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Abstract. How can we discover whether X causes Y , or vice versa, that
Y causes X, when we are only given a sample over their joint distribu-
tion? How can we do this such that X and Y can be univariate, multi-
variate, or of different cardinalities? And, how can we do so regardless
of whether X and Y are of the same, or of different data type, be it dis-
crete, numeric, or mixed? These are exactly the questions we answer. We
take an information theoretic approach, based on the Minimum Descrip-
tion Length principle, from which it follows that first describing the data
over cause and then that of effect given cause is shorter than the reverse
direction. Simply put, if Y can be explained more succinctly by a set of
classification or regression trees conditioned on X, than in the opposite
direction, we conclude that X causes Y . Empirical evaluation on a wide
range of data shows that our method, Crack, infers the correct causal
direction reliably and with high accuracy on a wide range of settings,
outperforming the state of the art by a wide margin. Code related to
this paper is available at: http://eda.mmci.uni-saarland.de/crack.

1 Introduction

Telling cause from effect is one of the core problems in science. It is often difficult,
expensive, or impossible to obtain data through randomized trials, and hence
we often have to infer causality from, what is called, observational data [19]. We
consider the setting where, given data over the joint distribution of two random
variables X and Y , we have to infer the causal direction between X and Y . In
other words, our task is to identify whether it is more likely that X causes Y ,
or vice versa, that Y causes X, or that the two are merely correlated.

In practice, X and Y do not have to be of the same type. The altitude of
a location (real-valued), for example, determines whether it is a good habitat
(binary) for a mountain hare. In fact, neither X nor Y have to be univariate.
Whether or not a location is a good habitat for an animal is not just caused by a
single aspect, but by a combination of conditions which are not necessarily of the
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same type. We are therefore interested in the general case where X and Y may
be of any cardinality, and may be single or mixed-type. To the best of our knowl-
edge there exists no method for this general setting. Causal inference based on
conditional independence tests, for example, requires three variables, and cannot
decide between X → Y and Y → X [19]. All existing methods that consider two
variables are only defined for single-type pairs. Additive Noise Models (ANMs),
for example, have only been proposed for univariate pairs of real-valued [20] or
discrete variables [21], and similarly so for methods based on the independence
of P (X) and P (Y | X) [25]. Trace-based methods require both X and Y to be
strictly multivariate real-valued [4,10], and whereas Ergo [31] also works for
univariate pairs, these again have to be real-valued. We refer to Sect. 3 for a
more detailed overview of related work.

Our approach is based on algorithmic information theory. That is, we fol-
low the postulate that if X → Y , it will be easier—in terms of Kolmogorov
complexity—to first describe X, and then describe Y given X, than the inverse
direction [11,16,31]. Kolmogorov complexity is not computable, but can be
approximated through the Minimum Description Length (MDL) principle [7,23],
which we use to instantiate this framework. In addition, we develop a new causal
indicator that is able to handle multivariate and mixed-type data.

In particular, we define an MDL score for coding forests, a model class where
a model consists of classification and regression trees as this allows us to consider
both discrete and continuous-valued data with one unified model. By allowing
dependencies from X to Y , or vice versa, we can measure the difference in
complexity between X → Y and Y → X. Discovering a single optimal decision
tree is already NP-hard, and hence we cannot efficiently discover the coding forest
that describes the data most succinctly. We therefore propose Crack, an efficient
greedy algorithm for discovering good models directly from data. The inferences
we make hence are all with respect to the class of coding trees, and the specific
encoding we define. We discuss the implications with regard to identifiability,
and through extensive empirical evaluation on synthetic, benchmark, and real-
world data, we show that Crack performs very well in practice—even under
adversarial settings.

Our main contributions are as follows. We introduce the first framework
for inferring the causal direction from univariate and multivariate single and
mixed-type data—as opposed to existing methods that are only able to deal
with either nominal or numeric data. We propose a new causal indicator based
on the algorithmic Markov condition, instantiate it through MDL, and propose
a fast algorithm to compute it. We provide extensive empirical evaluation of our
method, in which we additionally introduce new multivariate cause-effect pairs
with known ground truth. The paper is organized as usual.

