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Abstract. We address the problem of modeling the occurrence process
of events for visiting attractive places, called points-of-interest (POIs),
in a sightseeing city in the setting of a continuous time-axis and a con-
tinuous spatial domain, which is referred to as modeling geographical
attention dynamics. By combining a Hawkes process with a time-varying
Gaussian mixture model in a novel way and incorporating the influ-
ence structure depending on time slots as well, we propose a probabilis-
tic model for discovering the spatio-temporal influence structure among
major sightseeing areas from the viewpoint of geographical attention
dynamics, and aim to accurately predict POI visit events in the near
future. We develop an efficient method of inferring the parameters in
the proposed model from the observed sequence of POI visit events,
and present an analysis method for the geographical attention dynam-
ics. Using real data of POI visit events in a Japanese sightseeing city, we
demonstrate that the proposed model outperforms conventional models
in terms of predictive accuracy, and uncover the spatio-temporal influ-
ence structure among major sightseeing areas in the city from the per-
spective of geographical attention dynamics.
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1 Introduction

With the development of smart mobile devices, location acquisition technologies
and social media, a large amount of event data with spatio-temporal information
has become available and offers an opportunity to better understand people’s
location preferences and mobility patterns in a sightseeing city [3]. In location-
based social networking services (LBSNs) such as Foursquare and Facebook
Places, check-in sequences of users to points-of-interest (POIs) are observed,
where a finite number of venues are listed as POIs in advance. Clearly, there
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exist infinitely many attractive places in the city, including various geographi-
cal points giving beautiful views and street spots with artistic atmosphere. In
photo-sharing services such as Flickr, observations of where and when people
took photos are obtained. In order to take into account infinitely many attrac-
tive places on a continuous spatial domain, we consider extending the definition
of POI. In particular, we also refer to the geographical locations of such photos
that were taken on sightseeing tours and uploaded to a photo-sharing site as
POIs, and aim at precisely investigating people’s experiences in visiting attrac-
tive places in the city. Namely, in our definition, it is supposed that any POI
offers an attractive place in a sense. Note that a complete list of all POIs cannot
be obtained in advance.

Recently, researchers [2,8,21] have examined the next POI recommendation
problem, that is, the problem of predicting which POI a user is most likely to visit
at the next discrete time-step given the current check-in POI, where it is assumed
that a finite set of POIs is specified in advance and historical check-in sequences
of users in an LBSN are provided. However, these studies were unable to fully
capture the continuous structure of space-time, and thus Liu et al. [14] extended
them to the case of a continuous time-axis by integrating temporal interval
assessment. On the other hand, since online items posted on social media sites
such as Facebook and Twitter gain their popularity by the amount of attention
received (e.g., the number of Facebook shares and the number of retweets), sev-
eral studies have been made on modeling the attention dynamics of online items
in a continuous time-axis [11,16,19,22]. Zhou et al. [24] presented a point pro-
cess model in a discretized time-axis and a continuous spatial domain by fusing
a time-varying Gaussian mixture model with a non-homogeneous Poisson pro-
cess, and successfully estimated the spatial distribution of Toronto’s ambulance
demand at a specified discrete time-step (i.e., each two-hour interval), where
each Gaussian component shows a representative geographical area. In the case
of dealing with events of visiting POIs in a sightseeing city, such a component
may correspond to a major sightseeing area. However, this study is unable to
extract the influence structure among components from the viewpoint of visiting
POIs, while such knowledge can become important for tourism marketing.

For a given sightseeing city, we consider the problem of modeling the occur-
rence process of events for visiting POIs in a continuous time-axis and a con-
tinuous spatial domain, which is referred to as that of modeling the geograph-
ical attention dynamics, and aim to provide deep insights into the properties
of people’s location preferences and mobility patterns on sightseeing tours in
the city. What we observe is both a time-sequence of events (see Fig. 1a) and
their locations (see Fig. 1b). Given a season, the sightseeing city should have a
finite number of major sightseeing areas C1, . . . , CK (see Fig. 1c), where these
represent major tourism topics, and are allowed to geographically intersect each
other. In the same way as the attention dynamics of online items in social media,
we first assume that the occurrences of previous events increase the possibility
of future events. In particular, POI-visit events should exhibit a geographically
self-exciting nature, where an event that happened in an area Ck may cause its
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Fig. 1. An illustration of geographical attention dynamics. Down-pointing triangles
indicate the time points or geographical locations for POI visit events. Arrows in (d)
indicates triggering relations between events. For example, (d) illustrates that the event
in C1 at time t1,2 triggered the event in C2 at time t2,1. Arrows in (e) represent the
main influence relations among latent components (major sightseeing areas).

