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Abstract. In this work we study a problem that naturally arises in the
context of several important applications, such as online dating, kidney
exchanges, and team formation.

Given an uncertain, weighted (hyper)graph, how can we effi-
ciently find a (hyper)matching with high expected reward, and
low risk?

We introduce a novel formulation for finding matchings with maximum
expected reward and bounded risk under a general model of uncer-
tain weighted (hyper)graphs. Given that our optimization problem is
NP-hard, we turn our attention to designing efficient approximation
algorithms. For the case of uncertain weighted graphs, we provide a
1
3
-approximation algorithm, and a 1

5
-approximation algorithm with near

optimal run time. For the case of uncertain weighted hypergraphs, we
provide a Ω( 1

k
)-approximation algorithm, where k is the rank of the

hypergraph (i.e., any hyperedge includes at most k nodes), that runs in
almost (modulo log factors) linear time.

We complement our theoretical results by testing our algorithms on a
wide variety of synthetic experiments, where we observe in a controlled
setting interesting findings on the trade-off between reward, and risk. We
also provide an application of our formulation for providing recommenda-
tions of teams that are likely to collaborate, and have high impact. Code
related to this paper is available at: https://github.com/tsourolampis/
risk-averse-graph-matchings.

1 Introduction

Graphs model a wide variety of datasets that consist of a set of entities, and pair-
wise relationships among them. In several real-world applications, these relation-
ships are inherently uncertain. For example, protein-protein interaction (PPI)
networks are associated with uncertainty since protein interactions are obtained
via noisy, error-prone measurements [4]. In privacy applications, deterministic
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edge weights become appropriately defined random variables [7,23], in dating
applications each recommended link is associated with the probability that a
date will be successful [11], in viral marketing the extent to which an idea prop-
agates through a network depends on the ‘influence probability’ of each social
interaction [24], in link prediction possible interactions are assigned probabili-
ties [30,39], and in entity resolution a classifier outputs for each pair of entities
a probability that they refer to the same object.

Mining uncertain graphs poses significant challenges. Simple queries—such as
distance queries—on deterministic graphs become #P-complete ([42]) problems
on uncertain graphs [19]. Furthermore, approaches that maximize the expected
value of a given objective typically involve high risk solutions, e.g., solutions
where there is an unacceptably large probability that the realized value of the
objective is much smaller than its expected value. On the other hand, risk-averse
methods are based on obtaining several graphs samples, a procedure that is
computationally expensive, or even prohibitive for large-scale uncertain graphs.

Two remarks about the uncertain graph models used in prior work are worth
making before we discuss the main focus of this work. The datasets used in the
majority of prior work are uncertain, unweighted graphs. There appears to be
less work related to uncertain, weighted hypergraphs that are able to model a
wider variety of datasets, specifically those containing more than just pairwise
relationships (i.e., hyperedges). Secondly, the model of uncertain graphs used
in prior work [9,18,25,27,31,34–36] are homogeneous random graphs [8]. More
formally, let G = (V,E, p) be an uncertain graph where p : E → (0, 1], is the
function that assigns a probability of success to each edge independently from
the other edges. According to the possible-world semantics [8,13] that interprets
G as a set {G : (V,EG)}EG⊆E of 2|E| possible deterministic graphs (worlds),
each defined by a subset of E. The probability of observing any possible world
G(V,EG) ∈ 2E is

Pr [G] =
∏

e∈EG

p(e)
∏

e∈E\EG

(1 − p(e)).

Such a model restricts the distribution of each edge to be a Bernoulli distribution,
and does not capture various important applications such as privacy applications
where noise (say Gaussian) is injected on the weight of each edge [7,23].

In this work, we focus on risk-averse matchings over uncertain (hyper)graphs.
To motivate our problem consider Fig. 1 that shows a probabilistic graph (i.e., a
2-regular hypergraph) with two perfect matchings, M1 = {(A,B), (C,D)} and
M2 = {(A,C), (B,D)}. Each edge e follows a Bernoulli distribution with success
probability p(e), and is associated with a reward w(e) that is obtained only when
the edge is successfully realized. These two parameters (p(e), w(e)) annotate each
edge e in Fig. 1. The maximum weight matching in expectation is M1 with expected
reward 100× 1

2×2 = 100.However,with probability (1− 1
2 )×(1− 1

2 ) = 1
4 the reward

we receive from M1 equals zero. However, the second matching M2 has expected
reward equal to 80 with probability 1. In other words, matching M1 offers poten-
tially higher reward but entails higher risk than M2. Indeed, in many situations
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with asymmetric rewards, one observes that high reward solutions are accompa-
nied by higher risks and that such solutions may be shunned by agents in favor of
safer options [26].