2 Preliminaries

In this section, we introduce the notation and give brief primers to Kolmogorov
complexity and the Minimum Description Length principle.
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2.1 Notation

In this work we consider two sets of random variables X and Y . Further, we are
given a data set D containing n i.i.d. samples drawn from the joint distribution of
X and Y . For convenience, we call A the set of all random variables, where A =
X∪Y , with |A| = m being the number of random variables in A. In the following,
we will often refer to a random variable Ai ∈ A as an attribute, regardless of
whether it belongs to X or Y . An attribute Ai has a type, where type(Ai) ∈
{binary, categorical,numeric}. We will refer to binary and categorical attributes
as nominal attributes. We write Xi to denote the domain of an attribute Ai.
Respectively, the size of the domain of an attribute |Xi| is for discrete data simply
the number of distinct values and for numeric data equal to max(Ai)−min(Ai)

res(Ai)
+1,

where res(Ai) is the resolution at which the data over attribute Ai was recorded.
For example, a resolution of 1 means that we consider integers, of 0.01 means
that A was recorded with a precision of up to a hundredth.

We will consider decision and regression trees. A tree T consist of |T | nodes.
We identify internal nodes as v ∈ int(T ), and leaf nodes as l ∈ lvs(T ). A leaf node
l contains |l| data points. All logarithms are to base 2, and we use 0 log 0 = 0.

2.2 Kolmogorov Complexity, a Brief Primer

The Kolmogorov complexity of a finite binary string x is the length of the short-
est binary program p∗ for a universal Turing machine U that generates x, and
then halts [15]. Formally, we have K(x) = min{|p| | p ∈ {0, 1}∗,U(p) = x}. Sim-
ply put, p∗ is the most succinct algorithmic description of x, and the Kolmogorov
complexity of x is the length of its ultimate lossless compression. Conditional
Kolmogorov complexity, K(x | y) ≤ K(x), is then the length of the shortest
binary program p∗ that generates x, and halts, given y as input.

By definition, Kolmogorov complexity will make maximal use of any structure
in x that can be expressed more succinctly algorithmically than by printing it
verbatim. As such it is the theoretical optimal measure for complexity. However,
due to the halting problem it is not computable [15]. Instead, we can approximate
it from above through MDL [15].

2.3 MDL, a Brief Primer

The Minimum Description Length (MDL) principle [7,23] is a practical variant
of Kolmogorov Complexity. Intuitively, instead of all programs, it considers only
those programs that we know output x and halt. Formally, given a model class
M, MDL identifies the best model M ∈ M for data D as the one minimizing
L(D,M) = L(M) + L(D | M), where L(M) is the length in bits of the descrip-
tion of M , and L(D | M) is the length in bits of the description of data D given
M . This is known as two-part MDL. There also exists one-part, or refined MDL,
where we encode data and model together. Refined MDL is superior as it avoids
arbitrary choices in the description language L, but in practice it is only com-
putable for certain model classes. Given infinite data the model costs degenerate



658 A. Marx and J. Vreeken

to an additive constant term, which is independent of the data. Hence given
infinite data, two-part MDL converges to refined MDL. Note that in either case
we are only concerned with code lengths—our goal is to measure the complexity
of a dataset under a model class, not to actually compress it [7].

3 Related Work

Causal inference on observational data is a challenging problem, and has recently
attracted a lot of attention [3,11,19,26]. Most existing proposals are highly spe-
cific in the type of causal dependencies and type of variables they can consider.

Classical constrained-based approaches, such as conditional independence
tests, require three observed random variables [19,27], cannot distinguish Markov
equivalent causal DAGs [30] and hence cannot decide between X → Y and
Y → X. Recently, there has been increased attention for methods that can infer
the causal direction from only two random variables. Generally, they exploit
certain properties of the joint distribution.

Additive Noise Models (ANMs) [26], for example, assume that the effect
is a function of the cause and cause-independent additive noise. ANMs exist
for univariate real-valued [9,20,26,32] and discrete data [21]. It is unclear how
to extend this model for multivariate or mixed-type data. A related approach
considers the asymmetry in the joint distribution of cause and effect for causal
inference. The linear trace method (LTR) [10] and the kernelized trace method
(KTR) [4] aim to find a structure matrix A and the covariance matrix ΣX

to express Y as AX. Both methods are restricted to multivariate continuous
data. In addition, KTR assumes a deterministic, functional and invertible causal
relation. Sgouritsa et al. [25] show that the marginal distribution of the cause
is independent of the conditional distribution of the effect given the cause. To
exploit this asymmetry, they propose the Cure algorithm, which is based on
unsupervised reverse regression.

