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Abstract. The ARM TrustZone is a security extension which is used
in recent Samsung flagship smartphones to create a Trusted Execution
Environment (TEE) called a Secure World, which runs secure processes
(Trustlets). The Samsung TEE includes cryptographic key storage and
functions inside the Keymaster trustlet. The secret key used by the Key-
master trustlet is derived by a hardware device and is inaccessible to
the Android OS. However, the ARM32 AES implementation used by the
Keymaster is vulnerable to side channel cache-attacks. The Keymaster
trustlet uses AES-256 in GCM mode, which makes mounting a cache
attack against this target much harder. In this paper we show that it
is possible to perform a successful cache attack against this AES imple-
mentation, in AES-256/GCM mode, using widely available hardware.
Using a laptop’s GPU to parallelize the analysis, we are able to extract
a raw AES-256 key with 7 min of measurements and under a minute of
analysis time and an AES-256/GCM key with 40 min of measurements
and 30 min of analysis.

1 Introduction

1.1 Motivation

The ARM TrustZone [1] is a security extension helping to move the “root of
trust” further away from the attacker. TrustZone is a separate environment that
can run security dedicated functionality, parallel to the OS and separated from
it by a hardware barrier. Recent Samsung flagship smartphones rely on Sam-
sung’s Exynos SoC architecture cf. [23]. The ARM cores in Exynos support the
TrustZone security extension to create Trusted Execution Environments (TEEs).

In order to support cryptographic modules, the Android OS includes a mech-
anism for handling cryptographic keys and functions called the Keystore [8].
Keystore is used for several privacy related features such as full disk encryption
and password storage. The Keystore depends on a hardware abstraction layer
(HAL) module called the Keymaster to implement the underlying key handling
and cryptographic functions; and many OEMs, including Samsung, choose to
implement the Keymaster as a trustlet in the TrustZone.
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1.2 Related Work

Lipp et al. [14] implemented cache attack techniques to recover secret keys from
Java implementation of AES-128 on ARM processors, and exfiltrate additional
execution information. In addition they were able to monitor cache activity in
the TrustZone.

Zhang et al. [29] demonstrated a successful cache attack on a T-Table imple-
mentation of AES-128 that runs inside the TrustZone—however, their target
was the C implementation that is part of OpenSSL while we focus on ARM32
assembly implementation found in Samsung Keymaster Trustlet for AES-256
and AES-256/GCM modes. Ryan et al. [15] demonstrated reliable cache side
channel techniques that require loading a kernel module into the Normal World—
which is disabled or restricted to OEM-verified modules on modern devices. To
our knowledge no previous cache attacks on a standard devices’ ARM TrustZone
AES implementation using publicly available vulnerabilities have been published.

Recently, Green et al. [11] presented AutoLock, an undocumented feature in
certain ARM CPUs which prevents eviction of cross-core cache sets. This feature
severely reduces the effectiveness of cache side-channel attacks. The authors
listed multiple CPUs that include AutoLock, and among them are the A53 and
A57 used in the device we used (Samsung Galaxy S6).

Cache side channel attacks on AES were first demonstrated by Bernstein [3]
with the target being a remote encryption server with an x86 CPU. Osvik et
al. [21,26] demonstrated the Prime+Probe technique to attack a T-Table imple-
mentation of AES which resides in the Linux kernel on an x86 CPU. Xinjie et
al. [28] and Neve et al. [16] presented techniques which improve the effectiveness
of cache side channel attacks. Spreitzer et al. [25] demonstrated a specializa-
tion of these attacks on misaligned T-Table implementations. Neve et al. [17]
discussed the effectiveness of these attacks on AES-256 and demonstrated a suc-
cessful specialized attack for AES-256.

1.3 Contributions

Our starting point is the observation of [13] that the ARM32 assembly-language
AES implementation used by the Keymaster Trustlet uses a T-Table and is vul-
nerable to cache side-channel attacks. Furthermore, the Keymaster’s T-Table is
misaligned, which helps the attacker. Unlike prior works, which attacked eval-
uation boards or AES-128, we successfully demonstrate cache attacks on a real
device, against the AES-256 and AES-256/GCM implementation used by the
Keymaster trustlet. Beyond the larger keys in AES-256, GCM mode introduces
additional challenges, since the cryptanalyst has no control over 4 of the 16 bytes
of plaintext in an AES block.

A key aspect of our attack is that we extract the secret key using a divide and
conquer strategy. In the AES-256/GCM case, rather than analyze all 256 key
bits simultaneously, we identify them in 4 phases: we identify 84 bits in phase 1;
based on them we identify the next 124 bits in phase 2, and so forth until all
256 bits are discovered.
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In addition, we present our approach to implementing the analysis phase of
our attacks on a GPU. Such an approach requires careful planning and, when
implemented correctly, leads to a significant improvement in analysis speed.

Using a laptop’s GPU to parallelize the analysis, we are able to extract a raw
AES-256 key with 7 min of measurements and under a minute of analysis time
and an AES-256/GCM key with 40 min of measurements and 30 min of analysis.

Organization: Section 2 describes the Keymaster trustlet and its cryptographic
functions. Section 3 demonstrates cache side-channel attacks against the AES
implementation used by the Keymaster trustlet in isolation. Section 4 describes
the use of GPU to mount the attacks and we conclude with Sect. 5. We provide
GPU kernel examples in AppendixA.

2 Preliminaries

2.1 ARM TrustZone Overview

ARM TrustZone security extensions [2] enable a processor to run in two states,
called Normal World and Secure World. This architecture also extends the con-
cept of “privilege rings” and adds another dimension to it. In the ARMv8 ISA,
these rings are called “Exception Levels” (ELs). The most privileged mode is the
“Secure Monitor” which runs in EL3 and sits “above” the Secure and Normal
Worlds. In the Secure World, the Secure OS kernel runs in EL1 and the Secure
userspace runs in EL0. On Samsung devices, the Normal World OS is Android:
the Linux kernel runs in EL1 and the user-space programs run in EL0.