subsequent events in the same area Ck. Also, it is natural to suppose that the
geographical attention dynamics has a geographically mutually-exciting nature,
where an event that happened in an area Ck can trigger the subsequent events in
any other area C� (see Fig. 1d). Moreover, the temporal decay rate of such effect
should vary according to area Ck. Thus, based on the data of many people’s
POI visit events in the season, it is desirable to identify major sightseeing areas
C1, . . . , CK and find the spatio-temporal influence relations among C1, . . . , CK

in terms of geographical mutual-excitation (see Fig. 1e).
In this paper, we propose a probabilistic model for discovering the spatio-

temporal influence structure among major sightseeing areas from the perspective
of geographical attention dynamics in a continuous space-time, and aim at accu-
rately predicting the future POI visit events. To this end, we combine a Hawkes
process [13], which is a counting process [1] frequently utilized to capture mutual
excitations between events, with a time-varying Gaussian mixture model in a
novel way. Also, we incorporate the influence structure depending on time slots
into our model since it is known that users’ activities in LBSNs are often influ-
enced by time [10,20] and such temporal properties may rely on sightseeing cities
as well as seasons. We develop an efficient method of inferring the parameters in
the proposed model from the observed sequence of POI visit events, and provide
an analysis method for the geographical attention dynamics in terms of spatio-
temporal influence relations among major sightseeing areas. Using real data of
POI visit events in Japanese sightseeing city “Kyoto” obtained from a photo-
sharing site, we evaluate the proposed method. First, for predicting the future
POI visit events, we show the effectiveness of the proposed model compared to
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a baseline model and such a conventional spatio-temporal point process model
that simply integrates a Hawkes process with a time-varying Gaussian mixture
model (see [24]), which is hereafter referred to as HG model. Next, by applying
the proposed model, we uncover the spatio-temporal influence relation struc-
ture among major sightseeing areas in Kyoto in view of geographical attention
dynamics.

The rest of the paper is organized as follows: In Sect. 2, we briefly summa-
rize the related work. In Sect. 3, we introduce the HG model, and present the
proposed model as its extension. In Sect. 4, we develop a probabilistic inference
method for the proposed model, and present an analysis method for geographical
attention dynamics. In Sect. 5, we report the experimental results. We conclude
the paper by summarizing the main results in Sect. 6.

2 Related Work

Several studies have been made on predicting POI visit events in the near future.
As described in Sect. 1, Chen et al. [2], Feng et al. [8] and Zhang et al. [21] investi-
gated the next POI recommendation problem for a finite number of given POIs
in a discretized time-axis. To address the problem in a continuous time-axis,
Liu et al. [14] presented a method of exploiting temporal interval assessment.
To construct an accurate predictive model of event data with mark informa-
tion such as POI in a continuous time-axis for a finite number of given marks,
Du et al. [5] extended a marked Hawkes process, and proposed such a marked
temporal point process that incorporates a recurrent neural network. However,
unlike our current approach, these works have a limitation in treating a contin-
uous spatial domain, that is, it is difficult to handle the situation where there
may be infinitely many POIs and a complete list of all POIs is unavailable.
To model ambulance demand in a discretized time-axis and a continuous spa-
tial domain, Zhou et al. [24] integrated a time-varying Gaussian mixture model
with a non-homogeneous Poisson process. Note that this model can simply be
extended to the HG model, which is a model for a continuous space-time. How-
ever, as already mentioned, the HG model also has a limitation in analyzing the
spatio-temporal influence structure among latent components. In this paper, by
properly extending the HG model, we propose a probabilistic model for the geo-
graphical attention dynamics in a continuous space-time, and aim at discovering
the spatio-temporal influence structure among major sightseeing areas in a given
season.

There have been many investigations related to modeling continuous-time
events generated by users in social media. As described in Sect. 1, Wang
et al. [19], Shen et al. [16], Gao et al. [11] and Zhao et al. [22] considered individu-
ally modeling the attention dynamics of online items posted on social media sites
in order to predict their future popularity. Thus, unlike our current approach,
these works are unable to properly analyze the relations among all the online
items involved. On the other hand, Gomez-Rodriguez et al. [12] and Danesh-
mand et al. [4] examined the problem of extracting the social influence network
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structure among users from the observed information cascades (i.e., the observed
sequences of events for sharing the same online items). Multivariate Hawkes pro-
cesses are often leveraged to model event sequences forming information cascades
in social networks [6,23]. They are also extended to model coevolution dynamics
of information diffusion and social network growth [7]. However, these studies
exploited who shared which online item, and assume that a finite set of online
items and users is given in advance. In this paper, we also focus on a Hawkes pro-
cess, but unlike the studies mentioned above, we try to infer the spatio-temporal
influence relation structure among POIs and predict the future POI visit events
without knowing who visited which POI from the viewpoint of privacy protec-
tion. We also note that multivariate Hawkes processes cannot simply be applied
to our problem since a complete list of all POIs and users is unavailable in
advance.

