Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 789 Accesses

Abstract

This chapter introduces a local oscillator (LO) as a building block that finds place in the hearth of every modern wireless transceiver. Initially, we discuss the LO performance metrics such as phase noise, spurious content, frequency granularity, and power consumption in context of down/up conversion in accurate receive and transmit modes. An LO is typically implemented within a phase-locked loop (PLL), a system that has been intensively researched for a number of years. We follow its development from initial, purely analog implementations to modern digitally intensive solutions. We discuss the basic theory of operation with practical implementation in mind. The discussion gradually arrives to recently introduced subsampling PLL architectures that tend to overcome typical performance limitations of prior art, offering extreme low-noise synthesis potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A direct conversion, i.e., zero-Intermediate Frequency (IF) transceiver is depicted in this example.

  2. 2.

    The period of the divider’s output is continuously modulated with accuracy of a single (or several) VCO periods. Δ Σ order determines the number of division factors used, i.e., with how many different VCO periods is the divider’s output period modulated.

  3. 3.

    Note that the loop settles to a condition where Φe is a zero-mean signal, i.e., where ΦREF = ΦDIV.

  4. 4.

    The improvement is somewhat limited since for higher gain G CP, the CP current must increase which also leads to a higher local noise generation of the CP.

  5. 5.

    Valid for small signal approximation of a sinusoid around zero.

  6. 6.

    Maybe the best proof for the potential this system has is in today’s frequency synthesis state of the art. The current record holders in PLL FOM, presented at ISSCC 2018, are two (sub)sampling PLLs [Sharkia18, Sharma18]. Moreover, the subsampling architecture has been successfully and widely applied for high-performance integer-N LO synthesis since its introduction, in digitally intensive configurations [Ru13], ring-oscillator-based [Sogo12] loops, at millimeter frequencies [Szortyka14], and in automotive radar systems [Yi13].

References

  1. J. Borremans, K. Vengattaramane, V. Giannini, B. Debaillie, W. Van Thillo, J. Craninckx, A 86 MHz–12 GHz digital-intensive PLL for software-defined radios, using a 6 fJ/step TDC in 40 nm digital CMOS. IEEE J. Solid-State Circuits 45(10), 2116–2129 (2010)

    Article  Google Scholar 

  2. J. Craninckx, M.S. Steyaert, A fully integrated CMOS DCS-1800 frequency synthesizer. IEEE J. Solid-State Circuits 33(12), 2054–2065 (1998)

    Article  Google Scholar 

  3. J. Craninckx, M. Steyaert, Wireless CMOS Frequency Synthesizer Design (Kluwer Academic Publishers, Dordrecht, 1998)

    Book  Google Scholar 

  4. X. Gao, E. Klumperink, M. Bohsali, B. Nauta, A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N 2 . IEEE J. Solid-State Circuits 44(12), 3253–3263 (2009)

    Article  Google Scholar 

  5. X. Gao, E. Klumperink, G. Socci, M. Bohsali, B. Nauta, Spur reduction techniques for phase-locked loops exploiting a sub-sampling phase detector. IEEE J. Solid-State Circuits 45(9), 1809–1821 (2010)

    Article  Google Scholar 

  6. F.M. Gardner, Phaselock Techniques (Wiley, London, 1966)

    Google Scholar 

  7. M. Gupta, B.-S. Song, A 1.8-GHz spur-cancelled fractional-N frequency synthesizer with LMS-based DAC gain calibration. IEEE J. Solid-State Circuits 41(12), 2842–2851 (2006)

    Article  Google Scholar 

  8. C.-M. Hsu, M.Z. Straayer, M.H. Perrott, A low-noise wide-BW 3.6-GHz digital Δ Σ fractional-N frequency synthesizer with a noise-shaping time-to-digital converter and quantization noise cancellation. IEEE J. Solid-State Circuits 43(12), 2776–2786 (2008)

    Article  Google Scholar 

  9. H. Huh, Y. Koo, K.-Y. Lee, Y. Ok, S. Lee, D. Kwon, J. Lee, J. Park, K. Lee, D.-K. Jeong et al., A CMOS dual-band fractional-N synthesizer with reference doubler and compensated charge pump, in 2004 IEEE International Solid-State Circuits Conference, Digest of Technical Papers. ISSCC (IEEE, Piscataway, 2004), pp. 100–516

    Google Scholar 

  10. H.S. Kim, C. Ornelas, K. Chandrashekar, D. Shi, P.-E. Su, P. Madoglio, W.Y. Li, A. Ravi, A digital fractional-N PLL with a PVT and mismatch insensitive TDC utilizing equivalent time sampling technique. IEEE J. Solid-State Circuits 48(7), 1721–1729 (2013)

    Article  Google Scholar 

  11. A.L. Lacaita, S. Levantino, C. Samori, Integrated Frequency Synthesizers for Wireless Systems (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  12. S. Meninger, M. Perrott, Low Phase noise, High bandwidth frequency synthesizer techniques, Ph.D. dissertation, Massachusetts Institute of Technology, 2005