The separation of Secure and Normal World allows that certain RAM ranges
and bus peripherals may be indicated as “secure” and only be accessed by the
Secure World. This means that compromised Normal World code (in userspace
or kernel) will not be able to access these memory ranges or devices.

It’s important to note that the world separation is completely “virtual”. The
same cores are used to run both Secure and Normal Worlds and they use the same
RAM. Therefore, they use the same cache used by the core to improve memory
access times; in [13] we describe how this design decision may be leveraged to
mount cache side channel attacks.

In the Samsung ecosystem there are two major players in field of TrustZone
implementations. One is Qualcomm, with the QSEE operating system [22] which
is compatible with the Snapdragon SoC architecture used on many Samsung
devices. The other is Trustonic, with the Kinibi operating system [27] which
is used by Samsung in their popular Exynos SoC architecture as a part of the
KNOX security system [24]. In this paper we focus on the Trustonic TrustZone.

These Trusted Execution Environments (TEEs) are used for various activ-
ities within the smart device: Secure boot, Keymaster implementation (see
Sect. 2.2), secure UI, kernel protections, secure payments, digital rights man-
agement (DRM) and more.
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2.2 Keystore and Keymaster Hardware Abstraction Layer (HAL)

The Android Keystore system [8], which was introduced in Android 4.3, allows
applications to create, store and use cryptographic keys while attempting to
make the keys themselves hard to extract from the device. The documentation
advertises the following security features:

– Extraction Prevention: The keys themselves are never present in the applica-
tion’s memory space. The applications only know of key-blobs which cannot
be used directly. The key-blobs are usually the keys packed with extra meta-
data and encrypted with a secret key by the Keymaster HAL (Hardware
Abstraction Layer).

– Key Use Authorizations: The Keystore system allows the application to place
restrictions on the generated keys to mitigate the possibility of unauthorized
use.

The Keystore system is implemented in the keystored daemon [9], which exposes
a binder interface that consists of many key management and cryptographic
functions. Under the hood, the keystored holds the following responsibilities:

– Expose the binder interface, listen and respond to requests made by applica-
tions.

– Manage the application keys. The daemon creates a directory on the filesys-
tem for each application; the key-blobs are stored in files in the application’s
directory. Each key-blob file is encrypted with a key-blob encryption key (dif-
ferent per application) which is saved as the masterkey in the application’s
directory. The masterkey file itself is encrypted when the device is locked,
and the encryption employs the user’s password and a randomly generated
salt to derive the masterkey encryption key.

– Relay cryptographic function calls to the Keymaster HAL device (covered
below).

The Keymaster hardware abstraction layer (HAL) [7] is an interface between
Android’s keystored and the OEM implementation of a secure-hardware-backed
cryptographic module. It requires the OEM to implement several cryptographic
functions such as: key generation, init/update/final methods for various cryp-
tographic primitives (public key encryption, symmetric key encryption, and
HMAC), key import, public key export and general information requests. The
implementation is a library that exports these functions and is implemented by
relaying the request to the secure hardware system. The secure system usually
encrypts generated keys with some key encryption key (which is usually derived
by a hardware-backed mechanism). Therefore, the non-secure system does not
know the actual key that is used, but may still save it in the filesystem and
subsequently use it through the Keymaster to invoke cryptographic functions
with the key. In practice - this is exactly how the keystored daemon uses the
Keymaster HAL (with the aforementioned addition of an additional encryption
of the key blobs).
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An example of the usage of the Keymaster HAL is the Android Full Disk
Encryption feature, implemented by the userspace daemon vold [10], which uses
the Keymaster HAL as part of the key derivation.

2.3 Samsung’s Keymaster HAL and Trustlet

Samsung’s Keymaster HAL library exposes the aforementioned Keymaster inter-
face and implements its functions by making calls to the Keymaster Trustlet.
The trustlet itself has UUID: ffffffff00000000000000000000003e, and is located
in the system partition (/system/app/mcRegistry/<UUID>.tlbin). The Trustlet
code handles several tasks, of which the following are relevant to our work:

– Key generation of RSA/EC, AES and HMAC keys. Keys are generated
using random bytes from the OpenSSL FIPS DRBG module, which seeds its
entropy either from keymaster add rng entropy calls from the Normal World
or from a secure PRNG made available by the Secure World Crypto Driver.
Key generation requests receive a list of key characteristics (as defined by
the Keymaster HAL), which describe the algorithm, padding, block mode
and other restrictions on the key. The generated keys (concatenated with
their characteristics) are encrypted by a key-encryption-key (KEK) which is
unique to the Keymaster trustlet. The trustlet receives this key by making
an IPC request along with a constant salt to a driver which uses a hardware-
based cryptographic function to drive the key. The encryption used for key
encryption is AES256-GCM128. The GCM IV and authentication tag are
concatenated to the encrypted key before being returned to the user as a key
blob. Therefore, an attacker that is able to obtain this KEK is able to decrypt
all the key blobs stored in the file system—i.e., the KEK can be viewed as the
“key to the kingdom”, and it’s encryption scheme is the target of our attacks
in Sect. 3.

– Execution of cryptographic functions. The trustlet can handle begin/update/-
final requests for given keys created by the trustlet. It first decrypts the key-
blobs and verifies the authentication tag, then verifies that the key (and the
trustlet) supports the requested operation, and then executes it. The cryp-
tographic functions are implemented using the OpenSSL FIPS Object Mod-
ule [20]. In particular, we discovered that the AES code is a pure ARMv4
assembly implementation that uses a single 1KB T-Table. In general, AES
implementations based on T-Tables are vulnerable to cache attacks [21,26].
Our attacks (described in Sect. 3) explore cache side channel attacks on this
AES implementation.