The algorithmic information-theoretic approach views causality in terms of
Kolmogorov complexity. The key idea is that if X causes Y , the shortest descrip-
tion of the joint distribution P (X,Y ) is given by the separate descriptions of the
distributions P (X) and P (Y | X) [11], and justifies additive noise model based
causal inference [12]. However, as Kolmogorov complexity is not computable [15],
causal inference using algorithmic information theory requires practical imple-
mentations, or notions of independence. For instance, the information-geometric
approach [13] defines independence via orthogonality in information space for
univariate continuous pairs. Vreeken [31] instantiates it with the cumulative
entropy to infer the causal direction in continuous univariate and multivariate
data. Mooij instantiates the first practical compression-based approach [18] using
the Minimum Message Length. Budhathoki and Vreeken approximate K(X) and
K(Y | X) through MDL, and propose Origo for causal inference on binary
data [3]. Marx and Vreeken [16] propose Slope, an MDL based method employ-
ing local and global regression for univariate numeric data.

In contrast to all methods above, Crack can consider pairs of any cardinality,
univariate or multivariate, and of same, different, or even mixed-type.



Causal Inference on Multivariate and Mixed-Type Data 659

4 Causal Inference by Compression

We pursue the goal of causal inference by compression. Below we give a short
introduction to the key concepts.

4.1 Causal Inference by Complexity

The problem we consider is to infer, given data over two correlated variables X
and Y , whether X caused Y , whether Y caused X, or whether X and Y are only
correlated. As is common in this setting, we assume causal sufficiency [17]. That
is, we assume there exists no hidden confounding variable Z that causes both X
and Y . This scenario is relevant not only when we are given only two variables
and hence no conditional independence tests can be applied, but also when we
are given a partially directed causal skeleton and orientation rules based on
conditional independence tests can not resolve the remaining undirected edges.

The algorithmic Markov condition, as recently postulated by Janzing and
Schölkopf [11], states that factorizing the joint distribution over cause and effect
into P (cause) and P (effect | cause), will lead to simpler—in terms of Kolmogorov
complexity—models than factorizing it into P (effect) and P (cause | effect).
Formally, they postulate that if X causes Y ,

K(P (X)) + K(P (Y | X)) ≤ K(P (Y )) + K(P (X | Y )) .

While in general the symmetry of information, K(x) + K(y | x) = K(y) + K(x |
y), holds up to an additive constant [15], Janzing and Schölkopf [11] showed it
does not hold when X causes Y , or vice versa. Hence, we can trivially define

ΔX→Y = K(P (X)) + K(P (Y | X)) , (1)

as a causal indicator that uses this asymmetry to infer that X → Y as the most
likely causal direction if ΔX→Y < ΔY →X , and vice versa.

This indicator assumes access to the true distribution P (·). In practice, we
only have access to empirical data. Moreover, following from the halting problem,
Kolmogorov complexity is not computable. We can approximate it, however, via
MDL [7,15], which also allows us to directly work with empirical distributions.

4.2 Causal Inference by MDL

For causal inference by MDL, we will need to approximate both the marginals
K(P (X)) and K(P (Y )) as well as the conditionals K(P (Y | X)) and K(P (X |
Y )). For the former, we need to consider the model classes MX and MY , while for
the latter we need to consider class MY |X of models MY |X that describe the data
of Y dependent the data of X, and accordingly for the inverse direction.

That is, we are after the causal model MX→Y = (MX ,MY |X) from the class
MX→Y = MX × MY |X that best describes the data Y by exploiting as much
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structure of X as possible to save bits. By MDL, we identify the optimal model
MX→Y ∈ MX→Y for data over X and Y as the one minimizing

L(X,Y,MX→Y ) = L(X,MX) + L(Y,MY |X | X) ,

where the encoded length of the data of X under a given model is encoded using
two-part MDL, similarly so for Y , if we consider the inverse direction.

To identify the most likely causal direction between X and Y by MDL we
can now simply rewrite Eq. (1) to define the Absolute Causal Indicator (ACI) [3]

ACI X→Y = L(X,MX) + L(Y,MY |X | X) .

Akin to the Kolmogorov complexity based score, we infer that X is a likely cause
of Y if ACI X→Y < ACI Y →X , Y is a likely cause of X if ACI Y →X < ACI X→Y .