    Google Scholar 

  13. S.E. Meninger, M.H. Perrott, A 1-MHZ bandwidth 3.6-GHz 0.18-um CMOS fractional-N synthesizer utilizing a hybrid PFD/DAC structure for reduced broadband phase noise. IEEE J. Solid-State Circuits 41(4), 966–980 (2006)

    Article  Google Scholar 

  14. S. Pamarti, L. Jansson, I. Galton, A wideband 2.4-GHz delta-sigma fractional-NPLL with 1-Mb/s in-loop modulation. IEEE J. Solid-State Circuits 39(1), 49–62 (2004)

    Article  Google Scholar 

  15. B. Razavi, A study of phase noise in CMOS oscillators. IEEE J. Solid-State Circuits 31(3), 331–343 (1996)

    Article  Google Scholar 

  16. B. Razavi, R. Behzad, RF Microelectronics, vol. 2 (Prentice Hall, New Jersey, 1998)

    Google Scholar 

  17. T.A. Riley, M.A. Copeland, T.A. Kwasniewski, Delta-sigma modulation in fractional-N frequency synthesis. IEEE J. Solid-State Circuits 28(5), 553–559 (1993)

    Article  Google Scholar 

  18. Z. Ru, P. Geraedts, E. Klumperink, X. He, B. Nauta, A 12GHz 210fs 6mW digital PLL with sub-sampling binary phase detector and voltage-time modulated DCO, in 2013 Symposium on VLSI Circuits (VLSIC) (IEEE, Piscataway, 2013), pp. C194–C195

    Google Scholar 

  19. R.B. Sepe, Frequency multiplier and frequency waveform generator, U.S. Patent 3,551,826, 29 Dec 1970

    Google Scholar 

  20. A. Sharkia, S. Mirabbasi, S. Shekhar, A 0.01 mm2 4.6-to-5.6GHz sub-sampling type-I frequency synthesizer with -254dB FOM, in 2018 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2018), pp. 256–257

    Google Scholar 

  21. J. Sharma, H. Krishnaswamy, A dividerless reference-sampling RF PLL with -253.5dB jitter FOM and <-67dBc reference spurs, in 2018 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2018), pp. 257–258

    Google Scholar 

  22. K. Sogo, A. Toya, T. Kikkawa, A ring-VCO-based sub-sampling PLL CMOS circuit with -119 dBc/Hz phase noise and 0.73 ps jitter, in 2012 Proceedings of the ESSCIRC (ESSCIRC) (IEEE, Piscataway, 2012), pp. 253–256

    Google Scholar 

  23. R.B. Staszewski, P.T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS (Wiley, London, 2006)

    Book  Google Scholar 

  24. R.B. Staszewski, K. Muhammad, D. Leipold, C.-M. Hung, Y.-C. Ho, J.L. Wallberg, C. Fernando, K. Maggio, R. Staszewski, T. Jung et al., All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS. IEEE J. Solid-State Circuits 39(12), 2278–2291 (2004)

    Article  Google Scholar 

  25. J.T. Stauth, Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures (ProQuest, Ann Arbor, 2008)

    Google Scholar 

  26. M.A. Straayer, Noise shaping techniques for analog and time to digital converters using voltage controlled oscillators. Ph.D. dissertation, Massachusetts Institute of Technology, 2008

    Google Scholar 

  27. V. Szortyka, Q. Shi, K. Raczkowski, B. Parvais, M. Kuijk, P. Wambacq, 21.4 A 42mW 230fs-jitter sub-sampling 60GHz PLL in 40nm CMOS, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, Piscataway, 2014), pp. 366–367

    Google Scholar 

  28. E. Temporiti, C. Weltin-Wu, D. Baldi, M. Cusmai, F. Svelto, A 3.5 GHz wideband ADPLL with fractional spur suppression through TDC dithering and feedforward compensation. IEEE J. Solid-State Circuits 45(12), 2723–2736 (2010)

    Google Scholar 

  29. K. Vengattaramane, J. Borremans, M. Steyaert, J. Craninckx, A gated ring oscillator based parallel-TDC system with digital resolution enhancement, in IEEE Asian Solid-State Circuits Conference, A-SSCC 2009 (IEEE, Piscataway, 2009), pp. 57–60

    Google Scholar 

  30. C.-W. Yao, A.N. Willson, A 2.8–3.2-GHz fractional-N digital PLL with ADC-assisted TDC and inductively coupled fine-tuning DCO. IEEE J. Solid-State Circuits 48(3), 698–710 (2013)

    Article  Google Scholar 

  31. X. Yi, C.C. Boon, J. Sun, N. Huang, W.M. Lim, A low phase noise 24/77 GHz dual-band sub-sampling PLL for automotive radar applications in 65 nm CMOS technology, in 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC) (IEEE, Piscataway, 2013), pp. 417–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markulic, N., Raczkowski, K., Craninckx, J., Wambacq, P. (2019). Introduction. In: Digital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-10958-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10958-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10957-8

  • Online ISBN: 978-3-030-10958-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics