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Abstract. Bayesian optimization (BO) is a sample-efficient method for
global optimization of expensive, noisy, black-box functions using prob-
abilistic methods. The performance of a BO method depends on its
selection strategy through an acquisition function. This must balance
improving our understanding of the function in unknown regions (explo-
ration) with locally improving on known promising samples (exploita-
tion). Expected improvement (EI) is one of the most widely used acqui-
sition functions for BO. Unfortunately, it has a tendency to over-exploit,
meaning that it can be slow in finding new peaks. We propose a modifica-
tion to EI that will allow for increased early exploration while providing
similar exploitation once the system has been suitably explored. We also
prove that our method has a sub-linear convergence rate and test it on
a range of functions to compare its performance against the standard EI
and other competing methods. Code related to this paper is available at:
https://github.com/jmaberk/BO with E3I.

1 Introduction

There are numerous situations, both in research and industry, where it is nec-
essary to know the optimal input to a black box function but sampling it is
either difficult or expensive. Bayesian optimization is one of the most evalua-
tion efficient methods for finding the input, x∗, that will produce the optimal
value of such systems [11]. It has been successfully applied to many problems in
a wide range of fields including materials science, biomedical science, and even
other computer science problems. An example of an application in materials sci-
ence is the development of new polymer fibres [9]. In biomedical science, it has
been used for many applications including studying how age effects time percep-
tion [19] and synthetic gene design [4]. Another application is the selection of
hyperparameters for other machine learning algorithms [17].

Bayesian optimization methods work by fitting a probabilistic model to the
available data (evaluation locations for the objective and corresponding function
values). This model provides a distribution of all possible functions within a set
range of possible inputs, X ∈ R

d . The most common model among these is the
Gaussian process [15].
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The predictions of the probabilistic model above are then used to make intel-
ligent decisions about where to evaluate the objective function next, so that its
optimum is found by using a reduced number of function evaluations. These intel-
ligent decisions are made through an acquisition function. This maps ∀x ∈ X
to some property that describes how useful sampling at that point will be in
determining the black box function’s true optima. Optimizing the acquisition
function will therefore allow the best possible sample to be made from the black
box function given the data and prior knowledge. Based on the decision of the
acquisition function, the new sample is collected and evaluated. This sample can
then be used to update the model, allowing the point after that to be deter-
mined from the updated acquisition function. This data-driven decision allows
the optima of the function to be found in far fewer iterations than if samples
had been taken at random [3].

The choice of acquisition function can greatly impact the number of itera-
tions necessary to find the optimal input. As such, poor acquisition functions
can lead to sup-optimal results or the need for a larger number of costly itera-
tions. A good acquisition function needs to balance between trying to generalize
from known good points (exploitation) and trying to search for new peaks in
unexplored regions (exploration). There are currently many choices of acqui-
sition functions that provide various degrees of exploration and exploitation.
Two popular choices are expected improvement (EI) [7] and Gaussian process
upper confidence bound (GP-UCB) [18], with EI being more exploitative with-
out the need to choose hyperparameters and GP-UCB having more exploration
but requiring the specification of several hyperparameters. These hyperparame-
ters can reduce optimization performance if they are not suited to the problem
and determining them is both computationally costly and potentially inaccurate.
As such, EI is more popular.

We propose a modification to EI that will improve its exploration in the early
stages of the experiment, but converge to its previous level of exploitation at later
stages. This method is detailed in Sect. 3 along with a proof that it has a sub-
linear convergence rate. In Sect. 4 we discuss results from several experiments
performed using our method. First, we verify that our method has increased
exploration by testing it against competing methods on a synthetic function
designed to favour high-exploration methods. We then test its performance in
comparison to these methods on several benchmark functions and a machine
learning hyperparameter tuning problem. Finally, we discuss results concerning
the analytical properties of our method.

2 Bayesian Optimization and Expected Improvement

Below we first provide a background of Bayesian optimization and Gaussian
processes. Then we discuss acquisition functions with a focus on expected
improvement.
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2.1 Bayesian Optimization

Bayesian optimization is an efficient method for optimizing noisy, expensive black
box-functions [7]. More formally, the ultimate goal of the method is to find the
input,

x∗ = argmax
x∈X

f(x), (1)

that maximises the black-box function, f(x), in the bounded input space,
X ⊂ R

d . It is possible to directly draw potentially noisy samples from the func-
tion: yt = f(xt) + ε where ε a random noise term, ε ∼ N (0, σn) with some
unknown σn. However, doing so is expensive so we wish to determine x∗ in
as few samples as possible. To do this, Bayesian optimization uses a statistical
model for the black box function to construct a surrogate function that is cheaper
to sample. The statistical model is generated from all current information about
the system, including all prior knowledge and all t sampled input-output pairs,
Dt = {xi, yi}t

i=1.
The statistical model is often chosen to be a Gaussian process due to its

flexibility and analytic properties [2]. While the statistical model is generally
not accurate enough to directly locate the optima of the function, it gives a
probabilistic estimate of the function with epistemic uncertainties. This means
that it can be used to select the “best” new point to sample. This is done
by finding the optima of a surrogate function called an acquisition function
which emphasises characteristics that are desirable for the new point to have.
Acquisition functions are discussed further in Sect. 2.3.

Once the new samples are found, they can then be used to improve the model,
allowing us to find a new, potentially better point to sample. This process is
iterated until a predetermined stopping condition has been met. As samples are
costly, it is common to choose a maximum number of iterations as a stopping
criteria, but other stopping criteria can be used as well, such as stopping when a
satisfactory result has been found or when the possible improvement predicted by
the model becomes too small. A more detailed review of Bayesian optimization
can be found in [2].

2.2 Gaussian Process

A Gaussian process is a statistical model of the black-box function. It represents
the function values, f(x), at each point, x ∈ X as infinitely many correlated
Gaussian random variables. As such, it is completely characterized by its mean
and covariance functions, m(x) and k(xi, xj). More formally, we assume that
f(x) ∼ GP(m(x), k(xi, xj)). The covariance function, also called a kernel, has a
profound impact on the shape of the resulting Gaussian process. As such, the
use of an appropriate kernel is vital.

One of the most popular kernels is the square exponential kernel. This is
given by kSE(xi, xj) = exp

(
−‖xi−xj‖2

2l2

)
. Here, the length scale is completely

determined by a single hyperparameter, l. This kernel was chosen because it is
simple and translation invariant. This property is important for the generation
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of Thompson samples as discussed in Sect. 3. Other popular kernel functions are
discussed in Rasmussen et al. [15].

Using our data with this kernel gives a posterior distribution over the
function, f(x)|Dt ∼ GP (m(x),Kt). Here Kt = [k(xi, xj)∀xi,xj∈Dt

] is the
kernel matrix, which acts as the covariance matrix for the distribution.
The posterior, in turn, can be used to calculate a predictive distribution,
p(f(x) | Dt, x) = N (μt(x), σt(x)). The predictive distribution allows us to esti-
mate the function value at any point x by calculating the predictive mean,
μt(x), and variance, σ2

t (x). These are given by μt(x) = k∗(Kt + σnI)−1y and
σ2

t (x) = kt(x, x) −k∗(Kt +σnI)−1kT
∗ with k∗ = [k(x1, x), k(x2, x), . . . , k(xt, x)].

Here I is the identity matrix with the same dimensions as Kt and σn is the
function noise standard deviation.

2.3 Acquisition Functions

Once the Gaussian process has been built, it is used to select the optimal next
point to sample from the black box function, xt. However, exactly what qualifies
a point to be xt is non-trivial. As such, there are many potentially desirable
properties that could be used to select xt. Once a desired property is chosen, an
acquisition function, α(x), is used to used to calculate it. This is generally far
cheaper to evaluate than the black box function to the point where it is efficient
to perform a global optimization on it ∀x ∈ X to determine a single sample of
the black box function. More formally, the optimal next point is given by

xt = arg max
x∈X

α(x) (2)

Improvement Based Acquisition Functions. One of the most basic fam-
ilies of acquisition functions are the improvement based acquisition functions.
These use the potential improvement over what is believed to be the current
maxima, called the incumbent. The incumbent is often taken as the current
best observed value, y+ = maxi≤t(yi). The improvement is therefore given by
I(x) = max(f(x) − y+, 0).