4.3 Normalized Causal Indicator

The absolute causal indicator has nice theoretical properties that follow directly
from the algorithmic Markov condition. However, by considering the absolute
difference in encoded lengths between X → Y and Y → X, it has an intrinsic bias
towards data of higher marginal complexity. For example, when we gain 5 bits
between encoding the data over Y conditioned on X, rather than independently,
this is more impressive if L(Y,MY ) was 100 than when it was 1 000 000 bits. This
is particularly important in the mixed-data case, as the marginal complexity of a
binary attribute will typically be much smaller than that of a attribute recorded
at a higher resolution.

To address this shortcoming in ACI , we propose a novel, normalized indicator
for causal inference on mixed-type data. We start with the Ergo indicator [31],
which rather than the absolute difference considers the compression ratios of the
target variables, i.e. iff X → Y then

L(X,MX|Y | Y )
L(X,MX)

>
L(Y,MY |X | X)

L(Y,MY )
.

This score accounts for different marginal complexities of X and Y , and hence
suffices for the univariate mixed-type data case. For the multivariate and mixed-
type data case, we still face the same problem: if the variates of Yi ∈ Y are
of different marginal complexities L(Yi,MYi

), the gain in compression of one
single Yi may dominate the overall score simply because it has a larger marginal
complexity than the others (e.g. because it has a larger domain).

We can compensate this by explicitly considering the compression ratios per
variate Yi ∈ Y , rather than the compression ratio over Y as a whole. Formally,
we define our new Normalized Causal Indicator (NCI ) as

NCI X→Y =
1

|Y |
∑

Yi∈Y

L(Yi,MYi|X | X)
L(Yi,MYi

)
.

As above, we infer X → Y if NCI X→Y < NCI Y →X and vice versa.
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Although free of bias from the marginal complexities of individual variates,
we have to be careful to screen for redundancy within Y resp. X. By definition,
the NCI counts the causal effect on each variate, and redundancies within Y
(resp. X) hence exacerbate the measured effect. It is easy to detect redundancies
within X resp. Y using standard independence tests, however.

In practice, we expect that ACI performs well on data where X and Y
are of the same type, especially when |X| = |Y | and the domain sizes of their
attributes are balanced. Whenever the variates of X and Y are of different
marginal complexities, e.g. because of unbalanced domains, dimensionality, and
especially for mixed-type data, the experiments confirm that the NCI performs
much better than the ACI .

5 MDL for Tree Models

To use MDL in practice, we need to specify an appropriate model class M, and
define how to encode both data and models in bits. Here, we need to be able to
consider numeric, discrete and mixed-type data, be able to exploit dependencies
between attributes of different types, and be able to encode the data of Y con-
ditioned on the data of X. Classification and regression trees lend themselves
very naturally to do all of this.

That is, we consider models M that contain a classification or regression tree
Ti per attribute Ai ∈ A, where tree Ti encodes the data over Ai by exploiting
dependencies on other attributes by means of splitting or regression. Together,
the leaves of a tree encode the data of the attribute. Loosely speaking, the better
we can fit the data in a leaf, the more succinctly we will be able to encode it.

A valid tree model M contains no cyclic dependencies between the trees
Ti ∈ M , and hence a valid model can be represented by a DAG. Formally, we
define MA as the set of all valid tree models for data over a set of attributes
A. We additionally define conditional tree models for Y given X, as the model
class MY |X that consists of all valid tree models where we allow dependencies
within Y , as well as from X to Y , but not from Y to X.

Cost of Data and Model. Now that we know the relevant model classes, we
can define our MDL score. At the highest level, the number of bits to describe
data over attributes A together with a valid model M for A as

L(A,M) =
∑

Ti∈M

L(Ai, Ti) ,

where we make use of the fact that M is a DAG, and we can hence serialize its
dependencies.

In turn, the encoded cost of a tree T consists of two parts. First, we transmit
its topology, and second the data in its leaves. For the topology, we indicate per
node whether it is a leaf or an internal node, and if the latter, whether it is a
split or regression node. Formally we hence have
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L(Ai, T ) = |T | +
∑

v∈int(T )

(1 + L(v)) +
∑

l∈lvs(T )

L(l) .

This leaves us to define the encoded cost of an internal node, L(v), and the
encoded cost of the data in the leaves, L(l). We do this in turn.

