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Abstract. Entropic measures such as conditional entropy or mutual
information have been used numerous times in pattern mining, for
instance to characterize valuable itemsets or approximate functional
dependencies. Strangely enough the fundamental problem of design-
ing efficient algorithms to compute entropy of subsets of features (or
mutual information of feature subsets relatively to some target feature)
has received little attention compared to the analog problem of com-
puting frequency of itemsets. The present article proposes to fill this
gap: it introduces a fast and scalable method that computes entropy and
mutual information for a large number of feature subsets by adopting
the divide and conquer strategy used by FP-growth – one of the most
efficient frequent itemset mining algorithm. In order to illustrate its prac-
tical interest, the algorithm is then used to solve the recently introduced
problem of mining reliable approximate functional dependencies. It finally
provides empirical evidences that in the context of non-redundant pat-
tern extraction, the proposed method outperforms existing algorithms
for both speed and scalability. Code related to this chapter is available
at: https://github.com/P-Fred/HFP-Growth.
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1 Introduction

Entropic measures such as conditional entropy or mutual information have been
used numerous times in pattern mining, for instance to characterize valuable item-
sets [5–7] or approximate functional dependencies [3,8,9]. In such setting, one con-
siders datasets where data are described by nominal features, i.e. features with a
finite number of possible values. These data are interpreted as IID samples of some
distribution for which the set F of features are seen as categorical random vari-
ables. For every considered subset X ⊆ F of features, the entropy H(X ) can be
approximated by an empirical estimation Ĥ(X ) = −∑

t σD(t) log2 (σD(t)) where
frequencies σD(t) are computed for all value combinations t (latter called tuples)
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of X observed in the dataset. A similar expression allows to empirically estimate
mutual information I(X ;Y) = H(X )+H(Y)−H(X ∪Y) between X and a target
feature subset Y, usually restricted to a single target feature.

Entropy H(X ) measures the amount of uncertainty when guessing samples of
X , or equivalently, the quantity of information conveyed by it. Similarly mutual
information I(X ;Y) is the amount of information shared between feature subsets
X and Y. Both quantities have interesting properties. In particular X �→ H(X )
and X �→ I(X ;Y) are non negative monotonic functions in lattice (2F ,⊆) of fea-
ture subsets. This property builds up a formal analogy with the anti-monotonic
property of itemset frequency so that some frequent itemset mining techniques
such as the levelwise search used by Apriori [1] have been transposed for the
computation of entropic measures (see for instance [8]). Despite this analogy
the problem of designing fast and scalable algorithms to compute entropy of
feature subsets has received little attention compared to the problem of comput-
ing frequency of itemsets, for which many algorithms have been proposed [2].
The present article addresses this problem as it introduces a new algorithm to
compute entropy and mutual information for a large number of feature subsets,
adopting the same divide and conquer strategy used by FP-growth [4] – one of
the most efficient frequent itemset mining algorithm [2].

In order to illustrate its practical interest, the algorithm is then used to solve
specifically the recently introduced problem of mining reliable approximate func-
tional dependencies [9]. Given a target feature Y , the problem consists in finding
the top-k feature sets X1≤i≤k which have the k highest reliable fractions of infor-
mation relatively to Y . This score denoted F̂0(X ;Y ) is a robust estimation of the
normalized mutual information between X and Y that is unbiased and equal to
0 in case of independence between X and Y . This prevents from misinterpreting
strong observed dependencies between X and Y that are not statistically rep-
resentative because they are based on a too small number of data. In the same
article, an algorithm is proposed to mine exactly or approximatively the top-k
reliable approximate functional dependencies (RAFD) using a parallelized beam
search strategy coupled to a branch and bound pruning optimization.