– The trustlet handles requests for key characteristics and requests for informa-
tion on supported algorithms, block modes, padding schemes, digest modes
and import/export formats.
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2.4 Attack Model

The fundamental reason for the existence of the TrustZone is to provide a
hardware-based root of trust for a trusted execution environment (TEE)—that
is designed to resist even a compromised Normal World kernel.

Since the Normal World kernel, and all the kernel modules on Samsung’s
smartphones are signed by Samsung and verified before being loaded, injecting
code into the kernel is challenging for the attacker. Our goal in this work is
to demonstrate that weaker attacks, that do not require a compromised kernel,
are sufficient to exfiltrate Secure World information—in particular secret key
material.

Our attack has two stages: a data collection stage and an analysis stage. In the
data collection stage we assume an attacker is able to execute code on a Samsung
Galaxy S6 device, under root privileges and relevant SELinux permissions.
Note that these privileges are significantly less than kernel privileges, since the
attack code runs in EL0.

Root privileges are needed to access the /proc/self/pagemap to identify cache
sets, as described by Lipp et al. [14]. Our attack can theoretically be mounted
without access to this file, but it will be substantially more difficult.

To achieve root privileges and the necessary SELinux permissions in our
investigation we used the publicly known vulnerability called dirtycow. The root-
ing process is based on Trident [6], which uses dirtycow.

The main target of our attack is the Keymaster trustlet. The API to com-
municate with the trustlet expects a buffer which should hold a key blob. Valid
key blobs typically include over 100 bytes of encrypted data, therefore an API
call (e.g. to extract some meta-data from a key blob) uses the AES-256 block
function at least 9 times (2 for initialization and at least 7 subsequent blocks).
If we measure cache access effects only after the trustlet completes its work, the
9 block function invocations will induce too much noise and render our attacks
infeasible. Therefore, instead we send invalid requests: having the key blob hold
just one byte. Such API calls induce the two block function calls for GCM ini-
tialization, and a one more call to decrypt the single byte. The request then fails,
therefore we do not have access to any ciphertext. Our attacks take this restric-
tion into consideration by focusing on the first AES-256 rounds and knowledge
of the plain-text and IV - and avoid relying on the resulting ciphertext.

In the subsequent analysis stage, the collected clock measurement data is
analyzed on a separate machine - we utilized a Macbook Pro laptop using a
Radeon Pro 460 GPU.

3 Cache Attacks Against the Keymaster AES

3.1 Overview

As stated before, the Keymaster key encryption uses AES256/GCM128, there-
fore we focused on AES side channel attacks. In this section we present our
attack methods.
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We begin our work by adapting prior cache attacks on AES to the ARM32
implementation used in the Keymaster trustlet. Our measurements were taken
on a stock Samsung Galaxy S6 running original Samsung firmware.

Prior research [16,21,26,28] demonstrated that the use of T-Tables in AES
induces cache activity which leads to key leakage. In particular, when the T-
Tables are misaligned in memory, better results have been achieved [25]. These
methods exploit the fact that the implementation of the AES rounds use memory
lookups which may be traced by evicting the T-Table from memory, running the
AES encryption and then observing the cache access timing pattern. While the
aforementioned methods assume the AES implementation uses four T-Tables,
the AES implementation in the Keymaster trustlet uses one T-Table which is
misaligned [13]. According to [21,26] this design choice is still vulnerable but
requires roughly 3000 times more data and analysis, which is still feasible.

The attack, presented by Osvik et al. [21,26], assumes we can detect cache
activity (on the cache sets which hold the T-Table) using the Prime+Probe
method and focuses on the first round of AES. The Prime+Probe method mea-
sures cache activity by first priming a specific cache set (by writing memory to
memory addresses which map to the same set - thereby evicting the cache set),
then allowing the AES algorithm to run and finally probing the cache set (by
accessing the primed memory addresses and measuring the time it took to fetch
them). From the resulting measurements one can infer whether the AES algo-
rithm has evicted a specific set - which would cause the probing phase to measure
a higher value (due to some of its memory addresses being fetched from memory
instead of the cache). In order to differentiate between probe measurements of
evicted sets and non-evicted sets, a threshold value (denoted Ta below) is used.
This value must be calibrated in advance for each hardware (CPU+Cache) that
will be used as a target for the attack.

If the probe measurement, for the cache set which holds T-Table entry number
i, is below Ta, the entry was not accessed and therefore certain ki values are
incorrect. If, in-fact, one of these ki values was correct, the T-Table entry would
have been accessed and eviction would occur for one of our primed addresses,
resulting in a probe measurement above the threshold. More precisely, due to
noise in the system, we may only infer that they are more likely, therefore we give
each ki candidate a score based on how many times we deem it likely (0 for each
time it is unlikely and 1 otherwise). The ki values we infer from cache activity
depends on pi, the details of the cache and the alignment (or misalignment) of
the T-Table with respect to cache lines.

3.2 Calibrating the Probe Measurement Threshold

We selected the threshold value Ta through analysis of cache access times
and eviction strategies as described by Lipp et al. [14]. This method applies
Prime+Probe to a single address multiple times in two manners: first, it is primed
and probed consecutively and second, memory access is added after the prime
and before the probe. This, essentially, creates statistics on probe measurements
for a given eviction strategy on a given CPU and cache. Ta separates between
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probes on set indexes which were not evicted versus set indexes which at least
one address was evicted. Figure 1 shows the results of this method on our Galaxy
S6. The strategy we used (using the notation from Lipp et al. [14]) is N = 5
(total eviction set size), A = 5 (shift offset), D = 16 (number of accesses per
iteration) which we found to be the best strategy for our device after testing
many alternatives; time measurements were made with linux’s monotonic clock
due to lack of better clock source available under our attack model. Based on
the figure we set Ta to be 800[ns].

Fig. 1. Histogram of probe timing measurement for 50, 000 probes. Separation between
evicted and non-evicted sets is visible at around 800 ns.

3.3 The Analysis Stage for AES-128 Attacks

To begin with, we describe an attack on AES-128 in ECB mode. With the cache
activity measurements gathered on the Galaxy S6 in the data collection stage,
we implement the analyzing stage on a GPU-equipped laptop. The analysis stage
consists of two phases, described below.

