-�eA

A subgroup of E[�eA

A ]. Alice then computes the isogeny φA : E → E/A
while keeping A and φA secret. She transmits

E/A, φA(PB), φA(QB)

to Bob. Similarly, Bob selects mB, nB ∈R [0, �eB

B − 1], not both divisible by �B ,
and sets RB = mBPB + nBQB and B = 〈RB〉. Bob then computes the isogeny
φB : E → E/B. He keeps B and φB secret and transmits

E/B, φB(PA), φB(QA)



On the Cost of Computing Isogenies Between Supersingular Elliptic Curves 325

to Alice. Thereafter, Alice computes φB(RA) = mAφB(PA) + nAφB(QA) and

(E/B)/〈φB(RA)〉,
whereas Bob computes φA(RB) = mBφA(PB) + nBφA(QB) and

(E/A)/〈φA(RB)〉.
The compositions of isogenies

E → E/A → (E/A)/〈φA(RB)〉
and

E → E/B → (E/B)/〈φB(RA)〉
both have kernel 〈RA, RB〉. Hence the elliptic curves computed by Alice and
Bob are isomorphic over Fp2 , and their shared secret k is the j-invariant of these
curves.

Remark 2 (SIDH vs. SIKE ). SIDH is an unauthenticated key agreement proto-
col. The NIST submission [13] specifies a variant of SIDH that is a key encap-
sulation mechanism (KEM) called SIKE (Supersingular Isogeny Key Encapsu-
lation). In SIKE, Alice’s long-term public key is (E/A, φA(PB), φA(QB)). Bob
sends Alice an ephemeral public key (E/B, φB(PA), φB(QA)) where B is derived
from Alice’s public key and a random string, and then computes a session key
from the j-invariant of the elliptic curve (E/A)/〈φA(RB)〉, the aforementioned
random string, and the ephemeral public key. One technical difference between
the original SIDH specification in [9,14] and the SIKE specification in [13] (and
also the SIDH implementation in [5]) is that in the latter the secret RA is of
the form PA + nAQA where nA is selected (almost) uniformly at random from
the interval [0, �eA

A − 1] (and similarly for RB). Thus, RA is selected uniformly
at random from a subset of size approximately �eA of the set of all order-�eA

A

subgroups (which has cardinality �eA

A + �eA−1
A ).

2.4 CSSI

The challenge faced by a passive adversary is to compute k given the public
parameters, E/A, E/B, φA(PB), φA(QB), φB(PA) and φB(QA). A necessary
condition for hardness of this problem is the intractability of the Computational
Supersingular Isogeny (CSSI) problem: Given the public parameters �A, �B ,
eA, eB , p, E, PA, QA, PB , QB , the elliptic curve E/A, and the auxiliary points
φA(PB) and φA(QB), compute the Vélu isogeny φA : E → E/A (or, equivalently,
determine a generator of A).

An assumption one makes (e.g., see [9]) is that the auxiliary points φA(PB)
and φA(QB) are of no use in solving CSSI. Thus, we can simplify the statement
of the CSSI problem to the following:

Problem 1 (CSSI). Given the public parameters �A, �B , eA, eB , p, E, PA, QA,
and the elliptic curve E/A, compute a degree-�eA

A isogeny φA : E → E/A.
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3 Meet-in-the-Middle

For the sake of simplicity, we will suppose that e is even. We denote the number
of order-�e/2 subgroups of E[�e] by N = (� + 1)�e/2−1 ≈ p1/4.

Let E1 = E and E2 = E/A. Let R denote the set of all j-invariants of
elliptic curves that are isogenous to E1; then #R ≈ p/12 [23]. Let R1 denote
the set of all j-invariants of elliptic curves over Fp2 that are �e/2-isogenous to
E1. Since #R � N , one expects that the number of pairs of distinct order-�e/2

subgroups (A1, A2) of E1[�e] with j(E1/A1) = j(E1/A2) is very small. Thus,
we shall assume for the sake of simplicity that #R1 = N . Similarly, we let R2

denote the set of all j-invariants of elliptic curves that are �e/2-isogenous to
E2, and assume that #R2 = N . Since E1 is �e-isogenous to E2, we know that
R1 ∩ R2 �= ∅. Moreover, since #R1 � #R and #R2 � #R, it is reasonable
to assume that #(R1 ∩ R2) = 1; in other words, we can assume that there is a
unique degree-�e isogeny φ : E1 → E2.

3.1 Basic Method

The meet-in-the-middle attack on CSSI [9], which we denote by MITM-basic,
proceeds by building a (sorted) table with entries (j(E1/A1), A1), where A1

ranges over all order-�e/2 subgroups of E1[�e]. Next, for each order-�e/2 subgroup
A2 of E2[�e], one computes E2/A2 and searches for j(E2/A2) in the table (see
Fig. 1). If j(E2/A2) = j(E1/A1), then the composition of isogenies

φA1 : E1 → E1/A1, ψ : E1/A1 → E2/A2, φ̂A2 : E2/A2 → E2,

where ψ is an Fp2 -isomorphism and φ̂A2 denotes the dual of φA2 , is the desired
degree-�e isogeny from E1 to E2. The worst-case time complexity of MITM-basic
is T1 = 2N , where a unit of time is a degree-�e/2 Vélu isogeny computation (cf.
Remark 1). The average-case time complexity is 1.5N . The attack has space
complexity N .