Probability of Improvement. A simple acquisition function is the probabil-
ity of improvement (PI) [8], which gives the probability that a given point will
have an improvement over the incumbent. Despite being an intuitive and simple
formulation, PI often favours points near the incumbent [2]. As a result, the
algorithm tends to over exploit. This can lead to the algorithm failing to quickly
find promising peaks away from the incumbent, reducing the optimization effi-
ciency in cases where there is more that one peak in the black box function. This
lack of exploration can be improved by maximizing the expected improvement
instead of PI [6].
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Expected Improvement. As f(x) can be approximated by its Gaussian process
predictive distribution, I(x) can likewise be approximated as a function of this ran-
dom variable. This allows us to take the expectation over this to find the expected
amount of improvement at any point x ∈ X , giving us the expected improvement
acquisition function: αEI(x) = E[I(x)]. This can be expressed with the Gaussian
process predictive mean and variance in the following closed form [7]:

αEI(x) =

{
(μ(x) − y+)Φ(z) + σ(x)φ(z), if σ(x) > 0
0 if σ(x) = 0

(3)

where z = μ(x)−y+

σ(x) , φ is the standard normal PDF, and Φ is the standard normal
CDF. For a full analytical derivation of EI, we refer interested readers to [14].

EI has better exploration than PI but still tends to over-exploit in many
situations, such as when it hits a local optimum. Despite this, EI is currently
the most common acquisition functions due to its consistent performance without
the need to choose additional hyperparameters.

A Heuristic Approach for Boosting the Exploration of EI: ζ-EI. It
is a common belief that artificially increasing the incumbent by some positive
ζ will reduce the value of the acquisition function near the currently sampled
points, boosting exploration [10]. However, this method does not work well in
practice as it is not easy to choose the right value of ζ. If this value is large,
the algorithm will significantly over-explore. This often leads to inefficiency in
optimization performance.

3 The Proposed E3I Method

In this section we will outline our modification to EI that will improve its explo-
ration without causing it to significantly over-explore. We will then prove that,
under some mild assumptions, it has a sub-linear regret bound.

3.1 Thompson Sampling

For our method, we wish to generate full random approximations of the black-
box function. Hernández-Lobato et al. [5] have developed a method for doing
this through Thompson sampling. For a shift invariant kernel such as the square
exponential kernel we are using, Bochner’s theorem [1] states that it has a Fourier
dual, s(w), which is equal to the spectral density of k(xi, xj). Normalizing this
as ŝ(w) = s(w)/β allows us to represent the kernel as

k(xi, xj) = 2βEŝ(w)

[
cos(wT xi + b) cos(wT xj + b)

]
(4)

where b ∼ U [0, 2π]. If we draw V random samples of w and let

φ(x) =
√

2β
V {cos(Wx + b), sin(Wx + b)}, we can approximate the kernel with
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k(xi, xj) ≈ φ(xi)T φ(xj). By setting Φ = [φ(x1), . . . , φ(xV )], we can also approx-
imate the kernel matrix with K ≈ ΦΦT + σ2I, where I is the V × V matrix
identity. These estimates have been augmented by the random samples of w
so they can be viewed as having random probable points added to them. This
means that, if V is sufficiently large, the corresponding predictive mean can be
viewed as a complete estimate of the black box function given the current data:

f(x) ≈ g(x) = φ(x)T (ΦΦT + σ2I)−1ΦT y (5)

The process for generating and finding the optima of these Thompson samples
is outlined in Algorithm 1.