Phase 1. In the first round of the AES implementation, each i -th plaintext
byte pi is XOR-ed with the i -th key byte ki: x

(0)
i = pi ⊕ ki. The value of x(0)

i is
then used as an index to the T-Table which is accessed subsequently.

Because these calculations only rely on the value of pi and ki, it’s possible
to use a divide-and-conquer approach and consider each key byte independently.
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Given a probe measurement for T-Table entry x, we iterate through byte index i
= 0, ..., 15 and let pi be the i-th plaintext byte. For all possible values of ki = 0,
..., 255, we check whether ki is likely based on the method described above and
update the scores. We end with a score matrix for the level of likelihood for each
candidate value per key byte. We continue the measurements and analysis until
for each key byte, one candidate has a z-score above 5 (i.e., 5 standard-deviations
above the mean).

On the Samsung Galaxy S6 ARM A53 and A57 CPUs, each cache line is 64
bytes long; therefore each line holds 16 T-Table entries (4 bytes per entry). In
the implementation present in the Keymaster trustlet, the T-Table has an 8 byte
misalignment with respect to the cache lines, see [13]: So the T-Table actually
spans over 17 cache lines, with the first line holding 14 entries and the last line
holding 2 entries. This means that our best case resolution is 2: if we use the
constraints based on a single AES round we are eventually left with 2 candidates
for each key byte which are indistinguishable to us. This means we learn 7 out
of 8 bits for each key byte, reducing the unknown key space from 128 bits to
16 bits.

Phase 2. Enumerating through 16 bits is trivial with modern hardware; how-
ever, we present the rest of the attack which continues to apply divide-and-
conquer using analysis of subsequent rounds. It will be useful to understand the
next sections in which we attack AES-256 and AES-256/GCM and it may also
be of independent interest in cases where the misalignment is less favorable or
nonexistent.

To identify the remaining AES128 key bits we focus on the second round
of the AES implementation; specifically, the following equations, derived from
the Rijndael specification [4], which give 4 of the entries accessed in the second
round:

x
(1)
2 = s(p0 ⊕ k0) ⊕ s(p5 ⊕ k5)

⊕ 2 • s(p10 ⊕ k10) ⊕ 3 • s(p15 ⊕ k15) ⊕ s(k15) ⊕ k2

x
(1)
5 = s(p4 ⊕ k4) ⊕ 2 • s(p9 ⊕ k9)

⊕ 3 • s(p14 ⊕ k14) ⊕ s(p3 ⊕ k3) ⊕ s(k14) ⊕ k1 ⊕ k5

x
(1)
8 = 2 • (p8 ⊕ k8) ⊕ 3 • s(p13 ⊕ k13)

⊕ s(p2 ⊕ k2) ⊕ s(p7 ⊕ k7) ⊕ s(k13) ⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x
(1)
15 = 3 • s(p12 ⊕ k12) ⊕ s(p1 ⊕ k1)

⊕ s(p6 ⊕ k6) ⊕ 2 • s(p11 ⊕ k11) ⊕ s(k12) ⊕ k15 ⊕ k3 ⊕ k7 ⊕ k1

(1)

where s(·) denotes Rijndael S-box function and • denotes multiplication over
GF(256). There are three properties of these equations which are important to
note:

– Each equation refers to 4 “bound” ki’s (that are an input to s(·)) and between
1 to 4 “free” ki’s that are simply XOR’ed. In fact, the keen reader may see
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that if we analyze the equations sequentially, each equation only has 1 “free”
ki: If we solve the equations in sequence then all but one of the “free” ki is
completely discovered by the previous equations.

– Because our measurement resolution is 2 entries, only the 7 most significant
bits of the “free” ki variables are relevant to the index calculations.

– Since the first 7 bits of every ki are known from phase 1, each equation only
has 4 unknown bits - the least significant bit of every “bound” ki.

These properties allows us to apply divide-and-conquer once again, and con-
sider each equation separately. For each pair of plaintext and probe measure-
ments, we enumerate the 4 possible key bits, calculate the equation and check
whether they are likely based on the cache accesses during the second AES
round. Eventually, the most likely candidate of these 4 bits is selected.

Combining the results for the four equations, along with the result of the
phase 1, yields the entire 128 bits of the key - full key recovery.

We implemented a cache side-channel attack against the AES-128 implemen-
tation used by the Keymaster trustlet after copying it to a user-space sandbox
and using AES in ECB mode. We were able to successfully recover the entire 128
bits of the key using the method described above. Our experiment used 100,000
measurements: this amount of data can be collected in under a minute on a
Samsung Galaxy S6 and analyzed in less than 15 s on a Radeon Pro 460 GPU.
The amount of memory used by the GPU (in phase 1 of the attack) was 1 GB.
Details on the GPU analysis implementation in Sect. 4.

3.4 AES-256 Attacks

Phases 1 and 2. As we saw in Sect. 2.3, Samsung’s Keymaster trustlet uses
AES-256. Attempting to use the attack described in the previous section on
AES-256 is not enough for full key recovery. There are relatively few papers
discussing the specifics of cache attacks against AES-256. The most relevant
seems to be by Neve and Tiri [17]. They proposed an extension of a different
attack—one that looks at the last two rounds of AES instead of the first, and
requires knowing the ciphertext, in contrast to the requirement of knowing the
plaintext in the attack we used in Sect. 3.3. As we discussed in Sect. 2.4, relying
on last AES round is difficult against the Keymaster trustlet. Therefore, we
devised a method which extends the attack of Sect. 3.3 to recover 256 bit keys
using the first three rounds.

The first part of the attack remains the same as phase 1 of the AES-128
attack (see Sect. 3.3): discover the 7 most significant bits of k0 through k15. We
determine that the first round sieving has ended when for all 16 key bytes the
most likely candidate value has a z-score above 5.