Fig. 1. Probabilistic graph,
each edge e is annotated with
(p(e), w(e)), its probability and
its reward/weight. The matching
(A, B), (C, D) has higher expected
weight than (A, C), (B, D). How-
ever, the reward of the former
matching is 0 with probability
1
4
, but the reward of the latter

matching is 80 with probability 1.
For details, see Sect. 1

Another way to observe that matching
M1 entails greater risk is to draw graph
samples from this probabilistic graph multi-
ple times, and observe that around 25% of
the realizations of M1 result in zero reward.
However, sampling is computationally expen-
sive on large-scale uncertain graphs. Further-
more, in order to obtain statistical guar-
antees, a large number of samples may be
needed [35] which makes the approach com-
putationally intensive or infeasible even for
medium-scale graphs. Finally, it is challeng-
ing and sometimes not always clear how to
aggregate different samples [35]. These two
drawbacks are well-known to the database
community, and recently Parchas et al. [35]
suggested a heuristic to extract represen-
tative instances of uncertain graphs. While
their work makes an important practical contribution, their method is an intu-
itive heuristic whose theoretical guarantees and worst-case running time are not
well understood [35].

Motivated by these concerns, we focus on the following central question:

How can we design efficient, risk-averse algorithms with solid theoretical
guarantees for finding maximum weight matchings in uncertain weighted
graphs and hypergraphs?

This question is well-motivated, as it naturally arises in several important appli-
cations. In online dating applications a classifier may output a probability dis-
tribution for the probability of matching two humans successfully [41]. In kidney
exchange markets, a kidney exchange is successful according to some probabil-
ity distribution that is determined by a series of medical tests. Typically, this
distribution is unknown but its parameters such as the mean and the variance
can be empirically estimated [11]. Finally, the success of any large organization
that employs skilled human resources crucially depends on the choice of teams
that will work on its various projects. Basic team formation algorithms out-
put a set of teams (i.e., hyperedges) that combine a certain set of desired skills
[3,17,20,29,33]. A classifier can leverage features that relate to crowd psychol-
ogy, conformity, group-decision making, valued diversity, mutual trust, effective
and participative leadership [22] to estimate the probability of success of a team.

In detail, our contributions are summarized as follows.

Novel Model and Formulation. We propose a general model for weighted
uncertain (hyper)graphs, and a novel formulation for risk-averse maximum
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matchings. Our goal is to select (hyper)edges that have high expected reward,
but also bounded risk of failure. Our problem is a novel variation of the well-
studied stochastic matching problem [5,11].

Approximation Algorithms. The problem that we study is NP-Hard so we
focus on designing efficient approximation algorithms. For the case of uncertain
graphs, using Edmond’s blossom algorithm [15] as a black-box, we provide a
risk-averse solution that is a 1

3 -approximation to the optimal risk-averse solution.
Similarly, using a greedy matching algorithm as a black box we obtain a 1

5 -risk-
averse approximation. For hypergraphs of rank k (i.e., any hyperedge contains
at most k nodes) we obtain a risk-averse Ω( 1

k )-approximation guarantee. Our
algorithms are risk-averse, do not need to draw graph samples, and come with
solid theoretical guarantees. Perhaps more importantly, the proposed algorithms
that are based on greedy matchings have a running time of O(m log2 m+n log m),
where n,m represent the number of nodes, and (hyper)edges in the uncertain
(hyper)graph respectively—this makes the algorithm easy to deploy on large-
scale real-world networks such as the one considered in our experiments (see
Sect. 4).

Experimental Evaluation. We evaluate our proposed algorithm on a wide
variety of synthetic experiments, where we observe interesting findings on the
trade-offs between reward and risk. There appears to be little (or even no) empir-
ical work on uncertain, weighted hypergraphs. We use the Digital Bibliography
and Library Project (DBLP) dataset to create a hypergraph where each node
is an author, each hyperedge represents a team of co-authors for a paper, the
probability of a hyperedge is the probability of collaboration estimated from
historical data, and the weight of a hyperedge is its citation count. This uncer-
tain hypergraph is particularly interesting as there exist edges with high reward
(citations) but whose authors have low probability to collaborate. On the other
hand, there exist papers with a decent number of citations whose co-authors
consistently collaborate. Intuitively, the more risk-averse we are, the more we
should prefer the latter hyperedges. We evaluate our proposed method on this
real dataset, where we observe several interesting findings. The code and the
datasets are publicly available at https://github.com/tsourolampis/risk-averse-
graph-matchings.