3.2 Depth-First Search

The set of pairs (j(E/A), A), with A ranging over all order-�e/2 subgroups of
E[�e], can also be generated by using a depth-first search (DFS) to traverse the
tree in the left of Fig. 1 (and also the tree in the right of Fig. 1). We denote
this variant of the meet-in-the-middle attack by MITM-DFS. We describe the
depth-first search for � = 2.2

Let {P,Q} be a basis for E[2e/2]. Let R0 = 2e/2−1P , R1 = 2e/2−1Q, R2 =
R0 + R1 be the order-2 points on E. For i = 0, 1, 2, the degree-2 isogenies
φi : E → Ei = E/〈Ri〉 are computed, as are bases {P0 = φ0(P ), Q0 = φ0(2Q)},

2 For the sake of concreteness, all implementation reports of CSSI attacks in this
paper are for the case � = 2. However, all conclusions about the relative efficiencies
of classical and quantum CSSI attacks for � = 2 are also valid for the � = 3 case.
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E1

E1,2

E1,2,1

· · ·
· · ·

E1,2,0

· · ·
· · ·

E1,1

E1,1,1

· · ·
· · ·

E1,1,0

· · ·
· · ·

E1,0

E1,0,1

· · ·
· · ·

E1,0,0

· · ·
· · ·

3 · 2e/2−1 leaves3 · 2e/2−1 leaves

E1/A1

isomorphism
ψ

E2

E2,2

E2,2,1

· · ·
· · ·

E2,2,0

· · ·
· · ·

E2,1

E2,1,1

· · ·
· · ·

E2,1,0

· · ·
· · ·

E2,0

E2,0,1

· · ·
· · ·

E2,0,0

· · ·
· · ·

3 · 2e/2−1 leaves

E2/A2

Fig. 1. Meet-in-the-middle attack for degree-2 isogeny trees.

{P1 = φ1(Q), Q1 = φ1(2P )}, {P2 = φ2(P + Q), Q2 = φ2(2P )} for E0[2e/2−1],
E1[2e/2−1], E2[2e/2−1], respectively. A memory stack is initialized with the tuples
(E0, 0, P0, Q0), (E1, 1, P1, Q1), (E2, 2, P2, Q2), and the tuple on the top of the
stack is processed recursively as described next.

Suppose that we have to process (Ex, x, Px, Qx), where x ∈ {0, 1, 2} ×
{0, 1}n−1 and 1 ≤ n ≤ e/2 − 1. Let B0 = 2e/2−n−1Px, B1 = 2e/2−n−1Qx

and B2 = B0 + B1 be the order-2 points on Ex. Let Rx0 = B0 and Rx1 = B2

(B1 is the backtracking point), and compute the degree-2 isogenies φxi : Ex →
Exi = Ex/〈Rxi〉 for i = 0, 1. Then two cases arise:

(i) If n < e/2 − 1, then let Px0 = φx0(Px), Qx0 = φx0(2(Px + Qx)), Px1 =
φx1(Px + Qx), Qx1 = φx1(2Px); one can check that {Pxi, Qxi} is a basis for
Exi[2e/2−n−1] for i = 0, 1. Then, (Ex1, x1, Px1, Qx1) is added to the stack
and (Ex0, x0, Px0, Qx0) is processed next.

(ii) If n = e/2−1, the leaves (j(Ex0), x0) and (j(Ex1), x1) of the tree are stored
in the table. If the stack is non-empty, then its topmost entry is processed
next; otherwise the computation terminates.

The cost of building each of the two depth-first search trees is approximately
2N degree-2 isogeny computations, 2N degree-2 isogeny evaluations, N/2 point
additions, and 2N point doublings (where N = 3 · 2e/2−1).

In contrast, the cost of building the table in MITM-basic (with � = 2)
is approximately Ne

2 2-isogeny computations, Ne
4 log2

e
2 2-isogeny evaluations,

and Ne
4 log2

e
2 point doublings (cf. Remark 1). A count of Fp2 multiplications

and squarings yields the following costs for the core operations when Jaco-
bian coordinates are used for elliptic curve arithmetic, isogeny computations,
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and isogeny evaluations: 8 (2-isogeny computation), 12 (2-isogeny evaluation),
14 (point addition), 9 (point doubling). This gives a per-table cost of approxi-
mately 5.25Ne log2 e for MITM-basic, and a cost of 65N for MITM-DFS. Thus,
the depth-first search approach yields a speedup by a factor of approximately

e
12.4 log2 e.

3.3 Implementation Report

The MITM-basic and MITM-DFS attacks (for � = 2) were implemented in C,
compiled using gcc version 4.7.2, and executed on an Intel Xeon processor E5-
2658 v2 server equipped with 20 physical cores and 256 GB of shared RAM
memory.3 We used fopenmp for the parallelization.

For p = 2eA3eBd − 1, the elliptic curve E/Fp : Y 2 = X3 + X has #E(Fp) =
p+1 and #E(Fp2) = (p+1)2. A point P ∈ E(Fp2) of order 2 ·3 ·d was randomly
selected, and the isogenous elliptic curve E1 = E/〈P 〉 was computed. Then, a
random order-2eA subgroup A of E1(Fp2) was selected, and the isogenous elliptic
curve E2 = E1/A was computed. Our CSSI challenge was to find a generator of
A given E1 and E2.

We used Jacobian coordinates for elliptic curve arithmetic, isogeny compu-
tations, and isogeny evaluations. For MITM-basic, the leaves of the E1-rooted
tree shown in Fig. 1 were generated as follows. Let {P,Q} be a basis for E1[2e/2].
Then for each pair (b, k) ∈ {0, 1, 2} × {0, 1, . . . , 2e/2−1 − 1}, triples

(
j(E1/〈P + (b2e/2−1 + k)Q〉), b, b2e/2−1 + k

)
, for b = 0, 1,

(j(E1/〈(2k)P + Q〉), b, k) , for b = 2,

Table 1. Meet-in-the-middle attacks for finding a 2eA -isogeny between two supersingu-
lar elliptic curves over Fp2 with p = 2eA ·3eB ·d−1. For each p, 25 randomly generated
CSSI instances were solved and the average of the results are reported. The ‘expected
time’ and ‘measured time’ columns give the expected number and the actual number
of degree-2eA/2 isogeny computations for MITM-basic. The space is measured in bytes.

eA eB d MITM-basic MITM-DFS

Expected time Space Measured time Clock cycles Clock cycles

32 20 23 217.17 220.72 217.26 234.50 231.73

34 21 109 218.17 221.83 218.24 235.49 232.71

36 22 31 219.17 222.87 219.14 236.43 233.67

38 23 271 220.17 223.99 220.20 237.59 234.60

40 25 71 221.17 225.04 221.15 238.63 235.71

42 26 37 222.17 226.09 222.11 239.83 236.78

44 27 37 223.17 227.14 223.25 241.07 237.87

3 Our code for the MITM-basic, MITM-DFS and VW golden collision search CSSI
attacks is available at https://github.com/JJChiDguez/CSSI.

https://github.com/JJChiDguez/CSSI
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were computed and stored in 20 tables sorted by j-invariant (each of the 20 cores
was responsible for generating a portion of the leaves). The 20 tables were stored
in shared RAM memory.

MITM-DFS was executed using 12 cores. Each core was responsible for
generating a portion of the leaves, and the 12 sets of leaves were stored
in shared RAM memory. Table 1 shows the time expended for finding 2e-
isogenies for e ∈ {32, 34, 36, 38, 40, 42, 44} with the MITM-basic and MITM-DFS
attacks. These experimental results confirm the accuracy of the attacks’ heuristic
analysis.

4 Golden Collision Search

4.1 Van Oorschot-Wiener Parallel Collision Search

Let S be a finite set of cardinality M , and let f : S → S be an efficiently-
computable function which we shall heuristically assume is a random function.
The van Oorschot-Wiener (VW) method [20] finds a collision for f , i.e., a pair
x, x′ ∈ S with f(x) = f(x′) and x �= x′.

Define an element x of S to be distinguished if it has some easily-testable
distinguishing property. Suppose that the proportion of elements of S that are
distinguished is θ. For i = 1, 2, . . ., the VW method repeatedly selects xi,0 ∈R S,
and iteratively computes a sequence xi,j = f(xi,j−1) for j = 1, 2, 3, . . . until a
distinguished element xi,a is encountered. In that event, the triple (xi,a, a, xi,0)
is stored in a table sorted by first entry. If xi,a was already in the table, say
xi,a = xi′,b with i �= i′, then a collision has been detected (see Fig. 2). The
two colliding table entries (xi,a, a, xi,0), (xi′,b, b, xi′,0) can then be used to find a
collision for f by iterating the longer sequence (say the ith sequence) beginning
at xi,0 until it is the same distance from xi,a as xi′,0 is from xi′,b, and then
stepping both sequences in unison until they collide (see Fig. 3).

xi′,b

xi,0 xi′,0

x′x

xi,a

Fig. 2. VW method: detecting a collision (x, x′).
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xi′,b

x

xi,a

xi′,0

x′

xi,0

Fig. 3. VW method: finding a collision (x, x′).

By the birthday paradox, the expected time before a collision occurs is√
πM/2, where a unit of time is an f evaluation. After a collision has occurred,

the expected time before it is detected is 1/θ, and thereafter the expected time
to find the collision is approximately 3/θ. Thus, the expected time complex-
ity of the VW method is approximately

√
πM/2 + 4/θ. The expected storage

complexity is θ
√

πM/2. The parameter θ can be selected to control the storage
requirements.

The collision detecting stage of the VW method can be effectively paral-
lelized. Each of the available m processors computes its own sequences, and the
distinguished elements are stored in shared memory. The expected time com-
plexity of parallelized VW is then 1

m

√
πM/2 + 2.5

θ . The space complexity is
θ
√

πM/2.

4.2 Finding a Golden Collision

A random function f : S → S is expected to have (M −1)/2 unordered collisions.
Suppose that we seek a particular one of these collisions, called a golden colli-
sion; we assume that the golden collision can be efficiently recognized. Thus one
continues generating distinguished points and collisions until the golden collision
is encountered. The expected time to find q collisions is only about

√
q times as

much as that to find one collision. However, since not all collisions are equally
likely and the golden collision might have a very low probability of detection
(see [19]), it is necessary to change the version of f periodically.

Suppose that the available memory can store w triples (xi,a, a, xi,0). When
a distinguished point xi,a is encountered, the triple (xi,a, a, xi,0) is stored in
a memory cell determined by hashing xi,a. If that memory cell was already
occupied with a triple holding a distinguished point xi′,b = xi,a, then the two
triples are used to locate a collision.
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Van Oorschot and Wiener proposed setting

θ = α
√

w/M (1)

and using each version of f to produce βw distinguished points. Experimental
data presented in [20] suggested that the total running time to find the golden
collision is minimized by setting α = 2.25 and β = 10. Then, for 210 ≤ w ≤
M/210, the expected running time to find the golden collisions when m processors
are employed is slightly overestimated as

1
m

(2.5
√

M3/w). (2)

Remark 3 (verifying the VW heuristic analysis). The running time estimate
(2) relies on several heuristics, the most significant of which is that when
210 ≤ w ≤ M/210 then each version of f generates approximately 1.3w col-
lisions, of which approximately 1.1w are distinct. The numbers 1.3w and 1.1w
were determined experimentally in [20]. Then the probability that a particular
version of f yields the golden collision is approximately 1.1w/(M/2), whence
the expected number of function versions needed to locate the golden collision
is approximately 0.45M/w, and the expected total time is

0.45
M

w
× 10w × 1

2.25

√
M/w ≈ 2

√
M3/w.

Table 2. Observed number c1w of collisions and number c2w of distinct collisions per
version v of the MD5-based random function fn,v : {0, 1}n → {0, 1}n. The numbers are
averages for 20 function versions when w ≤ 28 and 10 function versions when w ≥ 29.

w 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

M = 220

c1 1.66 1.30 1.48 1.30 1.48 1.38 1.28 1.27 1.29 1.27 1.28 1.27 1.24 1.18 1.08 — —

c2 1.31 1.14 1.26 1.11 1.22 1.15 1.08 1.05 1.03 1.02 1.03 1.00 0.94 0.83 0.61 — —

M = 224

c1 1.38 1.36 1.38 1.37 1.33 1.31 1.31 1.36 1.32 1.33 1.31 1.30 1.30 1.29 1.29 1.27 1.24

c2 1.21 1.14 1.16 1.16 1.12 1.10 1.11 1.13 1.11 1.11 1.09 1.06 1.06 1.05 1.04 1.00 0.95

M = 228

c1 1.09 1.21 1.33 1.35 1.36 1.35 1.30 1.34 1.32 1.34 1.33 1.34 1.33 1.32 1.31 1.31 1.30

c2 0.98 1.06 1.10 1.15 1.15 1.12 1.09 1.12 1.12 1.13 1.12 1.13 1.12 1.10 1.08 1.07 1.07

M = 232

c1 1.21 1.44 1.35 1.35 1.35 1.31 1.30 1.32 1.33 1.35 1.33 1.34 1.33 1.34 1.33 1.33 1.32

c2 1.00 1.18 1.17 1.12 1.16 1.10 1.10 1.11 1.13 1.13 1.13 1.13 1.12 1.13 1.12 1.12 1.11

M = 236

c1 1.34 1.31 1.29 1.32 1.38 1.34 1.31 1.32 1.35 1.32 1.33 1.34 1.33 1.33 1.33 1.33 1.33

c2 1.10 1.10 1.08 1.13 1.16 1.13 1.11 1.10 1.13 1.12 1.12 1.13 1.13 1.13 1.13 1.13 1.13
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To verify these numbers, we ran some experiments using a “random” function
fn,v : {0, 1}n → {0, 1}n (so M = 2n), where v is a string identifying the function
version, and fn,v(X) is defined to be the n most significant bits of MD5(v,X).
Table 2 lists the numbers of collisions and distinct collisions that were found for
different values of (n,w), confirming the 1.3w and 1.1w numbers reported in [20].

4.3 The Attack

Let I = {1, 2, . . . , N} and S = {1, 2}×I. For i = 1, 2, let Ai denote the set of all
order-�e/2 subgroups of Ei[�e], define fi : Ai → Ri by fi(Ai) = j(Ei/Ai), and let
hi : I → Ai be bijections. Let g : R → S be a random function. Finally, define
f : S → S by

f : (i, x) �→ g(fi(hi(x))).

Then one can view f as a “random” function from S to S.
Recall that one expects there are unique order-�e/2 subgroups A1, A2 of

E1[�e], E2[�e], respectively, with j(E1/A1) = j(E2/A2). Let y1 = h−1
1 (A1) and

y2 = h−1
2 (A2). Then the collision for f that we seek is the golden collision (1, y1),

(2, y2). Using m processors and w cells of memory, the VW method can be used
to find this golden collision in expected time

1
m

(2.5
√

8N3/w) ≈ 7.1p3/8/(w1/2m).

Remark 4 (finding any collision vs. finding a golden collision). The problem of
finding a collision for a hash function H : {0, 1}∗ → {0, 1}n and the problem of
computing discrete logarithms in a cyclic group G can be formulated as problems
of finding a collision for a random function f : S → S, where #S = 2n for
the first problem and #S = #G for the second problem (see [20]). For both
formulations, any collision for f yields a solution to the original problem. Thus,
letting N = 2n or N = #G, the problems can be solved using van Oorschot-
Wiener collision search in time approximately

1
m

N1/2.

