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1 Introduction

In the 1990’s, Peter Shor developed a polynomial time algorithm to factor and
compute discrete logarithms using a quantum computer. This discovery has
changed the focus of the future of cryptography. With large scale quantum com-
puting increasingly being viewed as an inevitability, as opposed to a mere pos-
sibility, research in the field of post-quantum cryptography is more important
than ever.

A plethora of possible post-quantum cryptosystems have been proposed at
this time, including (but not limited to) lattice-based cryptosystems, code-based
cryptosystems, multivariate cryptosystems, and hash-based signatures. Each of
these areas rely on mathematical problems for which there is no obvious quantum
advantage. In this article, we focus on the application of multivariate cryptog-
raphy to secure encryption.

1.1 Recent History of Multivariate Encryption

Multivariate encryption has had a complicated history, with an increase in activ-
ity in the recent past. These schemes are composed of systems of multivariate
quadratic polynomials over a finite field F. The security of these schemes is based
on the MQ-problem, the problem of solving systems of quadratic equations over
a field, which is known to be NP-hard. This fact suggests that the problem
remains hard even for quantum computers.

Recently we have seen new candidates and strategies emerge for multivariate
encryption. Previously, multivariate schemes centered around bijective functions
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that map from vector spaces of size n back into a vector space of size n. The
problem with this strategy is that there are not many bijective quadratic maps.
Furthermore, of the maps that do exist, many of these functions were either too
hard to invert, or too easy to invert. The common practice to try to overcome
this downfall was to try to hide an easily invertible function by composing the
bijective function with affine maps.

In 2013, Tao et al. proposed relaxing the bijective condition for the central
function and replacing it with an injective map with a much larger codomain in
[1]. In theory, this would make hiding the structure of the map while maintaining
efficient inversion easier to accomplish. The recent resurgence of multivariate
encryption is due primarily to this change in philosophy. Many schemes have
been proposed along these apparently promising lines.

Some notable schemes that increase the codomain size of the central map-
pings include the ABC Simple Matrix scheme, see [1], which utilizes a large
matrix algebra structure; ZHFE, see [2], which is similar to a high degree ver-
sion of HFE with a single variable over the extension; and SRP, see [3], which
combines the Square encryption scheme, Rainbow signature scheme, and Plus
method. Although these schemes appear promising, many of these schemes have
subsequently been the victims of surprising (if not disabling) cryptanalysis. The
attacks on ABC from [4–6] work well if the base field is small, and both ZHFE
and SRP were broken in [7] and [8], respectively.

1.2 Our Contribution

We propose a new encryption system, EFLASH, based on a primitive with strong
security results. The scheme is a projected C∗− scheme with a parameterization
effective for encryption. This scheme also follows the philosophy of increasing the
size of the codomain to avoid ciphertext collision. We accomplish this increase
in codomain size by replacing the traditional projection with an embedding into
a larger space.

This construction introduces challenges that a projected C∗− signature
scheme does not have to address. Since valid decryption requires a unique preim-
age, it is a requirement that there is a single assignment of the missing coordi-
nates of the output of the central map corresponding to a valid input. Thus, for
constant time implementations, every such assignment of coordinates must be
computed. We introduce a new method of decryption satisfying these constraints
in realistic amounts of time.

1.3 Organization of Paper

The paper is organized as follows. The section following the introduction intro-
duces the idea of big field schemes and describes relevant big field schemes,
namely C∗, PFLASH and HFE. Then the subsequent section outlines the crypt-
analytic techniques that have had the most success attacking big field schemes.
After that, we introduce the algebraic structure of our scheme in Sect. 4 where
we discuss the algebraic aspects of EFLASH and methods for encryption and
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decryption. Finally, we discuss the resistance to relevant attacks and parameter
selection for EFLASH.

2 Big Field Schemes

EFLASH belongs to a family of multivariate cryptosystems known as “big field”
schemes. These schemes rely on the multiplicative structure of a degree d exten-
sion Fqd of the finite field Fq. Let φ : Fd

q → Fqd be a vector space isomorphism
(we will also denote Fqd as K). Notice that univariate monomials of the form
Xqi+qj

in Fqd [X] are the product of two Frobenius automorphisms over Fq,
and hence are the product of two Fq-linear functions. Thus φ−1 ◦ Xqi+qj ◦ φ is
coordinate-wise quadratic when expressed over Fq. Thus functions of the form

∑

0≤i,j<d

αijX
qi+qj

are said to be Fq-quadratic.
To disguise the structure of the central map of such schemes one applies a

morphism of polynomials, essentially choosing random linear maps mixing the
input and output spaces of the central map. Formally, we define these morphisms
as follows.

Definition 1. A polynomial morphism is a map between two systems of poly-
nomials, F : F

d
q → F

d
q and P : F

n
q → F

m
q defined by a pair of affine maps

T : Fd
q → F

m
q and U : Fn

q → F
d
q such that P = T ◦ F ◦ U . If both T and U are

invertible, then the morphism is said to be an isomorphism and F and P are
said to be isomorphic.

The following diagram illustrates the entire construction utilizing the big
field.

F
n
q F

d
q F

d
q F

m
q

K K

U F T

φ

f

φ−1

P

2.1 C∗

Matsumoto and Imai introduced the C∗ scheme in [9] at Eurocrypt ‘88, effec-
tively introducing the world to massively multivariate cryptography. The scheme
uses a big field construction where the quadratic monomial map f : K → K is
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defined by f(x) = xqθ+1 and is hidden by a polynomial isomorphism. The public
key for the scheme is given by P = T ◦ φ−1 ◦ f ◦ φ ◦ U .

Encryption of a plaintext is accomplished by evaluating the public polynomi-
als P at an encoding of the plaintext x, and is thus very efficient. Decryption is
accomplished by inverting each of the three component maps individually. The
inversion of v = f(u) is performed by solving h(qθ + 1) = 1( mod qn − 1), and
calculating u = vh. This process can be cumbersome, depending on the degree
of extension and the exponent θ.

2.2 PFLASH

Following the break of C∗, efforts to modify the scheme to add security lead
to the discovery of PFLASH, introduced in [10]. The PFLASH scheme is a
specific parametrization of a projected C∗− scheme. Both the projection and
minus modifiers were initially proposed in relation to C∗ in [11]. The purpose
of the projection modifier is to change the simplicity of the central map by
fixing the value of d input variables. The composition of the projection and an
affine map U create a projection onto a codimension d hyperplane. The minus
modifier eliminates r equations from the public key. Note that the composition
of the minus projection with the affine map T has corank r. The public key of
PFLASH(q, n, r, d) is given by P (x) = πr ◦ T ◦ φ−1 ◦ f ◦ φ ◦ U ◦ πd(x).

The scheme works as a digital signature primitive. To verify a signature, an
individual evaluates the public polynomials at the given signature. To create a
signature, the signer finds a preimage of each of the private maps. In order to
find a preimage of πr ◦ T ◦ φ−1, randomly append r values to the message, then
apply T−1 and φ. After inverting f , an element that is in the preimage of φ ◦ U
and in the image of πd is selected as the signature.

PFLASH has strong security arguments, including a proof of security against
differential attacks that can be found in [12]. Due to the modifications of the
scheme, the public key is not isomorphic to the private monomial function, but
rather only a polynomial morphism exists between the central map and the
public key. As shown in [13], the morphism of polynomials problem is NP-hard,
which gives hope that the information lost to the public key may secure the
scheme.

2.3 HFE

Another descendent of the C∗ scheme is the Hidden Field Equation (HFE)
scheme of [14]. HFE replaces the monomial map of the C∗ scheme with a more
general polynomial with a degree bound D.

Given K, the degree n extension of F, a quadratic polynomial f : K → K

with degree bound D is chosen. The function f has the following form:

f(x) =
∑

i≤j
qi+qj≤D

αi,jx
qi+qj

+
∑

i
qi≤D

βix
qi

+ γ,
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where αi,j , βi, γ ∈ K. The public key is then constructed via the isomorphism:

P = T ◦ φ−1 ◦ f ◦ φ ◦ U.

Inversion for this scheme is achieved by taking a ciphertext y = P (x) and
computing v = φ ◦ T−1(y). The next step is to solve v = f(u) for u via the
Berlekamp algorithm, see [15], and finally recovering x = U−1 ◦ φ−1(u).

3 Cryptanalyses of Big Field Schemes

There are three main cryptanalytic techniques that are applicable to big field
multivariate cryptosystems. In a sense, all of these techniques are related to Q-
rank. The MinRank key recovery attack has a complexity directly dependent
on the Q-rank of the central map. The differential symmetry attack is relevant
when the Q-rank of the central map is minimal in the relevant algebra. The
direct algebraic attack has a complexity dependent on the degree of regularity of
the public key which is usually a linear function of the Q-rank. We review each
of these techniques.

3.1 MinRank

The first effective attack on HFE was presented in [16] and is now commonly
called the Kipnis-Shamir (KS) attack. Their idea is to express the central
polynomial as a single quadratic form on an a large representation of the
extension field. Specifically, choose a representation ψ : K → A of the form
ψ(X) = (X,Xq, . . . , Xd−1). Then one can choose a matrix representation F of
the central map f such that

f(X) =
[
X Xq · · · Xqd−1

]
F

[
X Xq · · · Xqd−1

]�
.

As the reader easily notices, the degree bound on f implies that F has only
a small block of nonzero values and thus has low rank. We call the rank of this
quadratic form the Q-rank of f .

The attack in [16] exploits this low Q-rank property by using interpolation to
find a formula for the public key over the extension field, computing the matrix
forms of all of the Frobenius powers of this map, and then finding a low rank
linear combination of these matrices with coefficients chosen from K. The attack
can be effective, but all of the algebra takes place in K which can be cumbersome.