Cost of a Node. A node v ∈ T can be of two main types; it either defines a
split, or a regression step. We consider these in turn. We consider both multiway
and single splits. To encode a split node v , we need

Lsplit(v) = 1 + log |A| + L(Φsplit)

bits. We first encode whether it is a single or multiway split, then the attribute
Xj , and last the conditions on which we split. For single way splits, L(Φsplit)
corresponds to the cost of describing the value in the domain of Xj on which
we split, which is log |Xj | when Xj is categorical, and log |Xj | − 1| when it is
binary or numeric. For multiway splits on categorical attributes Xj we split on
all values, which costs no further bits, while for numeric Xj we split on every
value that occurs at least k times—with one residual split for all remaining data
points. To encode k we use LN, the MDL optimal code for integers [24].

To encode a regression node n, we first encode the attribute we regress on,
and then the parameters Φ(v) of the regression, i.e.

Lreg(v) = log |A| +
∑

φ∈Φ(v)

( 1 + LN(s) + LN(�φ · 10s�) ) .

We encode each parameter φ ∈ Φ up to user defined precision, e.g. 0.001, by first
encoding the corresponding number of significant digits s, e.g. 3, and then the
shifted parameter value. In practice, for computational reasons, we use linear
and quadratic regression, but note that this score is general for any regression
technique with real-valued parameters.

Cost of a Leaf. In classification and regression trees, the actual data is stored in
the leaves. To encode the data in a leaf of a nominal attribute, we can use refined
MDL [14]. That is, we are guaranteed to be as close as possible to the number of
bits we would need knowing the true model, even if the true generating model
is not in our model class [7]. In particular, we encode the data of a nominal leaf
using the stochastic complexity for multinomials as

Lnom(l) = |l| · H(Xi | l) + log
∑

h1+···+hk=|l|

|l |!
h1!h2! · · · hk!

,

where H denotes the Shannon entropy. Kontkanen and Myllymäki [14] derived
a recursive formula to calculate this in linear time.
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For numeric data, refined MDL encodings have very high computational com-
plexity [14]. In the interest of efficiency, we hence encode the data in numeric
leaves with two-part MDL, using point models with a Gaussian, resp. uniform
distribution. The former is especially fitting after regression, since such a step
aims to minimizes the variance of Gaussian distributed error. A split or a regres-
sion node can reduce the variance and, or the domain size of data in the leaf,
and each can therewith reduce the cost. The costs for a numeric leaf are

Lnum(l | σ, μ) =
|l|
2

(
1

ln 2
+ log 2πσ2

)
− |l| log res(Xi),

given empirical mean μ and variance σ or as uniform given min and max as

Lnum(l | min(l),max(l)) =|l| · log
(

max(l) − min(l)
res(Xi)

+ 1
)

.

We encode the data as Gaussian if this costs fewer bits than encoding it as
uniform. To indicate this decision, we use one bit and encode the minimum of
both plus the corresponding parameters. As we consider empirical data, we can
safely assume that all parameters lie in the domain of the given attribute. The
encoded costs of a numeric leaf l hence are

Lnum(l) = 1 + 2 log |Xi| + min{Lnum(l | σ, μ), Lnum(l | min(l),max(l))} .

We now have a complete score. In the next section we discuss how to optimize
it, but first we discuss some important causal aspects.

Identifiability and Limitations. Tree models are closely related to the algo-
rithmic model of causality as postulated by Janzing and Schölkopf [11]. That is,
every node Xi in a DAG can be computed by a program qi with length O(1) from
its parents pai and additional input ni—formally, Xi = qi(pai, ni). Following the
algorithmicMarkov condition, the shortest description ofXi is through its parents.

In general, the MDL optimal tree model identifies the shortest description
of a node Ai conditioned on a subset of attributes Si ⊆ A\{Ai}. In particular,
by splitting or regressing on an attribute Aj ∈ Si it models program qi given
the parents as input. The remaining unexplained data that corresponds to the
additional input or noise ni is encoded in the leaves of the tree. In other words,
tree Ti with the minimal costs relates to the tree where Si contains only the
parents of Ai, and encodes exactly the relevant dependencies towards Ai.

Although tree models are very general, we can identify specific settings in
which the model is identifiable. First, consider the case where X and Y are uni-
variate and of a single type. If both are numeric, our model reduces to a simple
regression model, for which we know the correct causal direction can be identi-
fied based on regression error for non-linear function with Gaussian noise and
linear functions with either data or noise not being Gaussian distributed [1,16].
Similarly, for discrete data we can identify additive noise models using stochastic
complexity [2]. Since we model dependencies according to the algorithmic model
of causality, we can generalize these concepts for multivariate data.
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Further, it is easy to see that our score is monotone under subset restriction.
That is, if X ⊆ Y , we can define Z = Y \ X, and have L(Y ) = L(X ∪ Z) =
L(X) + L(Z | X) ≥ L(X). Additionally, it is submodular, L(X ∪ Z) − L(X) ≥
L(Y ∪ Z) − L(Y ). As it also is trivially 0 for empty input, it is an information
measure, and hence we know by the results of Steudel [28] that under our score
tree models themselves are identifiable.

In practice, we are limited by the optimality of our approximation of the
Kolmogorov complexity. That is, any inferences we make are with respect to
the encoding we defined above, rather than the much more generally defined
Kolmogorov complexity. If the generating process does not use tree-models, or
measures complexity differently, the inferences we draw based on our score may
be wrong. The experiments show, however, that our scores are very reliable even
in adversarial settings.

6 The Crack Algorithm

Finding the optimal decision tree for a single nominal attribute is NP-hard,
and hence so is the optimization problem at hand. We introduce the Crack
algorithm, which stands for classification and regression based packing of data.
Crack is an efficient greedy heuristic for discovering a coding forest M from
model class M for data over attributes A with low L(A,M). It builds upon the
well-known ID3 algorithm [22].

Greedy Algorithm. We give the pseudocode of Crack as Algorithm 1. Before
running the algorithm, we set the resolution per attribute. To be robust to noise,
we set res(Ai) for continuous attributes to the kth smallest distance between two
adjacent values, with k = 0.1 · n.

Crack starts with an empty model consisting of only trivial trees, i.e. leaf
nodes containing all records, per attribute (line 1). We iteratively discover that
refinement of the current model that maximizes compression. To find the best
refinement, we consider every attribute (4), and every legal additional split or
regression of its corresponding tree (8). That is, a refinement is only legal when
the dependency is allowed by the model family M (6–7) and the dependency
graph remains acyclic.

The key subroutine of Crack is RefineLeaf, in which we discover the
optimal refinement of a leaf l in tree Ti. That is, it finds the optimal split of l
over all candidate attributes Aj such that we minimize the encoded length. In
case both Ai and Aj are numeric, RefineLeaf also considers the best linear
and quadratic regression and decides for the variant with the best compression—
choosing to split in case of a tie. In the interest of efficiency, we do not allow
splitting or regressing multiple times on the same candidate.

Since we use a greedy heuristic to construct the coding trees, we have a
worst case runtime of O(2mn), where m is the number of attributes and n is
the number of rows. In practice, Crack takes only a few seconds for all tested
cause-effect pairs.
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Causal Inference with Crack. To compute our causal indicators we run
Crack twice on D. First with model class MX|Y to obtain MX|Y and second
with MY |X , to obtain MY |X . For L(X | MX) we assume a uniform prior and
define L(X | MX) = −n

∑
Ai∈X log res(Ai) and do so analogue for Y . We refer

to Crack using NCI as CrackN , and as CrackA using ACI .

7 Experiments

In this section, we evaluate Crack empirically. We implemented Crack in
C++, and provide the source code including the synthetic data generator along
with the tested datasets for research purposes.1 The experiments concerning
Crack were executed single-threaded on a MacBook Pro with 2.6 GHz Intel
Core i7 processor and 16 GB memory running Mac OS X. All tested data sets
could be processed within seconds; with a maximum runtime of 3.8 s.

7.1 Synthetic Data

On synthetic data, we want to show the advantages of either score. In particular,
we expect CrackA to perform well on nominal data and numeric data with
balanced domain sizes and dimensions, whereas we expect CrackN to perform
better on numeric data with varying domain sizes and mixed-type data.

We generate synthetic data with assumed ground truth X → Y with |X| = k
and |Y | = l, each having n = 5000 rows, in the following way. First, we randomly
assign the type for each attribute in X. For nominal data, we randomly draw
the number of classes between two (binary) and five and distribute the classes
1 http://eda.mmci.uni-saarland.de/crack.

http://eda.mmci.uni-saarland.de/crack
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uniformly. Numeric data is generated following a normal distribution taken to
the power of q by keeping the sign, leading to a sub-Gaussian (q < 1.0) or
super-Gaussian (q > 1.0) distribution.2

Fig. 1. Accuracy for ACI and NCI on nominal (left), numeric (middle) and mixed-type
(right) data based on the dependency.