2 Related Work

Uncertain Graphs. Uncertain graphs naturally model various datasets includ-
ing protein-protein interactions [4,28], kidney exchanges [37], dating applica-
tions [11], sensor networks whose connectivity links are uncertain due to various
kinds of failures [38], entity resolution [34], viral marketing [24], and privacy-
applications [7].

Given the increasing number of applications that involve uncertain graphs,
researchers have put a lot of effort in developing algorithmic tools that tackle
several important graph mining problems, see [9,18,25,27,31,34–36]. However,

https://github.com/tsourolampis/risk-averse-graph-matchings
https://github.com/tsourolampis/risk-averse-graph-matchings
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with a few exceptions these methods suffer from a critical drawback; either they
are not risk-averse, or they rely on obtaining many graphs samples. Risk-aversion
has been implicitly discussed by Lin et al. in their work on reliable clustering
[31], where the authors show that interpreting probabilities as weights does not
result in good clusterings. Jin et al. provide a risk-averse algorithm for distance
queries on uncertain graphs [19]. Parchas et al. have proposed a heuristic to
extract a good possible world in order to combine risk-aversion with efficiency
[35]. However, their work comes with no guarantees.

Graph Matching is a major topic in combinatorial optimization. The interested
reader should confer the works of Lovász and Plummer [32] for a solid exposi-
tion. Finding maximum matchings in weighted graphs is solvable in polynomial
time [15,16]. A faster algorithm sorts the edges by decreasing weight, and adds
them to a matching greedily. This algorithm is a 1

2 -approximation to the opti-
mum matching. Finding a maximum weight hypergraph matching is NP-hard,
even in unweighted 3-uniform hypergraphs (a.k.a 3-dimensional matching) [21].
The greedy algorithm provides a 1

k -approximation (intuitively for each hyper-
edge we greedily add to the matching, we lose at most k hyperedges) where k is
the maximum cardinality of an edge.

Stochastic Matchings. Various stochastic versions of graph matchings have
been studied in the literature. We discuss two papers that lie close to our work
[5,11]. Both of these works consider a random graph model with a Bernoulli dis-
tribution on each edge. In contrast to our work, these models allow the central
designer to probe each edge to verify its realization: if the edge exists, it gets irre-
vocably added to the matching. While Chen et al. [11] provide a constant factor
approximation on unweighted graphs based on a simple greedy approach, Bansal
et al. [5] obtain a O(1)-factor for even weighted graphs using an LP-rounding
algorithm. On the other hand, our work focuses on designing fast algorithms that
achieve good matchings with bounded risk on weighted graphs without probing
the edges. Finally, since the hypergraph matching is also known as set packing,
the above problems are special cases of stochastic set packing problem [14].

3 Model and Proposed Method

Uncertain Weighted Bernoulli hypergraphs. Before we define a general
model for uncertain weighted hypergraphs that allows for both continuous and
discrete probability distributions, we introduce a simple probabilistic model for
weighted uncertain hypergraphs that generalizes the existing model for random
graphs. Each edge e is distributed as a weighted Bernoulli variable independently
from the rest: with probability p(e) it exists, and its weight/reward is equal to
w(e), and with the remaining probability 1−p(e) it does not exist, i.e., its weight
is zero. More formally, let H = ([n], E, p, w) be an uncertain hypergraph on n
nodes with |E| = m potential hyperedges, where p : E → (0, 1], is the function
that assigns a probability of existence to each hyperedge independently from the
other hyperedges, and w : E → R

+. The value w(e) is the reward we receive from
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hyperedge e if it exists. Let re
def= p(e)w(e) be the expected reward from edge

e. According to the possible-world semantics [8,13], the probability of observing
any possible world H(V,EH) ∈ 2E is Pr [H] =

∏
e∈EH

p(e)
∏

e/∈EH

(1 − p(e)).

Uncertain Weighted Hypergraphs. More generally, let H([n], E,{
fe(θe)

}
e∈E

) be an uncertain hypergraph on n nodes, with hyperedge set E.
The reward w(e) of each hyperedge e ∈ E is drawn according to some probabil-
ity distribution fe with parameters θe , i.e., w(e) ∼ fe(x;θe). We assume that
the reward for each hyperedge is drawn independently from the rest; each prob-
ability distribution is assumed to have finite mean, and finite variance. Given
this model, we define the probability of a given hypergraph H with weights w(e)
on the hyperedges as:

Pr [H; {w(e)}e∈E ] =
∏

e∈E

fe(w(e);θe).

Our model allows for both discrete and continuous distributions, as well as
mixed discrete and continuous distributions. In our experiments (Sect. 4) we
focus on the weighted Bernoulli, and Gaussian cases.

Problem Definition. Our goal is to output a matching M with high expected
reward and low variance. A crucial assumption that we make is that for any given
edge e, the algorithm designer does not have access to the complete distribution
fe(·) but only simple statistics such as its mean and standard deviation (s.t.d).
Let M be the set of all matchings from the hyperedge set E. The total associated
reward with a matching M ∈ M is the expected reward, i.e.,

R(M)def=
∑

e∈M

re =
∑

e∈M

Efe
[w(e)].

Similarly, the associated risk in terms of the standard deviation is defined as

risk(M)def=
∑

e∈M

σe,

where σe denotes the standard deviation of the distribution fe(x;θe).
Given an uncertain weighted hypergraph, and a risk upper-bound B, our

goal is to maximize the expected reward over all matchings with risk at most
B. We refer to this problem as the Bounded Risk Maximum Weighted Matching
(BR-MWM) problem. Specifically,

max
M∈M

R(M) [BR-MWM problem] (1)

s.t risk(M) ≤ B
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For example, in the case of a weighted Bernoulli hypergraph where each
hyperedge e ∈ E exists with probability p(e) and has weight b(e) when it exists,
formulation (1) becomes

max
M∈M

∑
e∈M p(e)b(e)

s.t
∑

e∈M

b(e)
√

p(e)(1 − p(e)) ≤ B
(2)

Similar formulations can be obtained for other specific distributions such as
Gaussian. Finally, we remark that the BR-MWM problem is NP-Hard even on
graphs via a simple reduction from Knapsack.

Other Measures of Risk. It is worth outlining that our model and proposed
method adapts easily to other risk measures. For example, if we define the risk
of a matching M in terms of its variance, i.e.,

risk(M)def=
∑

e∈M

σ2
e , (3)

then all of our theoretical guarantees and the insights gained via our experiments
still hold with minor changes in the algorithm. At the end of this section, we dis-
cuss in detail the required changes. For the sake of convenience and concreteness,
we present our results in terms of the standard deviation.

An LP-approximation Algorithm. The BR-MWM problem is a special case
of the Hypermatching Assignment Problem (HAP) introduced in [12]: given a
k-uniform hypergraph H(V,E), a budget B, a profit and a cost we, ce ≥ 0 for
hyperedge e respectively, the goal of HAP is to compute a matching M so that
the total profit

∑
e∈M we is maximized and the budget constraint

∑
e∈M ce ≤

B is satisfied. Therefore, we can invoke the randomized 1
k+1+ε -approximation

algorithm for HAP [12] to solve our problem, here ε > 0 is constant. However,
this approach—at least for the moment—is unlikely to scale well: it requires
solving a linear program with an exponential number of variables in terms of
1
ε , and then strengthen this LP by one round of the Lasserre’s lift-and-project
method. This motivates the design of scalable approximation algorithms.

3.1 Proposed Algorithm and Guarantees

Our algorithm is described in pseudocode 1. It takes as input a hypergraph
matching algorithm Match-Alg as a black-box: the black-box takes a weighted
hypergraph and returns a hypergraph matching. First, our algorithm removes
all hyperedges e that have negative reward and for which σe > B as they are not

part of any optimal solution. For any given edge e ∈ E, define αe
def= re

σe
. Now, we



78 C. E. Tsourakakis et al.

label the edges in E as e1, e2, . . . , em such that αe1 ≥ αe2 ≥ . . . ≥ αem
, breaking

ties arbitrarily. Sorting the α values requires O(m log m) time. Next, we consider
the nested sequence of hypergraphs ∅ = H(0) ⊂ H(1) ⊂ . . . ⊂ H(m) = H, where
H(i) contains the i hyperedges (e1, e2, . . . , ei), and each edge e is weighted by
the expected reward re.