Algorithm 1. Thompson Sampling
Input:Dt−1 = {xi, yi}t−1

i=1 , #random feature dimension, V , #Thompson samples, M

1: for m = 1 to M do
2: Randomly generate b ∼ U [0, 2π] and V weights, wi ∼ N (0, Id×d) ∀i = 1 . . . V
3: Let W = [w1, . . . , wV ] ∈ R

V ×d

4: Let φ(x) =
√

2β
V

(cos(Wx + b), sin(Wx + b)) and Φ = [φ(x1), . . . , φ(xV )]

5: Thompson samples are given by gm(x) = φ(x)T (ΦΦT + σ2I)−1ΦT y
6: Use a global optimizer to find g∗

m = max
x∈X

gm(x)

7: end for

Output: g∗
1 , . . . , g∗

M

3.2 Exploration Enhanced Expected Improvement (E3I)

The Thompson sample functions have two useful properties. Firstly, without
noise they will agree with the currently sampled points exactly (i.e. g(xi) =
yi,∀(xi, yi) ∈ Dt). This means that g(x+) = f(x+) = y+. As such, either the
maximum of g(x) will occur at x+, in which case g∗ = maxx g(x) = y+, or it
will occur elsewhere, in which case g∗ > y+. Secondly, the Thompson sample
functions will also converge to the true function as the number of iterations
increase. This means that g∗ should converge towards y+.

These two properties allow us to use g∗ as the incumbent in EI instead of
y+. As g∗ ≥ y+, the algorithm will have greater exploration. However, as the
Thompson samples are sensible approximations of the underlying function, the
method does not have the same risk of over-exploration as artificially increasing
the incumbent does. As g∗ → y+, it should also explore less at later stages in
the algorithm when exploration is less important.

This approach assumes that any given Thompson sample is a good approx-
imation of the black box function given the current data. Due to variations
between Thompson samples, it is possible that any given Thompson sample may
be an outlier, voiding this assumption. As such, we instead look at the distribu-
tion of possible Thompson samples. This makes the new acquisition function a
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function of this distribution. To obtain the best point, we take the expected value
of this distribution, i.e. αE3I(x) = Eg[Ex[I(x, g∗)]]. Unfortunately, determining
this directly is difficult. As such, we instead generate M Thompson samples,
g∗
1 , g

∗
2 , . . . , g

∗
M , and find the sample mean instead. Setting z = μ(x)−g∗

m

σ(x) and
τ(z) = zΦ(z) + φ(z) we get

αE3I(x) =
1
M

M∑
m=1

Ex[I(x, g∗
m)] =

{
σ(x)
M

[∑M
m=1 τ(z)

]
, if σ(x) > 0

0 if σ(x) = 0
(6)

We outline the E3I routine in Algorithm 2.

Algorithm 2. Bayesian optimization with E3I
Input: Dt−1 = {xi, yi}t−1

i=1 , #Weights, V , #Thompson samples, M , #Iterations, T

1: for t = 1 to T do
2: Generate the M Thompson sample optima, g∗

1 , . . . , g∗
M , using Algorithm 1

3: Use a global optimizer to find xt = arg maxx∈X
(
αE3I

t (x)
)

4: Query the black box function with xt to get yt = f(xt)
5: Augment the current data: Dt = Dt−1 ∪ (xt, yt)
6: end for

Output: (x∗, y∗) = arg maxy DT

3.3 Convergence

The regret bound is one of the basic criteria for evaluating the performance of
an optimization algorithm. EI has been shown to converge at a sub-linear rate
under a variety of assumptions. Bull [3], and Ryzhov [16] both derive convergence
rates in the absence of noise. Wang and de Freitas [20] were able to derive a
convergence rate in the noisy setting, but they needed to use μ+(x) = maxx μ(x)
as the incumbent. As E3I utilizes a different incumbent, it is not compatible with
this approach. Nguyen et al. [14] have shown that EI has a sub-linear convergence
rate if a minimum improvement stopping condition is used. The proof is valid in
the noisy setting and does not require a modified incumbent. As such we extend
and employ it to show that this is also true for our method. Many of the lemmas
used in their proof can be directly applied to our method.

We start our derivation for the regret bound of E3I as follows.

Lemma 1 (Srinivas et al. [18]). Let δ ∈ (0, 1) and assume that the noise vari-
ables, εt, are uniformly bounded by σ. Define βt = 2 ‖f‖2k + 300γt ln3

(
t
δ

)
, then

p
(
∀t,∀x ∈ X , |μt(x) − f(x)| ≤

√
βtσt(x)

)
≥ 1 − δ
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Lemma 2. The improvement function, It,m(x) = max
(
0, f(x) − g∗

t,m

)
, and

the acquisition function, αE3I
t (x) = 1

M

∑M
m=1 E[It,m(x)] satisfy the inequality

1
M

∑M
m=1 It,m(x) − √

βtσt−1(x) ≤ αE3I
t (x).

Proof. In the case that σt−1(x) = 0, we have E[It,m(x)] = It,m(x), ∀m ∈ [1,M ].
This means that αE3I

t (x) = 1
M

∑M
m=1 E[It,m(x)] = 1

M

∑M
m=1 It,m(x) so the result

is trivial. For σt−1(x) > 0, the proof is as follows. Using Lemma 1, qt−1,m =
f(x)−g∗

t−1,m
σt−1(x)

, and zt−1,m = μt−1(x)−g∗
t−1,m

σt−1(x)
, we can get the following result:

αE3I
t (x) ≥ 1

M

M∑
m=1

σt−1(x)τ
(
qt−1,m −

√
βt

)

≥ 1
M

M∑
m=1

σt−1(x)
(
qt−1,m −

√
βt

)
by τ(z) ≥ z

If It(x) = 0, the lemma becomes αE3I
t (x) ≥ −√

βtσt−1(x). As αE3I
t (x) ≥ 0,√

βt ≥ 0, and σt−1(x) ≥ 0, this is always true. For It(x) > 0 we have qt−1,m =
It(x)

σt−1(x)
. This gives us

αE3I
t (x) ≥ 1

M

M∑
m=1

It,m(x) −
√

βtσt−1(x)

which concludes our proof. �
We now prove the main theorem:

Theorem 3. Let κ > 0 be a predefined small constant as a stopping criteria, σ2

be the measurement noise variance, C � log
[

1
2πκ2

]
, βt = 2 ‖f‖2k + 300γt ln3

(
t
δ

)
and δ ∈ (0, 1). Then, with probability at least 1−δ, after T iterations the cumula-
tive regret of E3I using a collection of maxima samples g∗

m drawn from Thompson
sampling as the incumbents obeys the following sublinear rate: RT �

√
TβT γT ∼

O
(√

T × (log T )d+4
)
, where γT ∼ O

(
(log T )d+1

)
is the maximum information

gain for the squared exponential kernel.

Proof. Let xt = argmax
x∈X

αE3I
t (x) be the choice at iteration t, the instantaneous

regret is:

Mrt = Mf(x∗) − Mf(xt)

= Mf(x∗) − Mf(xt) +
M∑

m=1

g∗
t−1,m −

M∑
m=1

g∗
t−1,m

=
M∑

m=1

[
f(x∗) − g∗

t−1,m

]

︸ ︷︷ ︸
At

+
M∑

m=1

[
f(xt) + g∗

t−1,m

]

︸ ︷︷ ︸
Bt
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We need to connect this with the maximum information gain, γT . This can be
done by bounding rt with the GP posterior variance. We bound At with the
using Lemma 2, Lemma 1, and the fact that αE3I

t (x∗) ≤ αE3I
t (xt) to get

At =
M∑

m=1

[
f(x∗) − g∗

t−1,m

]
=

M∑
m=1

It,m(x)

At ≤ M
[
αE3I

t (x∗) +
√

βtσt−1(x∗)
]

≤ M
[
αE3I

t (xt) +
√

βtσt−1(x∗)
]

by Lemma 2

= M
[
σt−1(xt)τ(zt−1(xt)) +

√
βtσt−1(x∗)

]
by Lemma 1

Likewise, we bound Bt with the following:

Bt =
M∑

m=1

[
g∗

t−1,m − μt−1(xt) + μt−1(xt) − f(xt)
]

≤
M∑

m=1

[
σt−1(xt)(−zt−1(xt)) + σt−1(x)

√
βt

]
by Lemma 1

= Mσt−1(xt)
[
τ(−zt−1(xt)) +

√
βt − τ(zt−1(xt)

]
by z = τ(z) − τ(−z)

Combining these bounds and noting that the M term cancels out, we get

rt ≤
[
σt−1(xt)

[√
βt + τ(−zt−1(xt))