In order to recover the missing 16 bits in the lower half of the key, and most
of the bits in the upper half, we rely on the second AES round. E.g., consider
the first four indexes, which are derived from the Rijndael specifications:
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⎡
⎢⎢⎢⎣

x
(1)
0

x
(1)
1

x
(1)
2

x
(1)
3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤
⎥⎥⎦ •

⎡
⎢⎢⎣

s(p0 ⊕ k0)
s(p5 ⊕ k5)
s(p10 ⊕ k10)
s(p15 ⊕ k15)

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣
k16
k17
k18
k19

⎤
⎥⎥⎦ (2)

It’s important to note that every 4 indexes depend on the same four key
bytes from the lower half of the key (k0, k5, k10, k15 in Eq. (2)) and each index
depends on one byte of the upper half of the key. Another important property
is that as in Sect. 3.3, from the 8 bits of the bytes from the upper half of the key
only the 7 most significant bits affect the measurement of the index. Therefore,
each equation has only 11 unknown bits: 1 for each of the 4 lower-half-key bytes
and 7 for the single upper-half-key byte.

Once again, we use divide-and-conquer ; divide the problem to four-equation
subproblems, divide each subproblem to it’s four equations and on each equation
use the same methods described above to select the most likely candidate for
the 1 least significant bits of the lower-half key bytes and the 7 most significant
bits of the single upper-half key byte. Therefore, for a given equation e and mea-
surement, iterate over all 211 combinations of key-bit values. If the measurement
is compatible with key-bit combination c, then increment score[e][c]. After this
step, we have the entire lower-half key bytes (k0 through k15) and the 7 most
significant bits of every upper-half key byte (k16 through k31). Therefore, we
have reduced the key space from 256 bits to 16 by using the first two rounds.

Phase 3. While enumeration of 16 bits is feasible, we present a third phase of
the attack which may be applied to other misalingment circumstances. We do so
by imitating the second phase of the attack on 128 bit AES (Sect. 3.3). Consider
Eq. (3) which is derived from the Rijndael specification with 256 key expansion
(after substituding the first round indexes x

(1)
i )

x
(2)
2 = s(2 • s(p0 ⊕ k0) ⊕ 3 • s(p5 ⊕ k5) ⊕ s(p10 ⊕ k10)

⊕ s(p15 ⊕ k15) ⊕ k16)
⊕ s(s(p4 ⊕ k4) ⊕ 2 • s(p9 ⊕ k9) ⊕ 3 • s(p14 ⊕ k14)

⊕ s(p3 ⊕ k3) ⊕ k21)
⊕ 2 • s(s(p8 ⊕ k8) ⊕ s(p13 ⊕ k13) ⊕ 2 • s(p2 ⊕ k2)

⊕ 3 • s(p7 ⊕ k7) ⊕ k26)
⊕ 3 • s(3 • s(p12 ⊕ k12) ⊕ s(p11 ⊕ k11) ⊕ s(p6 ⊕ k6)

⊕ 2 • s(p11 ⊕ k11) ⊕ k31)
⊕ s(k31) ⊕ k2

(3)

At first sight this equation may seem daunting. However, notice that we, in
fact, know p0 through p15, k0 through k15 and the 7 most significant bits of
k16, k21, k26, k31. Therefore, only 4 bits are unknown in this equation. We then
use a similar sieving method as in the previous phases to select the most likely
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candidate for these bits. Then, we apply the same technique to the equations for
x
(2)
5 , x(2)

8 and x
(2)
15 . Eventually, we arrive at full recovery of the AES 256 bit key.

Putting It All Together. We implemented this attack on the AES-256 code
used by Samsung’s Keymaster trustlet. Figure 2 shows the the number of correct
bits in the most likely candidate as a function of the number of measurements
used. The horizontal barriers mark the target of each phase of the attack: 112
bits for the 1st phase, 240 bits for the 2nd and 256 bits for the 3rd phase. It’s
important to note that after we complete the first phase, we reuse the samples
for the second phase which explains the sudden increase in known bits between
phase one and phase two of the attack. It took 7 min to collect the one million
measurements on the Galaxy S6. The sieving process took under a minute to
complete (all three stages) and 3.5 GB of memory, using a Radeon Pro 460 GPU
on a laptop.

Fig. 2. Number of correct bits in the most likely candidate as function of samples used
(log2 scale).

3.5 Galois Counter Mode (GCM) Attacks

Challenges. A further complication is that Samsung’s Keymaster trustlet uses
AES-256 in GCM mode [5]. Two factors make cache side channel attacks harder
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against GCM: the use of the block function in the initialization, and the lack of
control over the 4 last bytes of the input to the block function.

According to the GCM specification, the computation of the authentication
tag requires two invocations of the block function. When the input initialization
vector (IV) is 96 bits long, the block function is invoked once with a plain-
text of 016 (a 16 zero byte string) and then with a plain-text of IV ||04. Unless
it is possible to distinguish between this initialization phase and subsequent
encryption phases, the initialization induces substantial cache-access noise.

Furthermore, subsequent block function invocations made by GCM are called
with the input IV ||Counter, where IV is the original 96 bit IV and Counter is
a four byte integer counter (starting with the value 2) which is appended (with
big endianess) to the IV. This means that we have limited control over the input
to the block function. While we control the 96 bits given as IV, the Counter
bytes may only be changed by encrypting additional data with the same GCM
context. This implies that it is much more difficult to collect enough data to
differentiate between key candidates for k12 through k15.

Phases 1 and 2. We begin by attempting to apply the same technique used
in the previous section to AES-256/GCM. We assume that we can distinguish
between cache-access due to the first two block function invocations (initializa-
tion calls) and subsequent invocations. However, we continue limit ourselves to
scenarios that allow only one encryption call and do not allow knowledge of the
resulting ciphertext to allow use against the Keymaster trustlet. Because we do
not have control over the last four bytes of the input, the first phase of the tech-
nique (Sect. 3.4), which focuses on the first round of AES, only recovers the 7
most significant bits of k0 through k11, recovering only 84 bits of the key.