Let M (i) be the matching returned by Match-Alg on H(i) with weights
(re)e∈H(i) . We first compute the maximum weight matching on H(m). If the
quantity risk(M (m)) is less than or equal to B, then we output M (m). Otherwise,
we binary search the nested sequence of hypergraphs to find any index �∗ for
which

risk(M (�∗)) ≤ B < risk(M (�∗+1)).

The final output matching MOUT is either M (�∗) or e�∗+1, depending on
which one achieves greater expected reward. Intuitively, the latter case is required
when there exists a single high-reward hyperedge whose risk is comparable to the
upper bound B. In general, there may be more than one index �∗ that satisfies
the above condition since the variance of M (i) is not monotonically increasing
with i. Figure 2 provides such an example that shows that increasing the set of
allowed edges can actually decrease the overall risk of the optimum matching.

Fig. 2. The risk risk(M (i)) of the opti-
mum matching M (i) is not monotoni-
cally increasing with i. For details, see
Sect. 3

Specifically, Fig. 2 shows an uncer-
tain graph, each edge e is annotated
with (re, σe, αe). One can always find
distributions that satisfy these parame-
ters. We consider Algorithm 1 with the
black-box matching algorithm Match-
Alg as the optimum matching algo-
rithm on weighted graphs. As our algo-
rithm considers edges in decreasing order
of their α-value, we get that M (1) =
{(A,C)},M (2) = {(A,B)},M (2) = {(A,
B)},M (3) = {(A,C), (B,D)}. The risk of

the above three matchings are 0.1, 0.5, and 0.45 respectively. Thus, the quantity
risk(M (i)) is not monotonically increasing with i.

While it is not hard to see how a binary search would work, we provide
the details for completeness. We know that risk(M (1)) = σ(e1) ≤ B, and
risk(M (m)) > B. Let low = 1, high = m. We search the middle position mid
between low and high, and mid + 1. If risk(M (mid)) ≤ B < risk(M (mid+1)),
then we set �∗ equal to mid and return. If not, then if risk(M (mid)) ≤ B,
we repeat the same procedure with low = mid + 1, high = m. Otherwise, if
risk(M (mid)) > B we repeat with low = 1, high = mid. This requires O(log m)
iterations, and each iteration requires the computation of at most two matchings
using the black-box Match-Alg.
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Our proposed algorithm uses the notion of a black-box reduction: wherein,
we take an arbitrary c-approximation algorithm for computing a maximum-
weight hypermatching (Match-Alg, c ≤ 1) and leverage its properties to derive
an algorithm that in addition to maximizing the expected weight also has low
risk. This black-box approach has a significant side-effect: organizations may
have already invested in graph processing software for deterministic graphs can
continue to use the same methods (as a black-box) regardless of the uncertainty
inherent in the data. Our search takes time O(log m × T (n,m)) where T (n,m)
is the running time of maximum weighted matching algorithm Match-Alg.
1
3 -approximation for Uncertain Weighted Graphs. First we analyze our
algorithm for the important case of uncertain weighted graphs. Unlike general
hypergraphs, we can find a maximum weight graph matching in polynomial time
using Edmond’s algorithm [16]. Our main result is stated below.

Theorem 1. Assuming an exact maximum weight matching algorithm Match-
Alg, Algorithm1 returns a matching MOUT whose risk is less than or equal to
B, and whose expected reward is at least 1

3 of the optimal solution to the Bounded
Risk Maximum Weighted Matching problem on uncertain weighted graphs.

Before we prove Theorem 1, it is worth reiterating that our proposed algo-
rithm provides a better approximation than the factor guaranteed in [12], i.e.,
1
3 > 1

3+ε for any constant ε > 0. Additionally, our approach is orders of mag-
nitude faster than the algorithm from [12] as the latter uses an LP-rounding
technique, whereas our approach is simple and combinatorial.

Proof. Let MOPT denote an optimum matching whose risk is at most B. Since it
is immediately clear by the description of our algorithm that risk(MOUT ) ≤ B,
our goal is to prove that the matching returned by our algorithm has reward at
least one-third as good as the reward of the optimum matching, i.e., R(MOUT ) =

∑
e∈MOUT

re ≥ R(MOP T )
3 .

In order to show this bound, we prove a series of inequalities. By definition,
H(�∗+1) differs from H(�∗) in exactly one edge, that is e�∗+1. We also know that
the maximum weight matching in H(�∗+1) (i.e., M (�∗+1)) is different from the
maximum weight matching in H(�∗) (M (�∗)) since the former entails risk that
exceeds the budget B. We conclude that M (�∗+1) contains the edge e�∗+1.