]
+

√
βtσt−1(x∗)

]

Using the bound of τ(−zt−1(xt)) in Lemma 9 from [14] and setting C �
log

[
1

2πκ2

]
we can simplify this to

rt ≤ σt−1(xt)
[√

βt + 1 + C
]

︸ ︷︷ ︸
Lt

+
√

βtσt−1(x∗)︸ ︷︷ ︸
Ut

We now look at the sum of the regret,

Rt =
T∑

t=1

rt ≤
T∑

t=1

Lt +
T∑

t=1

Ut

Using the Cauchy-Schwartz inequality that (a + b + c) ≤ 3(a2 + b2 + c2), that
βT ≥ βt,∀t ≤ T , and Lemma 7 from [14]) we can bound

∑T
t=1 Lt with the

following

T∑
t=1

Lt ≤
T∑
t

σ2
t−1(xt)3(βt + 1 + C)

≤ 3(βT + 1 + C)
T∑
t

σ2
t−1(xt) ≤ 6(βT + 1 + C)γT

log(1 + σ−2)
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Using the Cauchy-Schwartz inequality again we get

T∑
t=1

Lt ≤
√

T

√√√√ T∑
t=1

Lt ≤
√

6T (βT + 1 + C)γT

log(1 + σ−2)
(7)

We can use Lemma 7 [14] and the Cauchy-Schwartz inequality on
∑T

t=1 Ut as
well to obtain a similar result:

T∑
t=1

Ut ≤ βT

T∑
t=1

σt−1(x∗) ≤
√

2TβT γT

log(1 + σ−2)
(8)

Combining Eqs. (7) and (8) gives us our regret bound:

RT ≤
√

2TγT

log(1 + σ−2)

[√
3(βT + 1 + C) +

√
βT

]

The function of the maximum information gain,
√

T × γT , will usually dominate
this expression as βT ∼ O (

(log T )2
)
. It is kernel dependent but for the squared

exponential kernel used in this paper it is γT ∼ O
(
(log T )d+1

)
. This means that

our regret bound for this kernel is RT ∼ O
(√

T × (log T )d+1

)
, which vanishes

in the limit of limT→∞ RT

T = 0. We note that we achieve the similar form to the
one in [14]. �

Fig. 1. A plot of the 1D Gaussian mixture function for illustration (left) and the per-
formance of various methods on the 5D version of the same Gaussian mixture function
(right). The higher dimensional function was used as little exploration is required in
1D. Lower is better. Note that GP-UCB and EI both get stuck on the initial lower
value peak. ζ-EI manages to find the larger peak, but fails to exploit it. This suggests
that it may be over-exploring due to an imperfect choice of ζ. On the contrary, it can be
seen that E3I is able to obtain a superior result through better late-stage exploitation.
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4 Experiments

In this section we outline and discuss our experimental results. We apply our
method to synthetic, benchmark and real world functions. We also test some
other important properties of our method, such as the dependence on M and
the convergence of the Thompson samples. The code used for this paper
can be found at https://github.com/jmaberk/BO with E3I.

4.1 Experimental Setup

We performed several experiments comparing E3I with the standard EI, ζ-EI
with ζ = 0.01 [2], and GP-UCB. In our algorithm, we scaled the inputs to be in
the range [0, 1] in all dimensions and standardized the sampled function values
to have zero mean and a standard deviation of 1. This guarantees that our kernel
magnitude will be scaled correctly for all functions. After this scaling, we use a
square exponential kernel.

We ran our experiment 10 times per function with d+1 random initial points,
where d is the number of input dimensions. The experiment was stopped after
T = 20d iterations. As we used a simple multi-start L-BFGS-B optimizer, we
minimized the negative of all functions instead of maximizing them. As such,
lower results are better.

4.2 Synthetic Multi-peak Function

As we expect our method to have higher exploration than EI, we will test it
on functions which require exploration for better performance. In particular,
we consider multi-peak functions. Methods with poor exploration can get stuck
on sup-optimal peaks, significantly reducing performance. As such, we chose to
use a two-peak Gaussian mixture function to verify the high exploration of our
method. One peak was chosen to be wide (N (0.7, 0.01)) while the other peak was
chosen to be narrow but taller (N (0.1, 0.001)) so that acquisition functions with
poor exploration will tend to get stuck on the wider, smaller peak more often
and hence not perform as well. We applied our suite of acquisition functions to
the problem and have summarised our results in Fig. 1.