The second part of the technique, which focuses on the second round of AES-
256, is more difficult under GCM. Instead of the 11 unknown bits we identified
in Sect. 3.5, we now face 18 unknown bits: 1 least significant bit for k0 through
k11 (three of these per equation), 8 bits for k12 through k15 (one per equation)
and 7 most significant bits for k16 through k31 (one per equation).

While an enumeration of 18 bits is feasible even with modest resources,
another hurdle emerges. Consider the value t = s(p15⊕k15)⊕k16 in the equation
for x

(1)
0 in Eq. (2). Because p15 has a single value (typically p15 = 2) which we

cannot control, t has a constant value. We note that for each key byte candidate
value x for k15 we can find a key byte candidate k16, which will result in the same
value x. More precisely, due to the resolution from the T-Table misalignment,
we can find a 7 most significant bit candidate for k16.

By applying the same sieving technique described above, we use pairs of IV
(first 12 bytes of plaintext) and probe measurements to select the likely value
of the 18 unknown bits. Due to the dependency between k15 and k16 described
above, we expect to find 256 likely values: each having the correct least significant
bit of k0, k5 and k10, one of the 256 candidates for k15 and the 7 most significant
bits of k16 candidate. This method allows us to gain full information on k0,
k5 and k10, and a constraint on k16 depending on k15. This constraint may be
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visualized as a table indexed by k15 and having its value be the constraint on
k16.

We apply the same method for the rest of the equations shown in equation
set (2) to gain information on the respective constraint between k15 and k17
through k19. Note that in the case of k18 and k19 the constrained value t is
t = 3 • s(p15 ⊕ k15) ⊕ k18 and t = 2 • s(p15 ⊕ k15) ⊕ k19 respectively. These four
constraints may be grouped into a single table, Table 1 shows an example of such
table.

Table 1. The 7 most significant bits of upper key bytes for each possible k15 value

k15 k16 k17 k18 k19

0 67 22 60 67

1 69 16 54 79

2 73 38 34 87

. . .

253 115 38 109 34

254 32 117 21 9

255 82 7 14 96

The same method may be used to extract similar constraints between the
three other bytes k12, k13, k14 and their respective four bytes from the upper
half of the key.

To summarize, based on 2 rounds of AES in GCM mode we can extract the
values of k0 through k11, and have four table which describe further constraints
on the key. The remaining key space is 48 bits: 8 bits per table (32 total) and 1
additional bit per byte in the upper half of the key.

Phase 3. We now shift our focus to round 3 and consider equations x(2)
12 through

x
(2)
15 . Equation (4) shows one such equation: These equations are important to

us for two reasons:

– The “bound” expressions holding k12 to k15 in these equations have appeared
in our 2nd round analysis and therefore we have a table that constraints the
“free” upper-half key bytes to their values (e.g. s(p15 ⊕ k15) ⊕ k17 is known
up to 1 bit). Thereby reducing the unknown bits in each of these expressions
from 8 bits to 1.

– Due to the AES key expansion scheme, each of these equations includes one of
the key bytes k12 through k15 in a “free” manner. Which allows us to receive
different measurements for these bytes; note that this is the first round this
is possible in.
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x
(2)
12 =

2 • s(2 • s(p12 ⊕ k12) ⊕ 3 • s(p1 ⊕ k1) ⊕ s(p6 ⊕ k6) ⊕ s(p11 ⊕ k11) ⊕ k28) ⊕
3 • s(s(p0 ⊕ k0) ⊕ 2 • s(p5 ⊕ k5) ⊕ 3 • s(p10 ⊕ k10) ⊕ s(p15 ⊕ k15) ⊕ k17) ⊕
s(s(p4 ⊕ k4) ⊕ s(p9 ⊕ k9) ⊕ 2 • s(p14 ⊕ k14) ⊕ 3 • s(p3 ⊕ k3) ⊕ k22) ⊕
s(3 • s(p8 ⊕ k8) ⊕ s(p13 ⊕ k13) ⊕ s(p2 ⊕ k2) ⊕ 2 • s(p7 ⊕ k7) ⊕ k27) ⊕
k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ s(k29) ⊕ 1

(4)

While Eq. (4) might seem to have 48 unknown bits, using the knowledge
from the previous phases we assert that it only has 13 unknown bits: 8 bits to
choose k12, 1 least significant bit for k29, and 1 more least significant bit for each
“bound” expression (4 additional bits).

Applying our sieving technique once again for equations x
(2)
12 through x

(2)
15

gives us the most likely value of the 7 most significant bits of k12 to k15 and
the least significant bit of k28 through k31. Thereby reducing the amount of
unknown bits from 48 to 16: 1 least significant bit of k12 to k15 and 1 least
significant bit of k16 to k27. Additional analysis of the 3rd round accesses may
reveal the remaining bits, but we chose to apply brute-force enumeration to find
them.

It took five million measurements to mount this analysis which took 40 min
to collect on the Galaxy S6. The analysis took 30 min and 3.5 GB of memory to
complete using a Radeon Pro 460 GPU on a laptop.

In summary, we see that the AES-256 GCM, with a single T-Table implemen-
tation used by Samsung’s Keymaster trustlet, is vulnerable to cache side-channel
attacks when it is used in isolation.

4 Analysis Acceleration Using a GPU with OpenCL

4.1 Overview

Previous work [3,14,16,17,21,25,26,28,29] goes into great details about the
implementation of the attack phase and candidate sieving; however, little discus-
sion is presented on the implementation of the analysis phase. While designing
the attacks described in the previous sections, we found that the amount of data
and time required by a sequential implementation of the attack is significant,
so, we decided to leverage GPUs to expedite the analysis. The following sections
provide detail into our design and implementation of a GPU based cache attack
analysis method.