The KS attack was significantly improved for determined or slightly over-
determined schemes in [17], where the authors introduce minors modeling.
Whereas the modeling of the low rank property in the KS attack requires struc-
tures defined over K, the authors of [17] noticed that a K-linear combination of
the public quadratic forms defined over Fq has low rank. Thus one may construct
a system of equations over the small field, resolve this system via Gröbner bases
over the small field, and finally recover the variety over the big field. Requiring
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the most intensive calculations to be performed over the base field provided a
significant advantage.

PFLASH is algebraically equivalent to an HFE- scheme (with a more efficient
inversion process), and though the MinRank problem is less over-defined, the
technique can, in principle, still be applied. To see this equivalence, note that the
removal of equations can be modeled as a projection whose minimal polynomial,
see [18, Definition 1], has low degree. Thus, there is a basis in which one can
compose a low degree linear map with the low Q-rank central map of PFLASH
producing a low Q-rank composition. As shown in [12,19], the Q-rank of the
PFLASH public key is too large for this attack to be effective.

3.2 Differential Techniques

A second class of attacks that has proven effective against big field schemes is the
family of differential attacks involving the recovery of a symmetric relation to
remove the minus modifier, or as a tool for accessing a low Q-rank. The discrete
differential of a function f : K → K is the bivariate function

Df(a, x) = f(a + x) − f(a) − f(x) + f(0).

The differential operation D is linear and acts in many ways like a derivative;
e.g. the differential of a Fq-quadratic map is Fq-bilinear, the differential of a
Fq-cubic function is Fq-bi-quadratic, etc. The operators D2, Dx, and so on all
work analogously as do d2

dx2 , ∂
∂x , etc.

Differential attacks have been the basis of several cryptanalyses, see [4–6,8,
20,21]. The two basic techniques are linear differential symmetry attacks and
differential invariant attacks.

Linear differential symmetry attacks attempt to find linear maps L that “fac-
tor through” the differential of the central map in an interesting way. Specifically,
the goal is to find maps L satisfying

Df(La, x) + Df(a, Lx) = ΛLDf(a, x).

If such a map can be found, it allows one to “remove” the minus modifier
by discovering new linear combinations of the central maps that are linearly
independent of the public key.

Such an attack is what broke SFLASH in [21]. If L represents multiplication
by an element σ ∈ K, then one can factor out σ from the differential due to
the fact that the central map f is multiplicative. This vulnerability is provably
removed via projection as shown in [12]. Thus PFLASH is invulnerable to this
attack.

The other differential attack model, the invariant attacks, use the low rank
structure on a large subspace of the public key to enhance the linear algebra
search version of MinRank. Specifically, if a large subspace of the public key
have the property that the matrices representing the functions as quadratic
form map a particular subspace V simultaneously into another subspace W of
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the same dimension, then any projection producing two full rank differentials
Df1 and Df2 allow one an advantage in recovering V , since V is left invariant
by Df1Df−1

2 . This attack has been applied to undermine some of the proposed
parameters for ABC and cubic ABC in [4–6] and was used to break the balanced
oil-vinegar scheme in [22]. This attack was shown to be useless against PFLASH
in [19].

3.3 Algebraic Attacks

The most straightforward attack is to try to directly invert the public key via
Gröbner bases. The complexity of solving such systems relies on the degree of
regularity of the system, which can be defined as the smallest degree at which
a nontrivial syzygy producing a degree fall is generated in the Gröbner basis
algorithm.

As shown in [23], the degree of regularity for HFE- systems, with a equations
removed, satisfies the bound

dreg ≤ (q − 1)
⌊�logq(D)� + a

2

⌋
+ 2.

This upper bound is fairly tight for small fields and provides a fair estimate of
the complexity of the direct algebraic attack on HFE-.

4 Description of EFLASH

Our scheme may be considered an atypical parameterization of a projected C∗−,
which introduces new challenges. The major difference major difference between
our scheme and the previously studied PFLASH, is the size of the projection.
The size of our projection π will be much larger. This modification produces a
significantly different scheme with different security properties.

4.1 Algebraic Structure

We will let n be the number of variables and d > n be the degree of the extension
field over Fq. We will let m ≥ n be the number of equations (m < d) and denote
the number of equations removed by a = d − m. We will compose our central
map f(x) = xqθ+1 with affine maps S and T from (Fq)d to (Fq)d. We let φ be
a vector space isomorphism from (Fq)d to Fqd , π be a linear embedding from
(Fq)n to (Fq)d, and τ be a linear projection from (Fq)d to (Fq)m.
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(Fq)d (Fq)d (Fq)d (Fq)d

Fqd Fqd

(Fq)n

(Fq)m

S T

φ

f

φ−1

π

τ

Our public equations P can be found by computing P = τ◦T ◦φ−1◦f◦φ◦S◦π,
where f(x) = xqθ+1.