To create data with the true causal direction X → Y , we introduce depen-
dencies from X to Y , where we distinguish between splits and refinements.
We call the probability threshold to create a dependency ϕ ∈ [0, 1]. For each
j ∈ {1, . . . , l}, we throw a biased coin based on ϕ for each Xi ∈ X that deter-
mines if we model a dependency from Xi to Yj . A split means that we find a
category (nominal) or a split-point (numeric) on Xi to split Yj into two groups,
for which we model its distribution independently. As refinement, we either do
a multiway split or model Yj as a linear or quadratic function of Xi plus inde-
pendent Gaussian noise.

Accuracy. First, we compare the accuracies of CrackN and CrackA with
regard to single-type and mixed-type data. To do so, we generate 200 syn-
thetic data sets with |X| = |Y | = 3 for each dependency level where ϕ ∈
{0.0, 0.1, . . . 1.0}. Figure 1 shows the results for numeric, nominal and mixed-
type data. For single-type data, the accuracy of both methods increases with the
dependency, and reaches nearly 100% for ϕ = 1.0. At ϕ = 0, both approaches
correctly do not decide instead of taking wrong decisions. As expected CrackN

strongly outperforms CrackA on mixed-type data, reaching near 100% accu-
racy, whereas CrackA reaches only 72%. On nominal data, CrackA picks up
the correct signal faster than CrackN .

Dimensionality. Next, we evaluate how sensitive both scores are w.r.t. the dimen-
sionality of both X and Y , where we separately consider the cases of symmetric
k = l and asymmetric k 
= l dimensionalities. Per setting, we consider the average
accuracy over 200 independently generated data sets.

For the symmetric case, both methods are near to 100% on single-type data,
whereas only CrackN also reaches this target on mixed-type data, as can be seen
in the appendix (see footnote 1). We now discuss the more interesting case for
asymmetric pairs in detail. To test asymmetric pairs, we set the dimensionality of

2 To ensure identifiability, we use super- and sub-Gaussians [9].
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X to three, |X| = 3, and vary the dimensionality of Y from 1 to 11. To avoid bias,
we choose the ground truth causal direction, i.e. X → Y and Y → X, uniformly
at random. We plot the results in Fig. 2. We observe that CrackN has much
less difficulty with the asymmetric data sets than CrackA. CrackN performs
near perfect and has a clear advantage over CrackA on mixed-type and numeric
data. CrackA performs better on nominal only data for l = 1.

Fig. 2. Accuracy of ACI (left) and NCI (right) on for synthetically generated causal
pairs of asymmetric cardinality, |X| = 3 and |Y | ∈ {1, 3, 5, 7, 11} with ground truth
X → Y or Y → X randomly chosen, for resp. nominal, numeric and mixed-type data.

Fig. 3. [Higher is better] Decision rates of the multivariate methods Crack, Origo
and Ergo, and the univariate methods IGCI, Cure and Slope (dashed lines) on the
univariate Tübingen causal benchmark pairs (100), weighted as defined.

7.2 Univariate Benchmark Data

To evaluate Crack on univariate data, we apply it to the well-known Tübingen
benchmark (v1.0) consisting of 100 univariate cause-effect pairs with known
ground truth.3 As these are mainly numeric pairs, with only a few categoric
instances, we apply CrackA. We compare to the state of the art methods for
multivariate pairs, Origo [3] and Ergo [31], and those specialized for univari-
ate pairs, Cure [25], IGCI [13] and Slope [16] using their publicly available
implementations and recommended parameter settings.

3 https://webdav.tuebingen.mpg.de/cause-effect/.

https://webdav.tuebingen.mpg.de/cause-effect/
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Table 1. Comparison of LTR, Ergo, Origo and Crack on 17 multivariate cause-
effect pairs with known ground truth. The type is either “N” for numeric or “M” for
mixed. A “✓” indicates a correct decision, a “–” an incorrect one and (n/a) that a
method is not applicable.