4.2 Programming the GPU

When programming a GPU, one must design a function that will be run in
parallel on many data points; such a function is called a kernel. We used a
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GPGPU (general purpose GPU) programming framework called pyOpenCL [12].
This framework allowed us to write most of the analysis in python while easily
deferring the heavy lifting to the GPU. pyOpenCL provides a very convenient
way to write OpenCL kernels called “ElementwiseKernel”: the programmer only
needs to write the calculation for a single element while abstracting away most
other details. A kernel is essentially a function, that receives at least one pointer
to a GPU memory block (usually containing tables) and an argument i which
is used as an index to that memory block. The framework instructs the GPU
to run numerous copies of that kernel in parallel, each on a different GPU core,
with each copy being allocated a different index i.

A kernel returns output by modifying the memory blocks received as argu-
ments. In order to minimize the need to synchronize the kernels, usually each
kernel writes to a separate cell in memory; thus avoiding memory contention and
race conditions. The Radeon Pro 460 which we used in our analysis has 1024
cores and 4 GB of internal memory.

4.3 Using the GPU in the Attacks

Previous sections outlined the basic algorithm used for the analysis of the side
channel artifacts: Use the plaintext bytes and side channel map to sieve through
the possible candidates until one most likely candidate is found. This process
can be broken down to the following steps: (i) thresholding the cache access
patterns to discern between cache hits and misses, (ii) AES round calculations,
(iii) matching between calculation and the cache access pattern and (iv) scoring.

i The thresholding step is straightforward: it receives a cache access timing
matrix (rows are different measurements, columns are the relevant cache set
indexes which were measured) and a threshold value Ta (recall Sect. 3.2).
Each matrix cell is compared against Ta and is set to either 1 if it’s above Ta

(miss) or 0 otherwise (hit).
ii The AES round calculation varies depending on the step of the analysis (as

described in previous sections) but follows the same principles: receive the
relevant key candidates and plain-texts used in measurements, apply the rel-
evant round calculation, apply the table misalignment and return the relevant
cache set indexes for the given candidates for each given plain-text. Round
calculations follow the equations presented in the previous sections, and use
lookup tables to calculate the S-Box and GF(256) multiplications. The S-Box
and multiplication tables are placed inside the GPU internal memory. The
result is a matrix M of the candidates versus the plain-texts where each cell
Mi,j holds the result of the AES round calculation for i-th plain-text and the
j-th key candidate. In other words, if key candidate j is correct, Mi,j holds a
cache index which we expect to measure as a miss for the i-th plaintext and
its cache measurements.

iii The next step takes the thresholded cache access matrix and the cache set
index matrix result from the AES round calculation step and returns an
array which holds the score for each candidate. This is done in two steps:
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matching and summing. The match step takes the two input matrices and
outputs a matrix of candidates versus plain-texts in which each cell is 1 if
the index predicted by the AES round calculations (for a given plain-text
and candidate) was a cache miss in our measurements (which implies the
candidate is more likely) and 0 otherwise. The summing phase then sums
the result by the plain-text axis, resulting in an array of scores for each key
candidate.

iv Finally, we are left with the scores for each key candidate, all we have left
is to choose the most likely one. Due to the large key enumeration space in
phase 2 and 3 of the AES-256 and AES-256/GCM attacks, the memory on
our GPU was not large enough to hold the plain-text over key candidate
matrices when trying to analyze all of the plain-texts at once. Instead, we
divided the plain-texts into batches, analyzed them separately and combined
their result after each batch by simply adding the score array. This allowed
us to analyze large amounts of data (over 220 samples) over up to 18 bits of
key candidates on a commodity laptop GPU within minutes.

4.4 Kernel Implementation Details

We used several such kernels and provide their code in the appendix:

1. Thresholding: The first kernel is used to reduce the measurements from a
matrix of plain-texts over cache indexes which contains the cache timing
measurements to a matrix of the same dimensions but with a value 1 if the
measurement is above Ta which indicates a cache miss, or 0 otherwise. This
is accomplished via a simple ternary operator. See AppendixA.1.

2. Round calculation kernel: The following explanation is relevant to the first
four round bytes of the 2nd AES256 round calculations (recall Sect. 3.4), the
same principles apply for the rest of the round bytes and the 3rd round as
well. This kernel receives our key candidates (5 key bytes serialized as a 64-
bit integer), plaintext bytes, S-Box and GF(256) multiplication lookup tables,
misalignment parameter and output matrices (plain-texts over candidates).
Note that instead of calculating the round for each round byte separately,
we optimize this kernel by reusing calculations to calculate four round bytes
together (see Eq. (2)). The kernel basically calculates the first AES round
(SubBytes, ShiftRows and MixColumns) and then XORs the result with an
upper-half key candidate byte. The result is the index of the T-Table which
will be access by the 2nd round. It then applies the misalignment parameter
and selects the bits which are relevant to the cache index and stores the
results in the output matrices. These matrices then hold the cache set which
we expect to measure as a miss for a each plain-text, if that the key candidates
are correct. See AppendixA.2.

3. Round to hit matrix kernel: The previous kernel results in four matrices of
cache sets. This kernel performs a pass through those matrices and merges
their results with the actual measurements. It receives the four result matri-
ces, and the thresholded measurements matrix. For each cell of the result
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matrices (which represent the index which we expect to see as 1 in the mea-
surement matrix for a plain-text and a key candidate, if the candidate is
correct), we retrieve the measurement of the relevant plain-text and the rel-
evant cache index. This result will be 1 if the measurements support this
candidate (cache index was indeed measured as a miss) and 0 otherwise. We
write the result back to the result matrix to save memory. See AppendixA.3.

4. Sum axis kernel: The previous kernel results in four score matrices of plain-
text over candidates. Since we are trying to calculate the candidate score,
we then need to sum these matrices by the candidates axis. Special care
must be taken when summing in GPU code as many cores may access the
sum variable concurrently. Several solutions exist, such as: summing in CPU
instead, logarithmic reduction kernels or using atomic OpenCL intrinsics.
We compared the CPU solution (using the Python Numpy package sum by
axis function) with a kernel which uses the “atomic add” intrinsic and found
that the kernel is about twice as fast. That being said, both solutions took
negligible time compared to the other operations. We did not attempt to
implement a more optimized sum kernel. See AppendixA.4.