4.2 Encryption and Decryption

To encrypt a message x, the sender would just compute P (x) = τ ◦ T ◦ φ−1 ◦
f ◦ φ ◦ S ◦ π(x) = y to get ciphertext y. To decrypt the message we will take
advantage of some of the weaknesses that an unmodified C∗ scheme possesses.

To decrypt, we exploit the more efficient method of inversion Patarin devel-
oped in his linearization equations attack from [24]. Specifically, if v = (φ−1 ◦
f ◦ φ)(u) then there is a system of d polynomials of the form

∑

0≤i,j<d

αi,j,�uivj +
∑

0≤i<d

βi,�ui +
∑

0≤i<d

γi,�vi + δ�

in the coefficients of u and v which are simultaneously zero. Composing the right
inverse of S ◦ π and T with u and v, respectively, we obtain a bilinear relation
between the plaintext x and y′ = T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π(x). Given access to the
private key (which includes the linearization equations) the calculation of this
bilinear relation is immediate. Adding the linearization equations to the private
key can be considered a drawback as it increases the private key size, but is an
important aspect for our algorithm.

Inversion, given the ciphertext y, is then accomplished by concatenating every
possible suffix ya to discover y′ = y||ya. Success is determined by solving the
affine system in x induced from the linearization equations upon input y′. If the
affine system has a solution, x, we can be assured that P (x) = y.

4.3 Decryption Failure Rate

We want to find the probability that there are multiple preimages of y under
τ , which would result in a decryption failure. Specifically, we want to compute
the probability that x1, x2, y ∈ Fq exists such that P (x1) = P (x2) = y, given
that P (x1) = y. Given our function P (x) = τ ◦ T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π(x),
it is clear that the only part of this function that is not injective is τ, and
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that π is the only additional map that is not bijective. Thus we compute the
probability of decryption failure under the simplifying heuristic that the central
map P̂ (x) = T ◦ φ−1 ◦ f ◦ φ ◦ S(x) is a random bijection. This assumption
is obviously false as f is a quadratic map, but we believe this heuristic to be
statistically useful. Let A = image(π), |A| = qn. We can consider B to be the
preimage of y under τ , so under our simplifying heuristic B is a random set of
qa elements from F

d
q .

We will use Bernoulli trials to estimate the probability that y is the image
of at least two distinct elements of Fn

q , given that it is the image of at least one.
If Pr(P̂ (x) ∈ B : P̂ (x) ∈ A) = p, then the probability of k elements in A being
in B is

(
qn

k

)
(1 − p)(q

n−k)pk.
The probability of P̂ (x) ∈ B is qa

qd = q−m, and the probability that P̂ (x) is
not in B is 1 − q−m. Thus we compute:

Pr(|A ∩ B| ≥ 2 | |A ∩ B| ≥ 1) =
Pr(|A ∩ B| ≥ 2)

Pr(|A ∩ B| ≥ 1)

=
1 −

(
Pr(|G ∩ τ−1(y)| = 0) + Pr(|G ∩ τ−1(y)| = 1)

)

1 − Pr(|G ∩ τ−1(y)| = 0)

Therefore we find Pr(|A ∩ B| ≥ 2 | |A ∩ B| ≥ 1) to be

p =
1 − (1 − q−m)qn − qn−m(1 − q−m)qn−1

1 − (1 − q−m)qn .

To find an upper bound for the probability p, we find an upper bound for
the numerator, and a lower bound for the denominator.

Claim 1.
(

a
i+1

)
(q−(i+1)m) <

(
a
i

)
(q−im) when a < qm

Proof. Notice that
(

a
i+1

)
(q−(i+1)m) = a!

(i+1)!(a−i−1)!q(i+1)m has the same numer-

ator as
(
a
i

)
(q−im) = a!

(i)!(a−i)!qim , so we will prove the claim by showing the
denominator of the left hand side is larger than the denominator of the right
hand side.

Clearly (i + 1)! > i!, and q(i+1)m > qim by a factor of qm. We see that
(a − i − 1)! < (a − i)! by a factor of a − i, but we know that a − i < a < qm.
Thus we can conclude (i + 1)!(a − i − 1)!q(i+1)m > (i)!(a − i)!qim and therefore(

a
i+1

)
(q−(i+1)m) <

(
a
i

)
(q−im) when a < qm. 
�

Bounding the numerator: 1 − (1 − q−m )q
n − qn−m (1 − q−m )q

n −1.
Using binomial coefficients and the above claim, we see that:

(1 − q−m)qn

= (1 −
(

qn

1

)
q−m +

(
qn

2

)
q−2m − · · · ) ≥ 1 − qnq−m.

Thus 1 − (1 − q−m)qn ≤ 1 − (1 − qn−m).
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By the same argument, we are given:

(1 − q−m)q
n−1 = (1 −

(
qn − 1

1

)
q−m +

(
qn − 1

2

)
q−2m − · · · ) ≥ 1 − (qn − 1)q−m.

Therefore, −qn−m(1−q−m)qn−1 ≤ −qn−m(1−(qn−1)q−m). Thus the numerator
is bounded above by 1 − (1 − qn−m) − qn−m(1 − (qn − 1)q−m).