Therefore, we have that R(M (�∗+1)) = R(M (�∗+1) \ e�∗+1) + re�∗+1 ≤
R(M (�∗)) + re�∗+1 . This is true because M (�∗) is the maximum weight matching
in H(�∗) and so its weight is larger than or equal to that of M (�∗+1) \ e�∗+1. In
conclusion, our first non-trivial inequality is:

R(M (�∗)) + re�∗+1 ≥ R(M (�∗+1)) (4)
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Algorithm 1. Algorithm for computing a c
2+c -approximate matching for

the BR-MWM problem on uncertain weighted hypergraphs
input : H([n], E), (re = Efe [we])e∈E , (σe =

√
Efe [(we − re)2])e∈E , Match-Alg

Remove all hyperedges e that have either re ≤ 0 or σe > B;
Sort E in decreasing order of αe = re

σe
, let αe1 ≥ . . . ≥ αem ≥ 0.;

M (m) ← Match-Alg(H(m)) ;

if risk(M (m)) ≤ B then

�∗ ← m; Return �∗, M (�∗);
end
low ← 1, high ← m ;
while True do

mid ← � low+high
2

�; Compute M (mid), M (mid+1) ;

if risk(M (mid)) ≤ B < risk(M (mid+1)) then

�∗ ← mid; Return �∗, M (�∗)

else if risk(M (mid)) ≤ B then
low ← mid + 1 ;

else
high ← mid ;

end

end

Next, we lower-bound M (�∗+1) by using the facts that αe ≥ αe�∗+1 for all e ∈
M (�∗+1), and that the total risk of M (�∗+1) is at least B by definition. Specifically,

R(M (�∗+1)) =
∑

e∈M(�∗+1)

re =
∑

e∈M(�∗+1)

αeσe (5)

≥
∑

e∈M(�∗+1)

αe�∗+1σe

= αe�∗+1

∑

e∈M(�∗+1)

σe > αe�∗+1B. (6)

Now we show upper bounds on the optimum solution to the BR-MWM prob-
lem MOPT . We divide MOPT into two parts: MOPT

1 and MOPT
2 , where the first

part is the set of edges in MOPT ∩ H(�∗) and the second part is the edges not
present in H(�∗). We present separate upper bounds on MOPT

1 and MOPT
2 . By

definition, MOPT
1 is a matching on the set of edges H(�∗). Therefore, its reward is

smaller than or equal to that of the optimum matching on H(�∗), which happens
to be M (�∗). Hence,

R(MOPT
1 ) ≤ R(M (�∗)). (7)

Next, consider MOPT
2 . To upper-bound R(MOPT

2 ) we also use inequali-
ties 4, 6:

R(MOPT
2 ) =

∑

e∈MOP T
2

re =
∑

e∈MOP T
2

αeσe

≤
∑

e∈MOP T
2

αe�∗+1σe = αe�∗+1

∑

e∈MOP T
2

σe



Risk-Averse Matchings over Uncertain Graph Databases 81

≤ αe�∗+1B < R(M (�∗+1))

≤ R(M (�∗)) + re�∗+1 .

Now, we are ready to complete the proof. Recall that the output of the algo-
rithm MOUT satisfies R(MOUT ) = max(R(M (�∗)), re�∗+1). Combining the upper
bounds for MOPT

1 and MOPT
2 yields the desired approximation factor of 1

3 :

R(MOPT ) ≤ R(M (�)) + R(M (�)) + r(e�+1)

= 2R(M (�)) + r(e�+1) ≤ 3R(MOUT ). �

Running time: Assuming that the O(mn + n2 log n) [16] implementation of
Edmond’s algorithm is used as a black-box, we remark that the run time of
Algorithm 1 is O(mn log m + n2 log m log n).

Fast 1
5 -approximation for Uncertain Weighted Graphs. Since the run-

ning time using Edmond’s algorithm is somewhat expensive, we show how the
approximation guarantee changes when we use the (much faster) greedy algo-
rithm for maximum weighted matchings as Match-Alg. Recall, the greedy
matching algorithm runs in O(m log m + n) time.

Theorem 2. If the black-box Match-Alg is set to be the greedy matching algo-
rithm, then Algorithm1 computes a 1

5 -approximation to the optimal solution of
the BR-MWM problem in O(m log2 m + n log m)-time.

The proof is omitted as it is essentially identical to the proof of Theorem1, with
the only change that the greedy matching algorithm provides a 1

2 -approximation
to the maximum weighted matching problem.