In contrast, the only formulation of CSSI as a collision search problem for f :
S → S that we know requires one to find a golden collision for f . For this
problem, the van Oorschot-Wiener algorithm has running time approximately

N3/2/(w1/2m).

4.4 Implementation Report

The VW attack (for � = 2) was implemented in C, compiled using gcc version
4.7.2, and executed on an Intel Xeon processor E5-2658 v2 server equipped with
20 physical cores and 256 GB of shared RAM memory. We used fopenmp for the
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parallelization and openssl’s MD5 implementation. The CSSI challenges were
the same as the ones in Sect. 3.3.

Let {P1, Q1}, {P2, Q2} be bases for E1[2e/2], E2[2e/2], respectively. Noting
that N = 3 · 2e/2−1, we identify the elements of I = {1, 2, . . . , N} with elements
of I1 × I2 where I1 = {0, 1, 2} and I2 = {0, 1, . . . , 2e/2−1 − 1}. The bijections
hi : I1 × I2 → Ai for i = 1, 2 are defined by

hi : (b, k) �→
{

Pi + (b2e/2−1 + k)Qi, if b = 0, 1,
(2k)Pi + Qi, if b = 2.

Let S = {1, 2} × I1 × I2. For n ∈ {0, 1}64, we let gn : R → S be the function
computed using Algorithm 1. We then define the version fn : S → S of f by
(i, x) �→ gn(fi(hi(x))).

Algorithm 1. The “random” function gn

Require: n ∈ {0, 1}64 and j ∈ Fp2 .
Ensure: Output c ∈ {1, 2}, b ∈ I1, k ∈ I2.
1: counter := 0.
2: repeat
3: h := MD5(1, j, n, counter).
4: Let h′ be the e/2 + 2 least significant bits of h, and parse h′ as (k, c, b), where

k, c, b have bitlengths e/2 − 1, 1, and 2, respectively.
5: counter := counter + 1.
6: until b �= 11
7: return (c + 1, b, k).

We set θ = 2.25
√

w/2N , where w = 2t, and declare an element X ∈ S
to be distinguished if the integer formed from the 32 least significant bits of
MD5(2,X) is ≤ 232θ. If X is distinguished, then it is placed in memory cell s,
where s is the integer determined by the t least significant bits of MD5(3,X). If
a distinguished point is not encountered after 10/θ iterations, then that trail is
abandoned and a new trail is formed.

Table 3 shows the time expended for finding 2e-isogenies for e ∈
{32, 34, 36, 38, 40, 42, 44} with the VW attack. These experimental results con-
firm the accuracy of the VW attack’s heuristic analysis.

To gain further confidence that the VW attack’s heuristic analysis is accu-
rate for cryptographically-interesting CSSI parameters (e.g., e = 256), we ran
some experiments to estimate the number of collisions and distinct collisions for
functions fn when e = 50, 60, 70, 80. The results, listed in Table 4, confirm the
1.3w and 1.1w estimates in [20].



334 G. Adj et al.

Table 3. Van Oorschot-Wiener golden collision search for finding a 2eA -isogeny
between two supersingular elliptic curves over Fp2 with p = 2eA · 3eB · d − 1. For
each p, the listed number of CSSI instances were solved and the median and average of
the results are reported. The #fn’s column indicates the number of random functions
fn that were tested before the golden collision was found. The expected and measured
times list the number of degree-2eA/2 isogeny computations.

eA eB d w Expected

time

Number

of runs

Median Average

# fn’s Measured

time

Clock

cycles

# fn’s Measured

time

clock

cycles

32 20 23 29 223.20 25 180 223.55 240.79 319 224.38 241.62

34 21 109 29 224.70 25 256 224.54 241.89 714 226.02 243.37

36 22 31 210 225.70 25 369 226.06 243.51 838 227.25 244.70

38 23 271 211 226.70 25 196 226.15 243.70 567 227.69 245.23

40 25 71 211 228.20 25 162 226.36 243.99 1015 229.01 246.64

42 26 37 212 229.20 25 477 228.92 246.52 1940 230.95 248.55

44 27 37 213 230.20 25 431 229.78 247.46 942 230.91 248.58

Table 4. Observed number c1w of collisions and number c2w of distinct collisions per
CSSI-based random function fn. The numbers are averages for 25 function versions
(except for (e, w) ∈ {(80, 212), (80, 214), (80, 216)} for which 5 function versions were
used).

e p w 28 210 212 214 216

50 250331179 − 1 c1 1.37 1.36 1.37 1.41 1.49

c2 1.14 1.12 1.12 1.11 1.09

60 26033731 − 1 c1 1.37 1.34 1.34 1.35 1.36

c2 1.15 1.13 1.13 1.12 1.12

70 270332127 − 1 c1 1.33 1.34 1.34 1.34 1.34

c2 1.13 1.14 1.13 1.13 1.13

80 28032571 − 1 c1 1.35 1.32 1.33 1.34 1.33

c2 1.14 1.12 1.13 1.13 1.13

5 Comparisons

There are many factors that can affect the efficacy of an algorithm.

1. Time: the worst-case or average-case number of basic arithmetic operations
performed by the algorithm.

2. Space: the amount of storage (RAM, hard disk, etc.) required.
3. Parallelizability : the speedup achievable when running the algorithm on mul-

tiple processors. Ideally, the speedup is by a factor equal to the number of
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processors, and the processors do not need to communicate with each other;
if this is the case then the parallelization is said to be perfect4.

4. Communication costs: the time taken for communication between processors,
and the memory access time for retrieving data from large storage devices.
Memory access time can be a dominant cost factor when using extremely
large storage devices [2].

5. Custom-designed devices: the possible speedups that can be achieved by exe-
cuting the algorithm on custom-designed hardware. Examples of such devices
are TWINKLE [24] and TWIRL [25] that were designed for the number field
sieve integer factorization algorithm.

In this section we analyze and compare the efficacy of the meet-in-the-middle
algorithm, VW golden collision search, and a mesh sorting algorithm for solving
CSSI. We make two assumptions:

1. The number m of processors available is at most 264.
2. The total amount of storage w available is at most 280 units.

Our analysis will ignore communication costs, and thus our running time esti-
mates can be considered to be lower bounds on the “actual” running time.

Remark 5 (feasible amount of storage and number of processors). The Sunway
TaihuLight supercomputer, the most powerful in the world as of March 2018, has
223.3 CPU cores [29]. In 2013, it was estimated that Google’s data centres have
a total storage capacity of about a dozen exabytes5 [29]. Thus it is reasonable
to argue that acquiring 264 processors and a storage capacity (with low access
times) of several dozen yottabytes6 for the purpose of solving a CSSI problem
will be prohibitively costly for the foreseeable future.

5.1 Meet-in-the-Middle

As stated in Sect. 3, the running time of MITM-basic and MITM-DFS is approx-
imately 2N and the storage requirements are N , where N ≈ p1/4. Since for
N ≥ 280 the storage requirements are infeasible, we deem the meet-in-the-middle
attacks to be prohibitively expensive when N � 280.

Of course, one can trade space for time. One possible time-memory tradeoff is
to store a table with entries (j(E1/A1), A1), where A1 ranges over a w-subset of
order-�e/2 subgroups of E1[�e]. Next, for each order-�e/2 subgroup A2 of E2[�e],
E2/A2 is computed and j(E2/A2) is searched in the table. If no match is found,
then the algorithm is repeated for a disjoint w-subset of order-�e/2 subgroups
of E1[�e], and so on. The running time of this time-memory tradeoff is approxi-
mately

(w + N)
N

w
≈ N2/w.

4 If the processors share the same storage space, then frequent storage accesses might
decrease the parallelizability of the algorithm.

5 An exabyte is 260 bytes.
6 A yottabyte is 280 bytes.
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For MITM-basic, the unit of time is an �e/2-isogeny computation. For MITM-
DFS, the running time (for � = 2) can be scaled to �e/2-isogeny computations by
dividing by e

12.4 log2 e (cf. Sect. 3.2). One can see that this time-memory-tradeoff
can be parallelized perfectly.

Another possible time-memory tradeoff is to store (j(E1/A1), A1), where A1

ranges over all order-�c subgroups of E1[�e] and c ≈ log� w. Let d = e − c. Then,
for each order-�d subgroup A2 of E2[�e], E2/A2 is computed and j(E2/A2) is
searched in the table. One can check that the running time of this time-memory
tradeoff is approximately N2/w, and that it can be parallelized perfectly. Note
that the unit of time here is an �d-isogeny computation instead of an �e/2-isogeny
computation. The larger tree of �d-isogenies can be traversed using a depth-first
search; the running time is then the same as that of the MITM-DFS variant
described in the previous paragraph.

5.2 Golden Collision Search

As stated in Sect. 4.3, the running time of van Oorschot-Wiener golden collision
search is approximately

N3/2/w1/2.

The algorithm parallelizes perfectly.

5.3 Mesh Sorting

The mesh sorting attack is analogous to the one described by Bernstein [2]
for finding hash collisions. Suppose that one has m processors arranged in a
two-dimensional grid. Each processor only communicates with its neighbours
in the grid. In one unit of time, each processor computes and stores pairs
(j(E1/A1), A1), where A1 is an order-�e/2 subgroup of E1[�e]. Next, these stored
pairs are sorted in time ≈ m1/2 (e.g., see [22]). In the next stage, a second two-
dimensional grid of m processors computes and stores pairs (j(E2/A2, A2), where
A2 is an order-�e/2 subgroup of E2[�e], and the two sorted lists are compared
for a match. This is repeated for a disjoint m-subset of order-�e/2 subgroups A2

until all order-�e/2 subgroups of E2[�e] have been tested. Then, the process is
repeated for a disjoint subset of order-�e/2 subgroups A1 of E1[�e] until a match
is found. One can check that the calendar running time7 is approximately(

m1/2 + m1/2N

m

)
N

m
≈ N2/m3/2.

5.4 Targetting the 128-Bit Security Level

The CSSI problem is said to have a 128-bit security level if the fastest known
attack has total time complexity at least 2128 and feasible space and hardware
costs.
7 Calendar time is the elapsed time taken for a computation, whereas total time is the

sum of the time expended by all m processors.
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Suppose that p ≈ 2512, whereby N ≈ 2128; this would be a reasonable choice
for the bitlength of p if the meet-in-the-middle attacks were assessed to be the
fastest (classical) algorithm for solving CSSI. However, as noted above, the stor-
age costs for the attacks are prohibitive. Instead, one should consider the time
complexity of the time-memory tradeoffs, VW golden collision search, and mesh
sorting under realistic constraints on the storage space w and the number m
of processors. Table 5 lists the calendar time and the total time of these CSSI
attacks for (m,w) ∈ {(248, 264), (248, 280), (264, 280)}. One sees that in all cases
the total time complexity is significantly greater than 2128, even though we have
ignored communication costs.

Table 5. Time complexity estimates of CSSI attacks for p ≈ 2512 and p ≈ 2448, and
� = 2. All numbers are expressed in their base-2 logarithms. The unit of time is a
2e/2-isogeny computation.

# processors m space w p ≈ 2512 p ≈ 2448

calendar
time

total
time

calendar
time

total
time

Meet-in-the-middle (DFS)
time-memory tradeoff

48 64 138 186 106 154

48 80 122 170 90 138

64 80 106 170 74 138

Van Oorschot-Wiener golden
collision search

48 64 112 160 88 136

48 80 104 152 80 128

64 80 88 152 64 128

Mesh sorting 48 — 184 232 152 200

64 — 160 224 128 192

Since the total times for p ≈ 2512 in Table 5 are all significantly greater than
2128, one can consider using smaller primes p while still achieving the 128-bit
security level. Table 5 also lists the calendar time and the total time of these
CSSI attacks for (m,w) ∈ {(248, 264), (248, 280), (264, 280)} when p ≈ 2448 and
N ≈ 2112. One sees that all attacks have total time complexity at least 2128, even
though we have ignored communication costs. We can conclude that selecting
SIDH parameters with p ≈ 2448 provides 128 bits of security against known
classical attacks. For example, one could select the 434-bit prime

p434 = 22163137 − 1;

this prime is balanced in the sense that 3137 ≈ 2217, thus providing maximal
resistance to Petit’s SIDH attack [21].

Remark 6 (communication costs). Consider the case p ≈ 2448, e = 224, m = 264,
w = 280. From (1) and (2) we obtain θ ≈ 1/215.62 and an expected running time



338 G. Adj et al.

of 2131.7. For each function version, the 264 processors will generate approxi-
mately 248.4 distinguished points per unit of time (i.e., a 2112-isogeny computa-
tion). So, on average, the 280 storage device will be accessed 248.4 times during
each unit of time. The cost of these accesses will certainly dominate the compu-
tational costs. Thus our security estimates, which ignore communication costs,
should be regarded as being conservative.

5.5 Targetting the 160-Bit Security Level

Using similar arguments as in Sect. 5.4, one surmises that SIDH parameters
with p ≈ 2536 offer at least 160 bits of CSSI security against known classical (see
Table 6). For example, one could select the 546-bit prime

p546 = 22733172 − 1;

this prime is nicely balanced since 3172 ≈ 2273.

Table 6. Time complexity estimates of CSSI attacks for p ≈ 2536 and p ≈ 2614, and
� = 2. All numbers are expressed in their base-2 logarithms. The unit of time is a
2e/2-isogeny computation.

# processors m space w p ≈ 2536 p ≈ 2614

calendar
time

total
time

calendar
time

total
time

Meet-in-the-middle (DFS)
time-memory tradeoff

48 64 150 198 188 236

48 80 134 182 172 220

64 80 118 182 156 220

Van Oorschot-Wiener golden
collision search

48 64 121 169 149 197

48 80 113 161 141 189

64 80 97 161 125 189

Mesh sorting 48 — 196 244 234 282

64 — 172 236 210 274

5.6 Targetting the 192-Bit Security Level

Using similar arguments as in Sect. 5.4, one surmises that SIDH parameters
with p ≈ 2614 offer at least 192 bits of CSSI security against known classical (see
Table 6). For example, one could select the 610-bit prime

p610 = 23053192 − 1;

this prime is nicely balanced since 3192 ≈ 2304.
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5.7 Resistance to Quantum Attacks

The appeal of SIDH is its apparent resistance to attacks by quantum computers.
What remains to be determined then is the security of CSSI against quantum
attacks.

The fastest known quantum attack on CSSI is Tani’s algorithm [26]. Given
two generic functions g1 : X1 → Y and g2 : X2 → Y , where #X1 ≈ #X2 ≈ N
and #Y � N , Tani’s quantum algorithm finds a claw, i.e., a pair (x1, x2) ∈
X1 × X2 such that g1(x1) = g2(x2) in time O(N2/3). The CSSI problem can
be recast as a claw-finding problem by defining Xi to be the set of all degree-
�e/2 isogenies originating at Ei, gi to be the function that maps a degree-�e/2

isogeny originating at Ei to the j-invariant of its image curve, and Y = R. Since
#X1 = #X2 = N ≈ p1/4, this yields an O(p1/6)-time CSSI attack.