Bounding the denominator: 1 − (1 − q−m )q
n

Similar to our argument for
bounding the numerator, we will use binomial coefficients and claim 1 to find:

(1 − q−m)q
n

= (1 −
(
qn

1

)
q−m +

(
qn

2

)
q−2m − · · · ) ≤ 1 −

(
qn

1

)
q−m +

(
qn

2

)
q−2m

Hence the denominator is bounded below by 1 − (1 − qn−m + qnqn−1
2 q−2m).

Finding a bound for the probability, p

p =
1 − (1 − q−m)qn − qn−m(1 − q−m)qn−1

1 − (1 − q−m)qn

≤ 1 − (1 − qn−m) − qn−m(1 − (qn − 1)q−m)
1 − (1 − qn−m + qnqn−1

2 q−2m)

=
1 − 1 + qn−m − qn−m + qn−m(qn − 1)q−m

1 − 1 + qn−m − qn(qn−1)
2 q−2m

=
qn−m(qn − 1)q−m

qn−m − qn(qn−1)
2 q−2m

=
qn−m(qn − 1)q−m

qn−m − qn−m(q−(n−m) qn(qn−1)
2 q−2m)

=
qn−m − q−m

1 − ( qn−m−q−m

2 )

When q = 2, empirical evidence shows we can approximate this by 2n−m−1.
The data to support this claim are shown in Table 1.

Table 1. Probability of decryption failure for specific parameters of EFLASH.

q n d a m n − m Decrypt fail rate

2 14 34 8 26 −12 2−13.13

2 14 35 8 27 −13 2−13.94

2 14 36 8 28 −14 2−14.94

2 14 37 8 29 −15 2−15.94

2 14 38 8 30 −16 2−17.64
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5 Resistance to Known Attacks

The security analysis of EFLASH is quite related to that of PFLASH because
of the similar algebraic structure. There are three attack methods that must be
considered. Since the scheme requires more equations than variables to ensure a
low probability of decryption failure, we require a careful analysis of the direct
algebraic attack to ensure that the degree of regularity of the scheme is not
too low. Second, in light of the attack on HFE- schemes, see [25], we require a
MinRank analysis. Finally, given the history of the lineage of the C∗ family, we
require an analysis of symmetric differential methods.

5.1 Algebraic Attack

The first relevant attack for EFLASH is the direct algebraic attack. Algebraically,
EFLASH is a high degree projected HFE- scheme, in the sense that EFLASH
has a low Q-rank like HFE. Applying a projection to the input variables cannot
increase the Q-rank, so we analyze the Q-rank of the central map composed with
the minus modifier.

The key observation is that, unlike the case of HFE in which removing one
equation in general increases the Q-rank by one, since the quadratic form asso-
ciated with the central map is so sparse, the removal of one equation in general
increases the rank by two. To see this, note that the coefficients of the quadratic
form associated with HFE are restricted to a square submatrix whose size is
typically the Q-rank of the map. A codimension one projection allows these
coefficients to bleed into another row and column, which increases the size of the
square by one. In contrast, the size of the smallest square containing the nonzero
values in the quadratic form of the EFLASH central map is usually much larger
than the Q-rank of EFLASH; in fact, the codimension one projection can pro-
duce two elements in original rows and columns, see Fig. 1.

Fig. 1. The shape of the matrices representing the central maps of HFE- and C∗−.
The darkly shaded regions represent nonzero values of the central map without the
minus modifier, the lightly shaded regions represent new nonzero values introduced by
the removal of one equation. Unshaded areas have coefficients of zero.

Thus, the central map of EFLASH has Q-rank 2+2a. By the formula provided
in [23], we compute an upper bound on the degree of regularity,

dreg ≤ (q − 1)(a + 1) + 2. (1)
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When q is small this bound is known to be fairly tight. The complexity of the
algebraic attack on EFLASH is therefore estimated to be O

((
n+dreg

dreg

)ω
)
, where

2 ≤ ω ≤ 3 is the linear algebra constant.
We conducted experiments on some small scale instances of EFLASH to

study the behavior of the degree of regularity for values of n and m = d − a
of a similar ratio to a full sized scheme with a low decryption failure rate. The
results are shown in Table 2.

Table 2. The degree of regularity of small scale EFLASH parameters in comparison
to that of random systems of the same size.

n d a m dreg dreg (RANDOM)

16 28 9 19 4 4

24 37 9 28 4 5

32 47 9 38 5 6

40 56 9 47 ≥ 6 7

The data show that the degree of regularity grows with the size of the system
when a is fixed. Until our resource permissions were limited on the machine, each
sufficiently large system exhibited a degree of regularity at most one less than
that of a random system. We do not have a solid theoretical argument for why the
degree of regularity should be bounded thusly; however, for the sizes of schemes
necessary to achieve security, the upper bound provided by (1) is already strictly
less than the degree of regularity of random systems of the same size.