It is evident that our method is both better able to find the narrow peak
faster, and that the performance gap increases as the number of dimensions
increases.

4.3 Benchmark Functions

We also tested our method on several common multi-peak benchmark functions.
These include the Levy (5D), Schwefel (4D), Shubert (2D), and Ackley (5D)
functions1. The results for these are displayed in Fig. 2.
1 All benchmark functions use the recommended parameters from https://www.sfu.

ca/∼ssurjano/optimization.html.

https://github.com/jmaberk/BO_with_E3I
https://www.sfu.ca/~ssurjano/optimization.html
https://www.sfu.ca/~ssurjano/optimization.html
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Fig. 2. Performance of various methods on a range of multi-peak benchmark functions.
Lower is better. Note that our method generally seems to converge slowly at the early
stages when other methods are exploiting, but it can beat the exploitative methods by
finding better peaks. This is because E3I tends to explore in the early stages and then
tends to exploit later to hit the optimum.

These results show that our method is able to find a better optima more
quickly than the other methods in these multi-peak test functions. GP-UCB also
does very well with the Levy and Shubert functions, while the ζ-EI does fairly
well on all experiments except the Levy function. This variance in performance
is unsurprising, as both methods have parameters that control their level of
exploration. If these are not suited to the problem, they can be detrimental to the
algorithm’s performance. Our methods increased exploration is automatically
adjusted through the Thompson samples and therefore does not face this issue.
As such, even in cases where these methods performed well, E3I was able to
show improvements over them.

4.4 Machine Learning Hyperparameter Tuning

Finally, we tested our method on a real-world application; the determination
of optimal hyperparameters for a machine learning algorithm called Bayesian
Nonparametric Multi-label Classification (BNMC) [12]. This algorithm is used
to efficiently classify multi-labelled data by exploiting the correlation between
the multiple labels and features. Its performance is dependant on six hyperpa-
rameters which we can tune with Bayesian optimization. These are the Dirichlet



Exploration Enhanced Expected Improvement for Bayesian Optimization 633

Fig. 3. The results for hyperparameter tuning a BNMC experiment. Note that, again,
our algorithm performs poorly in the early stages while it explores for new optima but
is able to find a better optima sooner than the other methods.

concentration parameters for both the feature and label, the learning rates for
both SVI and SGD, the truncation threshold and the stick-breaking parameter.
The data the algorithm was used on, called SceneData, consisted of 1196 test
and 1211 training samples, each with 294 features. The results of this with our
suite of acquisition functions is given in Fig. 3 with the F1 score used as the
performance measure.

4.5 Sensitivity Analysis with Respect to the Number of Optima
Samples, M

One of our key assumptions is that we can approximate the expectation over the
distribution of Thompson samples as its sample mean. As M → ∞, this will be
true. However, using a very large M will increase computational costs. As such,
we wish to find a value for M that will not compromise our results while also not
being too expensive. To determine this, we ran the same experiment on both a
2D Shubert function and a 2D Schwefel function for a range of M values from 1
to 200. The results of which are summarised in Fig. 4. From these results, we can
see that M = 100 seems to be an appropriate number of Thompson samples.

4.6 Computational Considerations

While our method has competitive performance with other methods, it has a con-
siderable computational cost. Each Thompson sample requires both the inversion
of a V × V matrix and a global optimization step which may increase exponen-
tially with the dimension, d. The overall cost scales significantly with both the
number of data points and the number of input dimensions, making it O(MNV 2)
where N is the number of observations [13]. To give this some context, the aver-
age time per iteration for the 2D Shubert function earlier was 0.33 s with EI
and 26 s for E3I. Moving up to 4D with the Schwefel function, these become 1.4
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Fig. 4. Performance of E3I on two functions with various number of Thompson samples,
M . We can see that increasing M noticeably improves the results until M = 50, after
which time little improvement is seen.

and 81 s respectively. These may seem high, but they are negligible when com-
pared to the costs associated with sampling in many of the areas that Bayesian
optimization is applied to.