Fast c
2+c -approximation for Uncertain Weighted Hypergraphs. Recall

that finding a maximum weight hypergraph matching is NP-hard even for
unweighted, 3-regular hypergraphs [21]. However, there exist various algorithms,
that achieve different approximation factors c < 1. For example, the greedy algo-
rithm provides a 1

k -approximation guarantee, where k is the rank of the hyper-
graph (i.e., any hyperedge contains at most k nodes). Our main theoretical result
follows.

Theorem 3. Given any polynomial-time c-approximation algorithm Match-
Alg (c ≤ 1) for the maximum weighted hypergraph matching problem, we can
compute in polynomial time a hypermatching MOUT such that its risk is at most
B and its expected weight is a c

2+c -approximation to the expected weight of the
optimal hypermatching that has risk at most B.

Again the proof proceeds step by step as the proof of Theorem1, and is omitted.
In what follows, we restrict our attention to using the greedy hypermatching
algorithm as a black-box. Our focus on greedy matchings stems from the fact
that its approximation factor ( 1

k ) is asymptotically optimal [6,10], that it is easy
to implement, and runs in O(m log m+n) time using appropriate data structures.
Since we will be using the greedy algorithm in our experiments (Sect. 4), we
provide the following corollary.
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Corollary 4. For any hypergraph of rank k, we can compute in polynomial time
a hypergraph-matching whose risk is at most B and whose weight is a Ω( 1

k )
approximation to the optimum bounded-risk hypergraph matching.

Algorithm 1 using the greedy hypermatching algorithm in lieu of Match-
Alg runs in O(m log2 m + n log m) time.

Remark. We reiterate the point that our algorithm can be used to compute
risk-averse matchings for other notions of risk such as variance. For instance, if
we define risk as in Eq. (3), then the only thing that changes in our algorithm is
the definition of the αe, namely that αe is set equal to re

σ2
e

for each (hyper)edge
e ∈ E. The rest, including the theoretical guarantees remain identical.

4 Experimental Results

Experimental Setup and Normalization. We test our proposed algorithm
on a diverse range of datasets, where the orders of magnitude of risk (e.g.,
standard deviation) can vary greatly across datasets. In order to have a consistent
interpretation of the trade-off between expected reward and risk across datasets,
we normalize the allowed risk B relative to the maximum possible standard
deviation of a benchmark matching, Bmax. For the purpose of computing or
more precisely approximating Bmax, we run the greedy matching algorithm on
the (hyper)graph G (H) where the weight on edge e is σe, and set Bmax to be
the aggregate risk of the computed matching. While in theory one may observe
a matching with greater risk than the obtained value Bmax, this does not occur
in any of our simulations. We range B according to the rule B = Bn × Bmax,
where Bn ∈ [0, 1] and is incremented in steps of 0.05. We refer to Bn as the
normalized risk from now on. Due to space constraints we have not included a
wide variety of synthetic experiments that can be found in an extended version
of our work [40]. In the following we show our results on a real-world uncertain,
weighted hypergraph. We implement our proposed fast approximation algorithm
for uncertain weighted hypergraphs in Python. The code is available at Github
[2]. All experiments were performed on a laptop with 1.7 GHz Intel Core i7
processor and 8 GB of main memory.

Recommending Impactful but Probable Collaborations. In many ways,
academic collaboration is an ideal playground to explore the effect of risk-averse
team formation for research projects as there exist teams of researchers that have
the potential for high impact but may also collaborate less often. To explore this
further, we use our proposed algorithm for uncertain weighted hypergraphs as a
tool for identifying a set of disjoint collaborations that are both impactful and
likely to take place. For this purpose, we use the Digital Bibliography and Library
Project (DBLP) database. From each paper, we obtain a team that corresponds
to the set of authors of that paper. As a proxy for the impact of the paper we
use the citation count. Unfortunately, we could not obtain the citation counts
from Google Scholar for the whole DBLP dataset as we would get rate limited by
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Google after making too many requests. Therefore, we used the AMiner citation
network dataset [1] that contains citation counts, but unfortunately is not as
up-to-date as Google Scholar is.

We preprocessed the dataset by removing all single-author papers since the
corresponding hyperedge probabilities are one. Furthermore, multiple hyper-
edges are treated as one, with citation count equal to the sum of the citation
counts of the multiple hyperedges. To give an example, if there exist three papers
in the dataset that have been co-authored by authors A1, A2 with citation counts
w1, w2, w3 we create one hyperedge on the nodes that correspond to A1, A2

with weight equal w1 + w2 + w3. If there exists another paper co-authored by
A1, A2, A3, this yields a different hyperedge/team {A1, A2, A3}, and we do not
include its citations in the impact of team {A1, A2}.