3 Model

For predictive modeling of geographical attention dynamics, we consider model-
ing the occurrence process of events for visiting POIs in a sightseeing city during
a time period [0, T ′) corresponding to one of its tourist seasons in the setting of
a continuous space-time, where T ′ (> 0) is assumed to be a few months, and the
corresponding continuous spatial domain is denoted by Ω ⊂ R

2.

3.1 Preliminaries

For any t ∈ (0, T ′), let Nt be the total number of events during time period
[0, t), and for each n = 1, . . . , Nt, we represent the nth event as tuple (tn,xn),
meaning that location xn = (xn,1, xn,2) ∈ Ω was visited and registered as a POI
at time tn ∈ [0, T ′) on a sightseeing tour. We also denote the sequence of events
(i.e., the history) up to but not including time t as

Ht = {(tn,xn); n = 1, . . . , Nt} .

Based on the previous work [24], we focus on modeling the event occurrence pro-
cess as a spatio-temporal point process with intensity function λ(t) f(x | t) for
∀t ∈ (0, T ′) and ∀x = (x1, x2) ∈ Ω, where λ(t) is the intensity function of a tem-
poral point process and f(x | t) is a time-varying Gaussian mixture for the spatial
distribution. Namely, λ(t) f(x | t) dt dx is the conditional probability of observ-
ing an event within a small domain [t, t+dt) × {[x1, x1 + dx1) × [x2, x2 + dx2)}
given the history Ht (see [1,5,7]). Note that for 0 < ∀T ≤ T ′, the probability
density of HT is given by

p(HT ) = exp

{
−

∫ T

0

λ(t) dt

}
NT∏
n=1

{λ(tn) f(xn | tn)} . (1)
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3.2 Spatial Distribution

We begin with defining f(x | t) for any (t,x) ∈ (0, T ′) × Ω. Since people’s travel
behaviors should vary by time of day, several studies [10,20] separated each day
into different time slots to improve POI recommendations in LBSNs. We also
adopt this idea, and decompose each day into such M time slots TS1, . . . , TSM

that are appropriate for the city and the season to be considered1. Let h :
[0, T ′) → {1, . . . ,M} be the time slot function, meaning that each time t ∈ [0, T ′)
belongs to time slot TSh(t).

Previous work [24] fixed the mixture component distributions across all time
slots to overcome data sparsity issues, and tried to capture an accurate spatial
structure. In the same way as [24], we define the spatial distribution f(x | t) by

f(x | t, Θ) =
K∑

k=1

φh(t),k g(x |μk, Σk), ∀x ∈ Ω, (2)

where K is the number of components, and g(x |μk, Σk) is the 2-dimensional
Gaussian density with mean vector μk and covariance matrix Σk for k =
1, . . . ,K. The mixing coefficients {φm,k} for time slot TSm satisfy 0 <

φm,k < 1 together with
∑K

k=1 φm,k = 1 for m = 1, . . . ,M . Also,
the parameters for f(x | t) are aggregated into the parameter set Θ =
{φm,k, μk, Σk; m = 1, . . . , M, k = 1, . . . , K} . We can consider that each Gaus-
sian component Ck essentially represents a geographical area corresponding to
a major tourism topic, and is identified with a major sightseeing area. Thus,
we leverage this identification and try to analyze the influence relations among
those major sightseeing areas.

3.3 Spatio-Temporal Point Process

Next, we consider modeling λ(t) for any t ∈ (0, T ′).

Baseline Model. One of the simplest models for a temporal point process is
a Poisson process, where λ(t) is assumed to be independent of history Ht and
given by

λ(t |α) = α, ∀t ∈ (0, T ′). (3)

Here, α is a positive constant. Thus, the spatio-temporal point process model
defined by intensity function λ(t |α) f(x | t, Θ) (see Eqs. (2) and (3)) is regarded
as a baseline.

1 Although it is desirable to automatically detect such a decomposition from data,
we here assume that TS1, . . . , TSM are specified in advance. Our future work will
involve developing this kind of method.
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Conventional Model. As described in the previous sections, a Hawkes pro-
cess is frequently used to model continuous-time events and capture mutually-
exciting interactions between events, and has been investigated for various appli-
cations (see [13,22]). Thus, λ(t) can be modeled as a Hawkes process,

λ(t |α, β, γ) = α + β
∑

(tn, xn)∈ Ht

exp {−γ (t − tn)} , ∀t ∈ (0, T ′). (4)

where α, β and γ are positive constants. Here, the spatio-temporal point pro-
cess defined by intensity function λ(t |α, β, γ) f(x | t, Θ) (see Eqs. (2) and (4)) is
referred to as HG model. Note that the HG model can be regarded as a conven-
tional model presented in the previous work [24].