5.2 MinRank Attack

We can denote the calculations used to find our public equations P as matrix
multiplications. Let F∗i be the matrix representation of the ith Frobenius power
of the central map f . Then the matrix F∗0 represents our central map f , and is
the d×d matrix with 1’s in the (0, θ) and (θ, 0) coordinates and zeros elsewhere.
Matrices S and T are d × d affine maps. We can also consider π as a linear
embedding from (Fq)n to (Fq)d, and τ as a linear projection from (Fq)d to (Fq)m.
Let σ be a primitive element of the extension, and thus {1, σ, σ2, . . . , σd−1} is
a basis vector over Fq. Then mappings of φ and φ−1 can be represented as
multiplication of Md and M−1

d , respectively, where

Md =

⎛

⎜⎜⎜⎝

1 1 . . . 1
σ σq . . . σqd−1

...
... . . .

...
σd−1 σ(d−1)q . . . σ(d−1)qd−1

⎞

⎟⎟⎟⎠
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We can express the actions of τ by the following d × d matrix,

τ∗ =
[

Im 0m×a

0a×m 0a×a

]
.

Notice that τ∗ : (Fq)d → (Fq)d. We will call P ∗ := τ∗ ◦ T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π.
P and P ∗ will be comprised of the same m public equations, but P ∗ will then
have a rows of 0 appended to it.

Consider R = φ ◦ τ∗ ◦ T ◦ φ−1. Then R : Fqd → Fqd is Fq-linear. If we let
τ̃(x) = Πr∈ker(R)(x − r), then we know by proposition 2 in [18], there exists
a nonsingular linear map R̃ from Fqd to Fqd such that Rx = R̃τ̃x. Let T̃ =
φ−1 ◦ R̃ ◦ τ̃ ◦ φ. This brings us to the following claim.

Claim 2. P ∗(x) = τ∗ ◦ T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ πx = T̃ ◦ φ−1 ◦ f ◦ φ ◦ S ◦ πx

Proof.

T̃ ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π = φ−1 ◦ R̃ ◦ τ̃ ◦ φ ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π

= φ−1 ◦ R̃ ◦ τ̃ ◦ f ◦ φ ◦ S ◦ π (∗)

= φ−1 ◦ R ◦ f ◦ φ ◦ S ◦ π

= φ−1 ◦ φ ◦ τ∗ ◦ T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π

= τ∗ ◦ T ◦ φ−1 ◦ f ◦ φ ◦ S ◦ π

= P ∗


�
Now, let us reconsider (∗). We know that our public key is equivalent to (∗),

so we see that

P ∗ = φ−1 ◦ R̃ ◦ τ̃ ◦ f ◦ φ ◦ S ◦ π

= φ−1 ◦ R̃ ◦ φ ◦ φ−1 ◦ τ̃ ◦ f ◦ φ ◦ S ◦ π

= T̂ ◦ φ−1 ◦ f̂ ◦ φ ◦ S ◦ π

where f̂ is our new central map and f̂ = τ̃ ◦ f and T̂ = φ−1 ◦ R̃ ◦ φ. We now
consider F̂∗i to be the ith Frobenius power of the new central map f̂ = τ̃ ◦f . If we
denote h = φ−1◦f̂◦φ, then we can find symmetric matrices (H1, . . . ,Hd) ∈ (Fq)d

such that hi = xHix
�. As shown in [17] we see,

(H1, . . . ,Hd) = (MdF̂∗0M�
d , . . . ,MdF̂∗(d−1)M�

d )M−1
d . (2)

If we denote the public key by P = (g1, g2, . . . , gm)�, then we can consider
the symmetric matrices (G1,G2, . . . ,Gm) that correspond to the public poly-
nomials, such that gi = xGix. By analysis in [17] we find,

(G1, . . . ,Gm) = (πSMdF̃∗0M�
dS�π�, . . . , πSMdF̃∗(d−1)M�

dS�π�)M−1
d T̃

(3)
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When we consider our original central map, we saw that F∗0 has rank 2.
Looking at our new central map f̂ , we see that τ̃ increases the rank. If we insist
that θ is between a + 1 and d − a − 1, then F̂∗0 has rank 2(a + 1), as discussed
in Sect. 5.1.

Notice that the embedding π : (Fq)n → (Fq)d, and the affine map S will not
increase the rank of the right hand side of (3), so it will not affect our MinRank
attack. Applying T̂ normally does increase the rank, but it does not increase the
min-Q-rank because it just produces new linear combinations of these matrices.

Using these facts and the analysis from [17] we find that we are solving the
MinRank problem:

rank
( m−1∑

k=0

λiGi

) ≤ 2(a + 1)

By the analysis in [26] and [27], the complexity of solving MinRank with
the given parameters is O((

m+dreg

dreg

)ω)
, where dreg is the degree of regularity of

the minors system and ω is the linear algebra constant. Treating EFLASH as
a special case of HFE-, we may derive the degree of regularity of the minors
system from [25, Conjecture 2] by using the Q-rank in place of the sum of the
logarithm of the degree bound and the number of equations removed. Then we
may estimate that the degree of regularity of the minors system is dreg = 2a+3.

5.3 Discrete Differential Attack

In [12], it is shown that almost all parameters of PFLASH are secure against
differential adversaries. The proof relies on the fact that the corank of the pro-
jection is relatively small. Since EFLASH uses a corank d − n projection, the
security proof does not apply and so we must use other arguments.

By the symmetric argument to that in [25], we can express π under the appro-
priate basis as a polynomial in K of degree qd−n. Thus, the central quadratic
form can be considered a quadratic form in the d − n “variables” π(x)qi

, for
0 ≤ i ≤ d − n. In characteristic two, there are at least as many linearly indepen-
dent quadratic monomials as in GF(2); thus, there are at least

(
d−n+1

2

)
linearly

independent quadratic monomials in π(x)qi

, for 0 ≤ i ≤ d − n over K.
We expect that the locus of stabilizing pairs of matrices is zero-dimensional

over K, though it is necessarily positive dimensional over Fq since scalar multiples
induce symmetry for any map. We performed experiments and found that the
solution space was zero-dimensional over K in all cases. We conclude that the
space of linear maps inducing symmetry on EFLASH is too small to be exploited
like in the attack on SFLASH of [21].

6 Parameter Selection

In choosing parameters for EFLASH, we need to consider security against the
direct algebraic attack, the MinRank attack, and fault attacks exploiting decryp-
tion failure. We address the constraints each of these attacks places on parame-
ters, as well as efficiency concerns.
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The complexity of both the direct attack and the MinRank attack is directly
related to the Q-rank of the public key. In the case of very small fields, such
as GF(2), the degree of regularity is little larger than the Q-rank, 2a + 2; thus,
several equations must be removed to achieve security. Over GF(2), each increase
in a doubles decryption time while making the direct attack approximately n
times harder and the MinRank attack approximately 2m times harder.

To address decryption failures, we note that the probability estimate of Sect. 4
is approximately qn−m. We set an reasonable bound 2−B on the probability of
decryption failure and may set m = n + B

lg(q) to achieve this bound.
For larger q, the MinRank attack seems to be the most concerning. For

efficiency reasons, it is impractical to have a large a; therefore, an instance with
large q is vulnerable to MinRank. For this reason, we recommend the choice
q = 2 with a and n sufficiently large to resist the algebraic attack. Our specific
parameter selections for classical security levels are summarized in Table 3. It is
important to note that our implementation is a proof of concept, and not at all
optimized. This is a magma implementation, and we are only using one core.

Table 3. Parameters and unoptimized performance of EFLASH(q, n, d, a) at the 80-bit
and 128-bit classical security levels.

Scheme Security Public key B Enc. (ms) Dec. (ms) Dec. failure

EFLASH(2, 80, 101, 5) 80-bit 38892 0.7 194 2−17

EFLASH(2, 134, 159, 9) 128-bit 169613 1.3 12758 2−17

In principle, Grover search should affect the security of these schemes, but
at this time we are not aware of a result that indicates a Grover search would be
feasible for such large parameters. It is possible that Grover search could halve
the dimension of the preimage search space. Thus, we may have to roughly
double the size of the plaintext. To protect against the possible threat of Grover
search we consider the parameter selections shown in Table 4.

On the other hand, we may consider the possibility of the cryptosystem being
implemented on a quantum device so that the search step in decryption may be
Groverized. Therefore Grover’s algorithm may, in fact, improve efficiency.

Table 4. Parameters and unoptomized performance of EFLASH(q, n, d, a) at the 80-bit
and 128-bit quantum security levels.

Scheme Security Public key B Enc. (ms) Dec. (ms) Dec. failure

EFLASH(2, 160, 181, 5) 80-bit 141691 1.9 1140 2−17

EFLASH(2, 256, 279, 7) 128-bit 559249 5.3 16177 2−17
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7 Conclusion

In this paper we propose a new multivariate encryption scheme, EFLASH,
derived from the lineage of PFLASH. One can view EFLASH as a parameterized
projected C∗− scheme, where the projection π may be viewed as an embedding
that maps from a smaller field to a much larger field. Thus, EFLASH follows the
recent trend of achieving encryption with injective expansion maps. A possible
direction to improve this result is to handle decryption failures in a more clever
way. It may be possible to handle decryption failures in a generic way, as in [28].
it may also be interesting to consider reaction attacks against the scheme. Our
algorithm implementation is a proof-of-concept implementation and is not opti-
mized. Some possible optimizations may include making it not constant time,
which should halve the decryption time.

EFLASH inherits some of the solid security justification from its digital sig-
nature forebear, PFLASH, though some of the security arguments are weakened
by the massive cokernel of the projection. Still, the analysis of the security of
EFLASH against each of the primary modes of attack on big field schemes is
straightforward and encouraging. In this sense, it makes sense to consider the
scheme as a sort of “standard candle” for the advancement of big field multi-
variate cryptanalysis. If EFLASH is to be broken, it seems that a new technique
will need to be discovered.