Decisions

Causal pair n |X| |Y | Ground truth Type LTR Ergo Origo Crack

Climate 10 226 4 4 Y → X N ✓ ✓ – –

Ozone 989 1 3 Y → X N (n/a) ✓ ✓ ✓

Car 392 3 2 X → Y N – ✓ ✓ ✓

Radiation 72 16 16 Y → X N – – – ✓

Symptoms 120 6 2 X → Y M ✓ ✓ – ✓

Brightness 1 000 9 1 X → Y N (n/a) (n/a) – ✓

Chemnitz 1 440 3 7 X → Y N ✓ ✓ ✓ ✓

Precipitation 4 748 3 12 X → Y N ✓ – – ✓

Stock 7 2 394 4 3 X → Y N – ✓ – ✓

Stock 9 2 394 4 5 X → Y N – ✓ – ✓

Haberman 306 3 1 X → Y M ✓ ✓ – –

Iris flower 150 4 1 X → Y M (n/a) (n/a) – ✓

Canis 2 183 4 2 X → Y M (n/a) (n/a) ✓ ✓

Lepus 2 183 4 3 X → Y M (n/a) (n/a) ✓ ✓

Martes 2 183 4 2 X → Y M (n/a) (n/a) ✓ ✓

Mammals 2 183 4 7 X → Y M (n/a) (n/a) ✓ ✓

Octet 82 1 10 Y → X N (n/a) ✓ ✓ ✓

Accuracy 0.56 0.82 0.47 0.88

For each approach, we sort the results by confidence. Accordingly, we calcu-
late the decision rate, the percentage of correct inferences up to each k infer-
ences, weighting the decisions as specified by the benchmark. We plot the results
in Fig. 3 and show the 95% confidence interval of a fair coin flip as a grey area.
Except to Crack none of the multivariate methods is significant w.r.t. the fair
coin flip. In particular, Crack has an accuracy of over 90% for the first 41%
of its decisions and reaches 77.2% overall—the final result of CrackN is only
3% worse. Crack also beats both Cure (52.5%) and IGCI (66.2%), which
are methods specialized for univariate pairs. Perhaps most impressively, Crack
performs within the 95% confidence interval of the current state of the art on
causal inference on univariate numeric pairs, Slope, which has an overall accu-
racy of 81.7%. Slope is at the advantage for univariate pairs as it can exploit
non-deterministic structure in the data. While interesting, this idea sadly does
not seem to be efficiently applicable to multivariate data.
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7.3 Real World Data

Next, we apply CrackN on multivariate mixed-type and single-type data, where
we collected 17 cause effect pairs with known ground truth. We provide basic
statistics for each pair in Table 1. The first six are part of the Tübingen bench-
mark [17], and the next four were provided by Janzing et al. [10]. Further, we
extracted cause-effect pairs from the Haberman and Iris [5], Mammals [8] and
Octet [6,29] data sets. More details are given in the appendix (see footnote 1).

We compare CrackN with LTR [10], Ergo [31] and Origo [3]. Ergo and
LTR do not consider categoric data, and are hence not applicable on all data sets.
In addition, LTR is only applicable to strictly multivariate data sets. CrackN

is applicable to all data sets, infers 15/17 causal directions correctly, by which
it has an overall accuracy of 88.2%. Importantly, the two wrong decisions have
low confidences compared to the correct inferences.

In addition, we conduct an experiment to check whether or not our result
is influenced by redundant variables within X or Y . Hence, we first apply a
standard redundancy test (R, Hmisc, redun) to omit redundant attributes within
X or Y (R2 ≥ 0.95). After the reduction step, we apply CrackN to the non-
redundant pairs. As result, we found that the Climate cause effect pair indeed
contained redundant information and was inferred correctly after removing the
redundant variables. For all other pairs, the prediction did not change. Hence,
applying CrackN after redundancy correction leads to an accuracy of 94.4%.

8 Conclusion

We considered the problem of inferring the causal direction from the joint dis-
tribution of two univariate or multivariate random variables X and Y consisting
of single-, or mixed-type data. We point out weaknesses of known causal indica-
tors and propose the normalized causal indicator for mixed-type data and data
with highly unbalanced domains. Further, we propose a practical two-part MDL
encoding based on classification and regression trees to instantiate the absolute
and normalized causal indicators and provide Crack, a fast greedy heuristic to
efficiently approximate the optimal MDL score.

In the experiments, we evaluate the advantages of our proposed causal indi-
cators and give advice on when to use them. On real world benchmark data, we
are on par with the state of the art for univariate continuous data and beat the
state of the art on multivariate data with a wide margin. For future work, we
aim to investigate the application of Crack for the discovery of causal networks
as well as its application to biological networks.
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