One way to potentially reduce computational costs is to use a method by
Wang et al. [21] to find the maxima of Thompson samples by sampling a Gumbel
distribution. However, this method makes several assumptions that may lead to
inaccurate results and as such is left for future work.

4.7 Empirical Convergence Analysis of Thompson Samples

One of the key assumptions of our method is that the Thompson sample func-
tions will converge to the true function as T increases. This convergence was
experimentally tested and the results are shown in Fig. 5. It is evident that

Fig. 5. The reduction of standard deviation between the Thompson sample function
maxima (left) and the convergence of ḡ∗ to f∗ = maxx(f(x)) (right). We can see that as
more samples are taken, the inter-sample variance is reducing and their mean is approach-
ing f∗. This suggests that they are properly converging as the space is explored.
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the sample mean, ḡ∗ = 1
M

∑M
m=1 g∗

m is converging to f∗ and that the sample

standard deviation, calculated with σ(g∗) =
√

1
M

∑M
m=1(g∗

m − ḡ∗)2, is reducing
with the number of iterations. These suggest that the Thompson samples are
converging properly.

5 Conclusion

We have proposed a new approach for balancing exploration and exploitation in
Bayesian optimization. Our approach makes use of Thompson sampling to guide
the level of exploration. This results in the E3I acquisition function.

Our method has been shown to perform better than competing methods
on both several multi-peak test functions and on hyperparameter tuning for a
BNMC experiment. We also show that it has a sub-linear regret bound.

The most important next step in improving E3I is to resolve some of
its computational issues. Beyond this, the effects of similar distribution-based
approaches should be explored on other acquisition functions besides EI.
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Appendix A: E3I Derivation

In this section, we provide the analytical derivation of E3I, described in Eq. (6). In
particular, we make use of the improvement function over the perceived optima
sample generated from Thompson sampling, I(x) = max(f(x) − g∗, 0).

We wish to find the PDF of I(x) so that later we can take its expectation.
As we are modeling the system with a Gaussian process, we assume that f(x) ∼
N (μ(x), σ(x)). This means that f(x) has the PDF

p(f(x)) =
1√

2πσ(x)
exp

(−(f(x) − μ(x))2

2σ2(x)

)
(9)

Now that we have a PDF for f(x), we can use it to find the PDF of I(x)
with the distribution function technique. Let us look at the CDF of I(x) for
f(x) > g∗ with the substitution f(x) = I(x) + g∗ ∀f(x) > g∗:

CDFI(x)(a) =
∫ a

0

1√
2πσ(x)

exp
(−(I(x) + g∗ − μ(x))2

2σ2(x)

)
dI (10)

Taking the partial derivative with respect to I(x) this gives us its the PDF:

p(I(x)) =
1√

2πσ(x)
exp

(−(I(x) + g∗ − μ(x))2

2σ2(x)

)
(11)
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Now that we have the PDF, can take its expectation to derive our acquisition
function:

αE3I(x) = Eg∗

[∫ ∞

0

I(x)√
2πσ(x)

exp
(−(I(x) + g∗ − μ(x))2

2σ2(x)

)
dI(x)

]
(12)

Unfortunately, g∗ does not have a tractable algebraic expression. To circumvent
this, we approximate the expectation over g∗ with the sample mean. Assuming
that we have M samples of g∗ our acquisition function becomes

αE3I(x) =
M∑

m=1

∫ ∞

0

Im(x)√
2πσ(x)

exp
(−(Im(x) + g∗

m − μ(x))2

2σ2(x)

)
dIm(x) (13)

As each g∗
m is now a constant, the expression inside the summation is now

functionally the same expression as found in this stage of the derivation of EI.
This means that E3I can be expressed as a sum of standard expected improve-
ment acquisition functions with z = μ(x)−g∗

m

σ(x) :

αE3I(x) =

{
1
M

∑M
m=1 [(μ(x) − g∗

m)Φ(z) + σ(x)φ(z)] , if σ(x) > 0
0 if σ(x) = 0

(14)
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