A Toy Example

We illustrate our scheme by presenting a toy example. We generate public and
private keys and perform a decryption. For simplicity, we consider linear, as
opposed to affine, transformations.

A.1 Public and Private Key Generation

Let q = 2, n = 4, d = 8 and a = 2. We construct the degree d extension
field K = F2[x]/

〈
x8 + x4 + x3 + x2 + 1

〉
. We randomly select the C∗ monomial

f(x) = x25+1. We next randomly select the invertible transformation T and
embedding U :

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 0 1 0
0 1 0 1 0 1 1 1
1 1 0 0 0 0 0 0
0 1 1 0 1 1 0 1
0 0 1 0 0 1 0 1
1 0 0 0 0 1 1 1
0 1 0 1 1 1 1 0
0 0 0 1 1 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and U =

⎡

⎢⎢⎣

0 1 1 0 1 0 0 1
0 1 1 1 0 0 0 0
1 0 1 1 1 0 1 0
1 0 1 0 0 0 0 0

⎤

⎥⎥⎦ .
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We fix Π : F8
q → F

6
q, the projection onto the first 6 coordinates. Then the

public key P = Π ◦T ◦φ−1 ◦ f ◦φ ◦U in symmetric matrix form over Fq is given
by:

P1 =

⎡

⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 1
1 0 1 0

⎤

⎥⎥⎦ ,P2 =

⎡

⎢⎢⎣

1 0 1 1
0 1 0 0
1 0 0 1
1 0 1 0

⎤

⎥⎥⎦ ,P3 =

⎡

⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1

⎤

⎥⎥⎦ ,

P4 =

⎡

⎢⎢⎣

0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

⎤

⎥⎥⎦ ,P5 =

⎡

⎢⎢⎣

0 0 1 1
0 1 0 1
1 0 0 1
1 1 1 0

⎤

⎥⎥⎦ ,P6 =

⎡

⎢⎢⎣

0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

⎤

⎥⎥⎦ .

We note that P has some linear terms that can be found on the diagonals of
the public matrices.

The plaintext x and the output, v, of φ−1◦f ◦φ◦U are related by linearization
equations due to the relation

uv25 + u210v = 0,

where u = φ(Ux) and v = φ(v). Given our choice of basis we generate these
linearization equations, written here in matrix form:

L1 =

⎡

⎢⎢⎣

1 1 1 1 1 1 0 1
0 0 0 0 1 0 1 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 1 0

⎤

⎥⎥⎦ ,L2 =

⎡

⎢⎢⎣

1 1 1 1 0 0 1 1
1 0 1 0 0 0 0 0
1 1 1 0 0 0 1 1
0 1 1 1 1 1 1 0

⎤

⎥⎥⎦ ,L3 =

⎡

⎢⎢⎣

1 0 0 1 0 0 1 1
1 0 0 1 0 0 1 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 0 1

⎤

⎥⎥⎦ ,

L4 =

⎡

⎢⎢⎣

1 1 0 0 0 1 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 0
1 1 1 1 0 1 0 1

⎤

⎥⎥⎦ ,L5 =

⎡

⎢⎢⎣

0 0 0 0 1 1 0 1
0 0 1 0 1 0 0 0
0 1 1 1 0 1 0 1
1 0 0 1 1 1 0 1

⎤

⎥⎥⎦ ,L6 =

⎡

⎢⎢⎣

0 0 0 0 0 1 1 1
0 1 1 1 1 1 0 1
0 0 1 0 1 1 1 1
0 1 0 1 1 1 1 1

⎤

⎥⎥⎦ ,

L7 =

⎡

⎢⎢⎣

1 1 0 0 1 0 0 0
1 1 0 0 1 0 0 1
1 1 1 1 0 0 1 1
0 1 1 1 1 1 1 1

⎤

⎥⎥⎦ ,L8 =

⎡

⎢⎢⎣

1 1 1 1 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 1 1 1 1 1
0 1 0 0 0 1 1 1

⎤

⎥⎥⎦ .

A.2 Encryption and Decryption

Encryption is accomplished by evaluating the public key at the ciphertext. We
randomly choose a plaintext

x =
[
0 1 1 0

]
.

Computing (x)P we obtain the ciphertext

y =
[
0 1 0 0 1 1

]
.
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Decryption is accomplished by first appending a random suffix on y to form
y0, applying T−1, and then solving the linear system defined by the linearization
equations. Our first attempt appends the zero vector to y. Thus

y0 =
[
0 1 0 0 1 1 0 0

]
.

We then solve the system 0 = xLiy
�
0 , where 1 ≤ i ≤ 8, for x. We immedi-

ately obtain the valid plaintext
[
0 1 1 0

]
. We subsequently append all remaining

possible suffixes on y and attempt to invert. Each of these linear systems is
inconsistent, however; thus x is the unique preimage and so the valid plaintext.
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