ProposedModel. By incorporating both component dependent temporal influ-
ence decay (see Sect. 1) and time-slot varying influence degree (see Sect. 3.2), we
extend the HG model, and aim to discover the spatio-temporal influence struc-
ture among components from the viewpoint of geographical attention dynam-
ics and to more accurately predict POI visit events in the near future. The pro-
posed model is defined as the spatio-temporal point process with intensity function
λ(t |Zt, α,β,γ) f(x | t, Θ) (see Eqs. (2) and (5)). Here, λ(t) is modeled as

λ(t | Zt, α, β, γ) = α+
∑

(tn, xn) ∈ Ht

βh(tn) exp
{−γz(xn | tn) (t − tn)

}
, ∀t ∈ (0, T ′), (5)

where z(xn | tn) denotes the component ID of location xn drawn from Gaussian
mixture f(x | tn, Θ) at time tn, i.e., z(xn | tn) = k if and only if xn ∈ Ck at time
tn, for n = 1, . . . , Nt. Zt is defined as

Zt = {z(xn | tn); n = 1, . . . , Nt} .

Also, for the city during the current season, α > 0 expresses its underlying
attractiveness, βm > 0 represents the influence degree of time slot TSm for m =
1, . . . ,M , and γk > 0 indicates the temporal influence decay rate of component
Ck for k = 1, . . . ,K. Parameters β and γ are defined as β = (β1, . . . , βM ) and
γ = (γ1, . . . , γK), respectively. Here, based on the additivity for independent
Poisson processes (see [6,13,15]), for any t ∈ (0, T ′), we introduce a set of latent
variables,

Yt = {yn; n = 1, . . . , Nt} ,

such that the nth event (tn,xn) was triggered by the ynth event (tyn
,xyn

),
where yn = 0, 1, . . . , n − 1, and yn = 0 means that the nth event was triggered
by the underlying attractiveness, i.e., the background intensity α. Namely, it
is known that the point process with intensity function λ(tn |Ztn

, α,β,γ) at
time tn is the superposition of the Poisson processes with intensity functions
λ(tn; yn |Ztn

, α,β,γ), (yn = 0, 1, . . . , n − 1), where

λ(tn; yn | Ztn , α, β, γ) =

{
α if yn = 0

βh(tyn ) exp
{

−γz(xyn | tyn ) (tn − tyn)
}

if 1 ≤ yn < n

(6)
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for n = 1, . . . , Nt. We consider extracting the influence relation Rk,� from com-
ponent C� to component Ck for k, 
 = 1, . . . ,K by leveraging ZT and YT .

4 Learning Method

For the observed data HT with 0 < T < T ′, we develop a method of inferring
the parameters Θ, ZT , α, β, γ and YT in the proposed model, and provide a
method for prediction and analysis of the geographical attention dynamics.

4.1 Inference

We present an inference method of the proposed model from HT .
First, we estimate Θ by maximizing the likelihood function

p(HT |Θ,ZT , α,β,γ). By Eq. (1), it is sufficient to maximize function L(Θ) =∏
(tn,xn)∈HT

f(xn | tn, Θ). We employ an EM algorithm. Note that the number
K of components is assumed to be fixed in this paper although it can also be
estimated from the observed data by exploiting some techniques such as affinity
propagation [9] and birth-and-death Markov chain Monte Carlo [18,24]. Let Θ̄ be
the current estimate of Θ. Then, the update rule “Θ̂ =

{
{φ̂m,k}, {μ̂k}, {Σ̂k}

}
←

Θ̄ =
{{φ̄m,k}, {μ̄k}, {Σ̄k}}

” is obtained as follows2:

φ̂m,k =
1

|Hm
T |

∑

(tn,xn) ∈ Hm
T

φ̄m,k g(xn | μ̄k, Σ̄k)

f(xn | tn, Θ̄)
,

μ̂k =
1

∑NT
n=1 ān,k

NT∑

n=1

ān,k xn, Σ̂k =
1

∑NT
n=1 ān,k

NT∑

n=1

ān,k (xn − μ̂k) (xn − μ̂k)T

for m = 1, . . . ,M and k = 1, . . . ,K, where the superscript T stands for a matrix
transpose, each 2-vector is treated as a 2 × 1 matrix, and

Hm
T = {(t,x) ∈ HT ; h(t) = m}, ān,k =

φ̄h(tn),k g(xn | μ̄k, Σ̄k)
f(xn | tn, Θ̄)

.

Also, |S| denotes the number of elements in a set S. With this method, we get the
estimate Θ∗ of Θ. Then, for each (tn,xn) ∈ HT and k = 1, . . . ,K, the posterior
probability ψk(xn | tn) of location xn at time tn is given by

ψk(xn | tn) = P (z(xn | tn) = k | tn,xn, Θ∗) =
φ∗

h(tn),k g(xn |μ∗
k, Σ∗

k)

f(xn | tn, Θ∗)
, (7)

and thus the estimate Z∗
T of ZT can be obtained by

z∗(xn | tn) = argmax
1≤k≤K

ψk(xn | tn).

2 For simplicity, no priors are here assumed for Θ. Note that it is clearly possible to
give some natural priors.



Discovering Spatio-Temporal Latent Influence 525

Next, we develop a Bayesian method of estimating α, β and γ based
on Eq. (1). To this end, we introduce the latent variables YT and try to
infer YT as well (see Sect. 3.3). We consider leveraging the joint likelihood
p(HT , YT |Θ∗, Z∗

T , α,β,γ),

p(HT , YT |Θ∗, Z∗
T , α,β,γ)

∝ exp

{
−Tα −

M∑
m=1

βm Gm(γ |Z∗
T )

} ∏
(tn,xn)∈ HT

λ(tn; yn |Z∗
T , α,β,γ), (8)

where

Gm(γ |Z∗
T ) =

NT∑
n=1

1
γz(xn | tn)

(
1 − exp

{
−γz(xn | tn) (T − tn)

})
I(h(tn) = m).

Here, I(v) is an indicator function such that I(v) = 1 if v is true, I(v) =
0 otherwise. Suppose that α, β and γ are independently generated from the
following priors (i.e., gamma distributions):

α ∼ Gamma(να, ηα), βm ∼ Gamma(νβ , ηβ), γk ∼ Gamma(νγ , ηγ), (9)

for m = 1, . . . , M and k = 1, . . . , K, where να, ηα, νβ , ηβ , νγ , ηγ > 0 are hyper-
parameters. Then, p(HT , YT |Θ∗, Z∗

T , α,β,γ) can be analytically marginalized
over α and β for priors (see Eqs. (8) and (9)), and we have

p(HT , YT |Θ∗, Z∗
T ,γ, να, ηα, νβ , ηβ)

=
∫
R+×R

M
+

p(HT , YT |Θ∗, Z∗
T , α,β,γ) p(α | να, ηα) p(β | νβ , ηβ) dα dβ

∝ exp

{
−

NT∑
n=1

γz(xyn | tn) (tn − tyn
)

}
Γ(L0 + να)

(T + ηα)L0+να

ηνα
α

Γ(να)

×
M∏

m=1

{
Γ(Lm + νβ)

{Gm(γ |Z∗
T ) + ηβ)}Lm+νβ

η
νβ

β

Γ(νβ)

}
, (10)

where R+ denotes the space of positive real numbers, Γ(s) is the gamma function,

L0 =
NT∑
n=1

I(yn = 0)

indicates the number of events triggered by the background intensity, and

Lm =
NT∑
n=2

I(h(tyn
) = m) I(yn ≥ 1)
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indicates the number of events triggered by the preceding events within time
slot TSm. By iterating the following three steps, we obtain the estimates
α∗,β∗ and γ∗ of α,β and γ, respectively: (1) Gibbs sampling for YT . (2)
Metropolis-Hastings sampling for γ. (3) Sampling for α and β, and updating
of hyper-parameters. Moreover, based on the superposition theorem of indepen-
dent Poisson processes (see [6,15]), we estimate the posterior probability ξn,i =
P (yn = i |HT , Θ∗, Z∗

T , α∗,β∗,γ∗) as

ξn,i =
λ(tn; yn = i |Z∗

T , α∗,β∗,γ∗)∑n−1
j=0 λ(tn; yn = j |Z∗

T , α∗,β∗,γ∗)
(11)

for n = 1, . . . , NT , i = 0, 1, . . . , n − 1 (see Eq. (6)). Note that {ξn,i} provide the
posterior distribution of YT . Below, we will describe the above three steps (1),
(2) and (3) in detail.

Gibbs Sampling for YT : Given the current samples of YT , a new value of yn

for n = 1, . . . , NT is sampled from {0, . . . , n − 1} using the Gibbs sampler of the
conditional probability (see Eq. (10)),

P (yn = i | HT , Y −n
T , Θ∗, Z∗

T , γ , να, ηα, νβ , ηβ) ∝ p(yn = i, HT | Y −n
T , Θ∗, Z∗

T , γ , να, ηα, νβ , ηβ)

∝

⎧
⎪⎪⎨

⎪⎪⎩

L−n
0 + να

T + ηα
if i = 0

L−n
h(ti)

+ νβ

Gh(ti)
(γ | Z∗

T ) + ηβ
exp

{
−γ

z(xi | ti)
(tn − ti)

}
if i = 1, . . . , n,

where the superscript −n stands for the set or value excluding the nth event.

Metropolis-Hastings Sampling for γ: Due to the nonconjugacy of γ, we
consider leveraging a Metropolis-Hastings algorithm to obtain the invariant dis-
tribution of γ for current samples of YT . Here, we exploit a normal distribution
q(γ′ |γ) as a proposal distribution for candidate γ′, Using the symmetric prop-
erty, q(γ′ |γ) = q(γ |γ′), the acceptance probability of γ′ is obtained by

Q(γ′ |γ) = min
{

1,
p(γ′ |HT , YT , Θ∗, Z∗

T , να, ηα, νβ , ηβ)
p(γ |HT , YT , Θ∗, Z∗

T , να, ηα, νβ , ηβ)

}

Note that Q(γ′ |γ) is easily computed by using the relation,

p(γ | HT , YT , Θ∗, Z∗
T , να, ηα, νβ , ηβ) ∝ p(HT , YT | γ, Θ∗, Z∗

T , να, ηα, νβ , ηβ) p(γ | νγ , ηγ)

(see Eqs. (9) and (10)). We accept γ′ according to Q(γ′ |γ). By iterating these
operations, we obtain a sample for γ.

Sampling for α and β, and Updating of Hyper-Parameters: Given the
current samples for YT and γ, we sample α and β by the expected values of
the posterior distributions p(α|HT , YT , να, ηα) = Gamma(L0 + να, T + ηα) and
p(βm|HT , YT , Z∗

T ,γ, νβ , ηβ) = Gamma(Lm + νβ , Gm(γ | Z∗
T ) + ηβ) as follows:

α =
L0 + να

T + ηα
, βm =

Lm + νβ

Gm(γ |Z∗
T ) + ηβ
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for m = 1, . . . ,M (see Eqs. (8) and (9)). Next, we update the hyperparameters
να, ηα, νβ , ηβ , νγ and ηγ through the maximum likelihood estimations (see
Eqs. (8), (9) and (10)). Here, the objective function for να and ηα is given by

Lα(να, ηα) = ln
Γ(L0 + να)

(T + ηα)L0+να
+ ln

ηνα
α

Γ(να)
.

Also, the objective functions for νβ and ηβ is given by

Lβ(νβ , ηβ) =
M∑

m=1

ln
Γ(Lm + νβ)

{Gm(γ |Z∗
T ) + ηβ}Lm+ηβ

+ M ln
η

νβ

β

Γ(νβ)
,

and the objective function for νγ and ηγ is given by

Lγ(νγ , ηγ) =
K∑

k=1

(
ln γ

νγ−1
k − ηγ γk

)
+ K ln

ηνγ
γ

Γ(νγ)
.

Based on Newton’s method, we obtain the update rules for these hyper-
parameters.

4.2 Prediction and Analysis

Using the proposed model inferred from HT , we provide a framework for pre-
dicting the future events and analyzing the geographical attention dynamics.

We predict the events occurring in [T, T ′) by simulating the proposed model
under Ogata’s thinning algorithm [15] based on the intensity function given by

λ
∗
(t) f

∗
(x | t)

=

⎛

⎝α
∗
+

∑

(ti,x i) ∈ Ht

β
∗
h(ti)

K∑

k=1

ψk(xi | ti) exp
{−γ

∗
k (t − ti)

}

⎞

⎠
K∑

k=1

φ
∗
h(t),k g(x | μ

∗
k, Σ

∗
k) (12)

for any t ∈ [T, T ′) (see Eqs. (2), (5) and (7)).
We analyze the geographical attention dynamics in the following way. We

first examine the estimated parameters α∗, β∗, γ∗ and Θ∗ in detail. Next, we
extract the influence relation Rk,� from latent component C� to latent component
Ck by

Rk,� =
NT∑
n=2

n−1∑
i=1

ξn,i ψk(xn | tn)ψ�(xi | ti)

for k, 
 = 1, . . . , K (see Eq. (11)), and analyze it. Here, note that each component
Ck is identified with a major sightseeing area, and each ξn,i measures the spatio-
temporal influence from the ith event (ti,xi) to the nth event (tn,xn).
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Fig. 2. Statistical analysis for the number of events within each time slot.

5 Experiments

Using real data of POI visit events in “Kyoto”, the ancient capital of Japan
(a famous sightseeing city), we first evaluate the proposed model in terms of
prediction performance. Next, by applying the proposed analysis method, we
try to examine the properties of the geographical attention dynamics in Kyoto.

5.1 Datasets

We collected such photos that were taken within Kyoto city in 2014 and uploaded
to photo-sharing site Flickr3. By regarding those photos as a set of photos taken
on sightseeing tours, we constructed real data for POI visit events in Kyoto.
The total number of those photos was 78, 239. By taking into account Kyoto’s
attractive seasons represented by cherry blossoms and autumn leaves, we focus
on the spring data from March 1 to May 7 and the autumn data from October
1 to December 7. Also, from the perspective of Kyoto’s sightseeing, we divide
one day into M = 4 time slots, and set time slots TS1, TS2, TS3 and TS4 as
6 am to 11 am, 11 am to 4 pm, 4 pm to 9 pm and 9 pm to 6 am, respectively.
Figure 2a indicates the number of events within each TSm. Unsurprisingly, it is
seen that many events occurred in daytime TS2, and a relatively small number
of events occurred in night-time and early-morning TS4.

For each of the spring and autumn data, we constructed seven datasets
D1, . . . ,D7 in the following way: We let the training period [0, T ) and the test
period [T, T ′) be two months and one day, respectively. In the case of the spring
data, for example, for dataset D1, training period [0, T ) is March 1 to April 30
and test period [T, T ′) is May 1, and for dataset D2, training period [0, T ) is
March 2 to May 1 and test period [T, T ′) is May 2. In the case of the autumn
data, for example, for dataset D1, training period [0, T ) is October 1 to Novem-
ber 30 and test period [T, T ′) is December 1, and for dataset D2, training period
[0, T ) is October 2 to December 1 and test period [T, T ′) is December 2.
3 https://www.flickr.com/.

https://www.flickr.com/
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Fig. 3. Predictive accuracy for the spring data.

Fig. 4. Predictive accuracy for the autumn data.

5.2 Evaluation of Prediction Performance

For predicting future POI visit events, we compared the proposed model (see
Eq. (5)) with the HG model (see Eq. (4)) and the baseline model (see Eq. (3)).
Here, the parameters α, β and γ for the HG model were estimated by a commonly
used method for learning a Hawkes process (i.e., a maximal likelihood method
based on an EM algorithm (see [7])), and the parameter α for the baseline
model was also estimated in the same way. For inferring α, β, γ and {ξn,i}
in the proposed model, we in particular implemented 1, 000 iterations with 200
burn-in. In view of Kyoto’s sightseeing, the number of components was set as
K = 8, and eight representative tourist spots were always used as the initial
positions of parameters {μk; k = 1, . . . , 8} in parameter inference, for all three
models.

By taking the issue of spatial resolution limitation into consideration, we
decompose an appropriate rectangular region covering Kyoto’s spatial domain
Ω into a collection of 250 × 400 consecutive tiles {Ω(b); b = 1, . . . , 250 × 400}
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(see [17]), where each tile Ω(b) is a 100 m2 region, and we consider evaluating
the predictive accuracy for future POI visit events in terms of these tiles. For
each TSm, we counted the number of events occurring within every tile Ω(b).
Figure 2b shows the distribution of the number of events for each time slot TSm

in terms of the number of tiles. Interestingly, it can be seen that the distribution
for TSm, (m = 1, 2, 3, 4), exhibits a power law with almost the same scaling
exponent. We evaluate the predictive accuracy of an inferred spatio-temporal
point process model with intensity function λ∗(t) f∗(x | t) by

PA=
1

|H(T, T ′)|

⎛

⎝
∑

(tn, xn) ∈ H(T,T ′)

ln

{
λ∗(tn)

∫

Ω(b(xn))

f(x | tn) dx

}
−

∫ T ′

T

λ∗(t) dt

⎞

⎠

(13)

(see [24])4, where H(T, T ′) = HT ′ \ HT stands for the set of events occurring in
test period [T, T ′), and Ω(b(xn)) denotes the tile to which location xn belongs.
Here, note that PA measures the average prediction log-likelihood of H(T, T ′)
(see Eq. (1)).

For all three models, the parameters other than {μk} were randomly ini-
tialized in parameter inference. Figures 3 and 4 show the average prediction
performance on five trials for the spring and autumn data, respectively. Here,
the proposed model is evaluated in terms of metric PA (see Eq. (13)), compared
with the HG and baseline models. Figures 3a and 4a indicate the value of PA for
each dataset Dj , and Figs. 3b and 4b indicate the average value of PA restricted
to each time slot TSm. We see that the proposed model performs the best, the
conventional HG model follows, and the baseline model is always worse than
these two models. Unlike the other two models, the prediction performance of
the proposed model was stable, and did not heavily depend on datasets and time
slots. These results imply that it is significant to incorporate both component
dependent temporal influence decay and time-slot varying influence degree, and
demonstrate the effectiveness of the proposed model.

5.3 Analysis of Geographical Attention Dynamics

By applying the proposed method, we examine the properties of the geographical
attention dynamics in Kyoto. Here, we only report the analysis results for the
spring data (see Fig. 5).