For hyperedge e = (u1, . . . , u�) we find the set of papers {P1, . . . , P�} authored
by authors u1, . . . , u� respectively. We set the probability of hyperedge e as

pe =
|P1 ∩ P2 ∩ . . . ∩ P�|
|P1 ∪ P2 ∪ . . . ∪ P�| .

Intuitively, this is the empirical probability of collaboration between the specific
set of authors.

To sum up, we create an uncertain weighted hypergraph using the DBLP
dataset, where each node corresponds to an author, each hyperedge represents
a paper whose reward follows a Bernoulli distribution with weight equal to the
number of its citations, and probability pe is the likelihood of collaboration. The
final hypergraph consists of n = 1, 752, 443 nodes and m = 3, 227, 380 edges,
and will be made publicly available on the first author’s website. The largest
collaboration involves a paper co-authored by 27 people, i.e., the rank k of the
hypergraph is 27.

Fig. 3. (a) Expected reward, (b) average probability (over hypermatching’s edges),
(c) number of edges in the hypermatching, and (d) running time in seconds versus
normalized risk Bn. For details, see Sect. 4

Figure 3 shows our findings when we vary the normalized risk bound Bn and
obtain a hypermatching for each value of this parameter, using our algorithm.
For the record, when Bn = 1, then B = Bmax = 454 392.0. Figure 3(a) plots
the expected weight of the hypermatching versus Bn. We observe an interest-
ing phase transition when Bn changes from 0.15 to 0.2. This is because after
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Fig. 4. Figures in first row (a1), (b1), (c1), (d1) (second row (a2), (b2), (c2), (d2)): his-
tograms showing the hyperedge probabilities (citations) in the hypermatching returned
by our algorithm for normalized risk values Bn equal to 0.05, 0.25, 0.5, 1 respectively.
For details, see Sect. 4

Bn = 0.15 the average probability of the hyper-matching drops from ∼ 0.7
to ∼ 0.5. This is shown in Fig. 3(b) that plots the average probability of the
edges in each hypermatching computed by our algorithm vs. Bn. Figure 3(a),(b)
strongly indicate what we verified by inspecting the output: up to Bn = 0.15,
our algorithm picks teams of co-authors that tend to collaborate frequently. This
finding illustrates that our tool may be used for certain anomaly detection tasks.
Figure 3(c),(d) plot the number of hyperedges returned by our algorithm, and
its running time in seconds vs Bn. We observe that a positive side-effect of using
small risk bounds is speed: for small Bn values, the algorithm computes fewer
maximum matchings.

By carefully inspecting the output of our algorithm for different Bn values,
we see that at low values, e.g., Bn = 0.05, we find hyperedges typically with
50 to 150 citations with probabilities ranging typically from 0.66 to 1. When
Bn becomes large we find hyper-edges with significantly more citations but with
lower probability.

Finally, Fig. 4 shows four pairs of histograms corresponding to the output of
our algorithm for four different normalized risk values Bn, i.e., 0.05, 0.25, 0.5, 1
respectively. Each pair ({(a1), (a2)}, {(b1), (b2)}, {(c1), (c2)}, and {(d1), (d2)})
plots the histogram of the probabilities, and the number of citations of the
hyperedges selected by our algorithm for Bn ∈ {0.05, 0.25, 0.5, 1} respectively.
The histograms provide a view of how the probabilities decrease and citations
increase as we increase Bn, i.e., as we allow higher risk.

5 Conclusion

In this work we study the problem of finding matchings with high expected
reward and bounded risk on large-scale uncertain hypergraphs. We introduce a
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general model for uncertain weighted hypergraphs that allows for both continu-
ous and discrete probability distributions, we provide a novel stochastic match-
ing formulation that is NP-hard, and develop fast approximation algorithms. We
verify the efficiency of our proposed methods on several synthetic and real-world
datasets.

In contrast to the majority of prior work on uncertain graph databases, we
show that it is possible to combine risk aversion, time efficiency, and theoretical
guarantees simultaneously. Moving forward, a natural research direction is to
design risk-averse algorithms for other graph mining tasks such as motif cluster-
ing, the k-clique densest subgraph problem, and k-core decompositions?
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