CSSI can also be solved by an application of Grover’s quantum search [12].
Recall that if g : X → {0, 1} is a generic function such that g(x) = 1 for exactly
one x ∈ X, then Grover’s algorithm can determine the x with g(x) = 1 in
quantum time O(

√
#X). The CSSI problem can be recast as a Grover search

problem by defining X to be the set of all ordered pairs (φ1, φ2) of degree-�e/2

isogenies originating at E1, E2, respectively, and defining g(φ1, φ2) to be equal
to 1 if and only if the j-invariants of the image curves of φ1 and φ2 are equal.
Since #X = N2 ≈ p1/2, this yields an O(p1/4)-time quantum attack on CSSI.

The Jao-De Feo paper [14] that introduced SIDH identified Tani’s claw-
finding algorithm as the fastest known attack, whether classical or quantum,
on CSSI. The subsequent literature on SIDH used the simplified running time
p1/6 of Tani’s algorithm (i.e., ignoring the implied constant in its O(p1/6) run-
ning time expression) to select SIDH primes p for a desired level of security. In
other words, in order to achieve a b-bit security level against known classical
and quantum attacks, one selects an SIDH prime p of bitlength approximately
6b. For example, the 751-bit prime p = 23723239 − 1 was proposed in [8] for the
128-bit security level, and this prime has been used in many subsequent works,
e.g., [6,7,13,17,32]. Also, the 964-bit prime p = 24863301 − 1 was proposed in
[13] for the 160-bit security level.

However, this assessment of SIDH security does not account for the cost of the
O(p1/6) quantum space requirements of Tani’s algorithm, nor for the fact that
Grover’s search does not parallelize well—using m quantum circuits only yields
a speedup by a factor of

√
m and this speedup has been proven to be optimal

[31]. Some recent work [1,16] suggests that Tani’s and Grover’s attacks on CSSI
are costlier than the van Oorschot-Wiener golden collision search algorithm. If
this is indeed the case, then one can be justified in selecting SIDH primes p434
(instead of p751), p546 (instead of p964) and p610 in order to achieve the 128-,
160- and 192-bit security levels, respectively, against both classical and quantum
attacks. Furthermore, SIDH parameters with p434 could be deemed to meet the
security requirements in NIST’s Category 2 [18] (classical and quantum security
comparable or greater than that of SHA-256 with respect to collision resistance),
and p610 could be deemed to meet the security requirements in NIST’s Category 4
[18] (classical and quantum security comparable to that of SHA-384).
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5.8 SIDH Performance

A significant benefit of using smaller SIDH primes is increased performance.
The reasons for the boost in SIDH performance are twofold. First, since the
computation of the ground field Fp multiplication operation has a quadratic
complexity, any reduction in the size of p will result in significant savings. Since
high-end processors have a word size of 64 bits, the primes p751, p546 and p434
can be accommodated using twelve, nine and seven 64-bit words, respectively.
Hence, if Fp multiplication using p751 can be computed in T clock cycles, then
a rough estimation of the computational costs for Fp multiplication using p434
and p546 is as low as 0.34T and 0.56T , respectively. Second, since the exponents
of the primes 2 and 3 in p434 and p546 are smaller than the ones in p751, the
computation of the isogeny chain described in Sect. 2.2 (see Remark 1) is faster.

Table 7 lists timings for SIDH operations for p434, p546 and p751 using the
SIDH library of Costello et al. [5]. The timings show that SIDH operations are
about 4.8 times faster when p434 is used instead of p751.

Table 7. Performance of the SIDH protocol. All timings are reported in 106 clock
cycles, measured on an Intel Core i7-6700 supporting a Skylake micro-architecture.
The “CLN + enhancements” columns are for our implementation that incorporates
improved formulas for degree-2 and degree-3 isogenies from [6] and Montgomery ladders
from [10] into the CLN library.

Protocol phase CLN library [8] CLN + enhancements

p751 p434 p546 p751 p434 p546

Key Gen. Alice 35.7 7.51 13.20 26.9 5.3 10.5

Bob 39.9 8.32 14.84 30.5 6.0 11.7

Shared secret Alice 33.6 7.01 12.56 24.9 5.0 10.0

Bob 38.4 7.94 14.35 28.6 5.8 11.5

6 Concluding Remarks

Our implementations of the MITM and golden collision search CSSI attacks
are, to the best of our knowledge, the first ones reported in the literature. The
implementations confirm that the performance of these attacks is accurately
predicted by their heuristic analysis.

Our concrete cost analysis of the attacks leads to the conclusion that golden
collision search is more effective that the meet-in-the-middle attack. Thus one
can use 448-bit primes and 536-bit primes p in SIDH to achieve the 128-bit
and 160-bit security levels against known classical attacks on the CSSI problem.
We emphasize that these conclusions are based on our understanding of how to
best implement these algorithms, and on assumptions on the amount of storage
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and the number of processors that an adversary might possess. On the other
hand, our conclusions are somewhat conservative in that the analysis does not
account for communication costs. Moreover, whereas it is generally accepted
that the AES-128 and AES-256 block ciphers attain the 128-bit security level in
the classical and quantum settings, the time it takes to compute a degree-2112

isogeny (which is the unit of time for the golden collision search CSSI attack
with balanced 448-bit prime p) is considerably greater than the time for one
application of AES-128 or AES-256.

Acknowledgements. We thank Steven Galbraith for the suggestion to traverse the
MITM trees using depth-first search. We also thank Sam Jaques for the many discus-
sions on Grover’s and Tani’s algorithms.
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