Figure 5a displays the geographical locations of the latent Gaussian compo-
nents C1, . . . , C8 estimated, which represent the major sightseeing areas of Kyoto
in the spring. Figure 5b gives a visualization result of the estimated parameters
{φ∗

m,k}, where each φ∗
m = (φ∗

m,1, . . . , φ
∗
m,8) indicates the popularity distribu-

tion among components within time slot TSm. We observe that C1, C2 and
C3 are always popular, and C5 and C6 are also popular in some time slots to a

4 Other performance metrics based on industry practices (see [24]) can also be used
to evaluate it. We confirmed that the results for such a metric were similar to those
for PA.
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Fig. 5. Analysis results for the spring data.

certain degree. Here, C1, C2 and C3 correspond to neighborhoods of Kyoto Impe-
rial Palace (Kyoto Gosho)5. Heian-jingu Shrine6 and Kiyomizu-dera Temple7,
respectively, and they are located near Kyoto’s downtown. Also, C5 corresponds
to a neighborhood of Kinkaku-ji Temple8 featuring a shining golden pavilion,
which is located in a suburban area of Kyoto city. C6 corresponds to Arashiyma
area9, which is a touristy district on the western outskirts of Kyoto, and famous
as a place of scenic beauty.

Figure 5c shows the estimated parameters β∗ = (β∗
1 , . . . , β∗

4), which represent
the influence structure depending on time slots. We can see that events occurred
during morning TS1 were the most influential, while events occurred during
night-time and early-morning TS4 were the least influential. For the estimated
parameters {γ∗

k}, there was little difference among C1, C2, C3 and C5. Figure 5d
displays the temporal influence decay functions estimated for components C1

and C6. This implies that the influence of events occurred in C6 more rapidly
decayed than that of events occurred in C1.

5 https://www.japan.travel/en/spot/1168/.
6 https://www.japan.travel/en/spot/1195/.
7 https://www.japan.travel/en/spot/2199/.
8 https://kyoto.travel/en/shrine temple/132.
9 https://www.japan.travel/en/spot/1142/.

https://www.japan.travel/en/spot/1168/
https://www.japan.travel/en/spot/1195/
https://www.japan.travel/en/spot/2199/
https://kyoto.travel/en/shrine_temple/132
https://www.japan.travel/en/spot/1142/
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Figure 5e shows the estimated influence relation Rk,� from C� to Ck for k, 
 =
1, . . . , 8, where the color of the entry in the kth row and the 
th column indicates
the value of Rk,�. We see that the influence relations among C1, C2 and C3 were
substantially strong compared to the others. Figure 5f displays the main influence
relations among components, where for k, 
 = 1, . . . , 8, an arrow from C� to Ck is
drawn if Rk,� is greater than the average value of {Rk′,�′}. This reveals people’s
primary movement patterns for Kyoto’s sightseeing in the spring. Here, note
that the spatio-temporal influence relations {Rk,�} significantly changed for the
autumn data. Like these, the proposed method can provide interesting analysis
results for Kyoto’s sightseeing during a specified season. These analysis results
are expected to contribute a foundation for tourism marketing.

6 Conclusion

We dealt with modeling of geographical attention dynamics, that is, the problem
of modeling the occurrence process of POI visit events for a sightseeing city in the
setting of a continuous space-time. We have proposed a novel probabilistic model
for discovering the spatio-temporal influence structure among major sightseeing
areas, and attempted to accurately predict POI visit events in the near future.
The proposed model is constructed by combining a Hawkes process with a time-
varying Gaussian mixture model in a novel way and incorporating the influence
structure depending on time slots as well. We developed an efficient method of
inferring the parameters in the proposed model from the observed sequence of
POI visit events, and provided an analysis method for the geographical attention
dynamics. Using real data of Kyoto, a Japanese sightseeing city, we demonstrated
that the proposed model significantly outperforms the conventional HG model
and the baseline model in terms of predictive accuracy, and revealed the spatio-
temporal influence relation structure among major sightseeing areas in Kyoto
from the viewpoint of geographical attention dynamics.

In this paper, we focused on Kyoto’s data obtained from Flickr, a photo-
sharing site. Clearly, it is possible to apply the proposed method to other sight-
seeing cities and geographical regions including several sightseeing cities. Our
immediate future work is to evaluate the proposed method for various sightsee-
ing cities around the world and to explore POIs of variable geographical scales.
We also supposed that the latent Gaussian components extracted by the pro-
posed method represent major tourism topics and can be identified with major
sightseeing areas. Our future work includes exploring spatial distributions other
than Gaussian mixture. In several photo-sharing services, there are many photos
that are annotated not only with GPS locations and time-stamps but also with
text documents, and a method of detecting spatio-temporally exclusive topics
from those data is investigated (see [17]). By applying such a method, we also
plan to develop a framework of easily interpreting those latent components in
terms of tourism topics.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant
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