5 Conclusions

The ARM TrustZone is a security extension which is used in recent Samsung
flagship smartphones to create a Trusted Execution Environment (TEE) called
a Secure World, which runs secure processes called Trustlets. The Samsung TEE
includes cryptographic key storage and functions inside the Keymaster trustlet.
The secret key material used by the Keymaster trustlet is derived by a hardware
device and is inaccessible to the Android OS. However, the ARM32 AES imple-
mentation used by the Keymaster is vulnerable to side channel cache-attacks.
The Keymaster trustlet uses AES-256 in GCM mode, which makes mounting a
cache attack against this target much harder. In this paper we show that it is
possible to perform a successful cache attack against this AES implementation,
in AES-256/GCM mode using widely available hardware. Using a laptop’s GPU
to parallelize the analysis, we are able to extract a raw AES-256 key with 7 min
of measurements and under a minute of analysis time and an AES-256/GCM
key with 40 min of measurements and 30 min of analysis.

We conclude that cache side-channel effects are a serious threat to the cur-
rent AES implementation inside the Keymaster trustlet. However, side-channel-
resistant implementations, that do not use memory accesses for round calcula-
tions, do exist for the ARM platform, such as a bit-sliced implementation [19] or
one using ARMv8 cryptographic extensions [18]. Using such an implementation
would render most cache attacks, including ours, ineffective.
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A OpenCL Kernels Code

A.1 Thresholding Kernel

t h r e s h o l d k e r n e l = ElementwiseKernel ( ctx ,
’ ’ ’
u in t ∗ in , u in t thresh , u in t ∗ out
’ ’ ’ ,
’ ’ ’
out [ i ] = ( in [ i ] > t h r e sh ) ? (1) : (0)
’ ’ ’ ,
‘ ‘ t h r e s h o l d k e r n e l ’ ’
)

A.2 Round Two Kernel

round kernel = ElementwiseKernel(ctx,
’’’
uint ∗x0, uint ∗x1, uint ∗x2, uint ∗x3, ulong ∗candidates, uint ∗p0,
uint ∗p5, uint ∗p10, uint ∗p15, uint row size , uint ∗sbox,
uint ∗mult2, uint ∗mult3, uint disalignment
’’’ ,
’’’
// Extract key byte candidate from serialized candidate, apply SubBytes
uint t0 = SHIFT RIGHT(candidates[i % row size], 0) ˆp0[i/row size];
uint t5 = SHIFT RIGHT(candidates[i % row size], 8) ˆp5[i/row size];
uint t10 = SHIFT RIGHT(candidates[i % row size], 16)ˆp10[i/row size];
uint t15 = SHIFT RIGHT(candidates[i % row size], 24)ˆp15[i/row size];
uint k e = SHIFT LEFT(SHIFT RIGHT(candidates[i % row size], 32), 1);

t0 = sbox[t0 ];
t5 = sbox[t5 ];
t10 = sbox[t10];
t15 = sbox[t15];

// apply ShiftRows and MixColumns
// also XOR with the upper key byte candidate
x0[ i ] = mult2[t0]ˆmult3[t5]ˆ t10 ˆ t15 ˆk e;
x1[ i ] = t0 ˆmult2[t5]ˆmult3[t10]ˆ t15 ˆk e;
x2[ i ] = t0 ˆ t5 ˆmult2[t10]ˆ mult3[t15]ˆk e;
x3[ i ] = mult3[t0]ˆ t5 ˆ t10 ˆ mult2[t15]ˆk e;

// apply disalignment
x0[ i ] = (x0[i] + disalignment) & 0xff;
x1[ i ] = (x1[i] + disalignment) & 0xff;
x2[ i ] = (x2[i] + disalignment) & 0xff;
x3[ i ] = (x3[i] + disalignment) & 0xff;
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// select bits which affect cache index
x0[ i ] = SHIFT RIGHT(x0[i], 4);
x1[ i ] = SHIFT RIGHT(x1[i], 4);
x2[ i ] = SHIFT RIGHT(x2[i], 4);
x3[ i ] = SHIFT RIGHT(x3[i], 4);
’’’ ,
‘‘ round kernel’ ’ ,
preamble=’’’
#define SHIFT RIGHT(X, Y) ((X >> Y) & 0xff)
#define SHIFT LEFT(X, Y) ((X << Y) & 0xff)
’’’
)

A.3 Round to Hit Matrix Kernel

round to hits kernel = ElementwiseKernel(ctx,
’’’
uint ∗x0, uint ∗x1, uint ∗x2, uint ∗x3 ,
uint row size , uint ∗ sets data thresh ,
uint sets data thresh row size
’’’ ,
’’’
// (i/row size) provides an index to the measurement row,
// x[ i ] provides the offset to the cache set we wish to check
x0[ i]=sets data thresh [( i/row size)∗ sets data thresh row size +x0[i ]];
x1[ i]=sets data thresh [( i/row size)∗ sets data thresh row size +x1[i ]];
x2[ i]=sets data thresh [( i/row size)∗ sets data thresh row size +x2[i ]];
x3[ i]=sets data thresh [( i/row size)∗ sets data thresh row size +x3[i ]];
’’’ ,
‘‘ round to hits kernel ’ ’
)

A.4 Axis Sum Kernel

sum axis column kernel = ElementwiseKernel(ctx,
’’’
uint ∗tmp, uint tmp row size, uint ∗out
’’’ ,
’’’
// Use atomic add to avoid data races,
// not the fastest approach but the time it takes is negligible anyway
atomic add(&out[i % tmp row size], tmp[i]);
’’’ ,
”sum axis column kernel”
)
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