While authors of [9] focus on small values for k (mainly k = 1), we are
interested by much larger values, typically k = 104. This interest seems counter-
intuitive as the only presumable effect of increasing k is to produce more unin-
teresting patterns with lower scores. In reality, top-k patterns provide highly
redundant pieces of information as similar patterns are likely to have similar
scores. Increasing k provides a substantial list of top-k patterns from which can
be extracted a reduced set of still highly scored but non redundant patterns
called Locally Optimal Patterns (LOP) [10,11]: Given a pattern scoring function
and given a neighbourhood function that maps every pattern to a set of neigh-
bouring patterns, a pattern P is locally optimal if its score is maximal within
P ’s neighbourhood. The neighbourhood generally used is a δ-metric neighbour-
hood: two sets of features X1 and X2 are neighbours if their distance d(X ,X ′)
defined as the cardinalily |XΔX ′| of their symmetric difference is not greater
than δ. Once top-k patterns have been mined, LOPs can easily be extracted
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by checking for every top-k pattern if some better ranked pattern is one of its
neighbour (however this naive algorithm with a complexity in Θ(k2) only works
for relatively small values of k. For more elaborate algorithm, see [10]).

For sake of illustration, the amount of redundancy of a top-k pattern X
can be assessed by the minimal distance δmin(X ) between X and any better
scored pattern: the higher the distance, the more original the pattern. The first
columns of Table 1 provide the histogram of δmin of top-2 to top-10000 patterns,
computed on some datasets used in the evaluation section. For almost every
dataset, between 97 % to 100 % of top-k patterns differ only with one single
feature from a better scored pattern. On the other side, the last four columns
of Table 1 provide the rank distribution of LOPs (for δ = 1) in the sorted list of
top-k patterns.

Table 1. Histograms of δmin and LOPs’ rank among the top-10000 patterns.

Dataset Distance δmin Rank of LOP

1 2 3 4 >1 1–10 11–100 101–1000 1001–10000

german 9968 29 2 32 4 8 13 7

lymphography 9964 33 1 1 36 4 5 15 12

vehicle 9943 54 1 1 57 6 20 17 14

sonar 9753 233 5 7 247 7 27 77 136

penbased 9719 279 0 1 281 10 76 154 41

segment 9961 38 0 0 39 5 5 22 7

specftheart 9902 95 0 1 98 3 8 36 51

twonorm 5157 4840 2 0 4843 10 90 900 3843

wdbc 9865 130 2 1 135 9 19 41 66

One notices that a significant part of LOPs have large ranks. It is thus essen-
tial to be able to mine top-k patterns with large values for k. Main contributions
of this paper are:

1. An algorithm to compute entropy and mutual information of feature sub-
sets, resulting from a non straightforward adaptation of the frequent itemset
mining algorithm FP-growth [4].

2. An adaptation of the previous algorithm to address the problem of discovering
the top-k Reliable Approximate Functional Dependencies [9]. The algorithm
mines large numbers of patterns with low memory footprint so that it becomes
possible to extract “hard-to-reach” locally optimal patterns.

3. Empirical evidences that for both problems, proposed algorithms outperform
existing methods for both speed and scalability.

The rest of the paper is structured as follows: Sect. 2 considers the general prob-
lem of fast and scalable computation of entropic measures on sets of features
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and introduces the algorithm HFP-growth. Section 3 introduces algorithm IFP-
growth to compute mutual information relatively to some target feature and
applies it to the discovery of Reliable Approximate Functional Dependencies.
Section 4 presents comparative tests performed to evaluate speed and scalability
of HFP-growth and IFP-growth, before Sect. 5 concludes.

2 An Algorithm to Compute Entropy of Feature Subsets

2.1 Definitions and Problem Statement

Let’s first define properly the required notions of entropy and data partitions.
Given a dataset D of n data described by a set F of nominal features, data are
interpreted as IID samples of some distribution where every feature X ∈ F is
seen as a categorical random variable defined over some domain denoted DX .
Given a subset X = {X1, . . . , Xk} of features listed in some arbitrary order,
its joint distribution PX is defined over the cartesian product T (X ) = DX1 ×
· · · × DXk

containing all k-tuples (x1, . . . , xk) for all x1 ∈ DX1 , . . . , xk ∈ DXk
.

Assuming the undefined form 0 × log2(0) is equal to zero, the entropy H(X ) of
this joint distribution is defined as:

H(X ) def= E

(

log2

(
1

PX

))

= −
∑

t∈T (X )

PX (t) log2(PX (t)) (1)

The empirical entropy Ĥ(X ) estimates this entropy from the available samples,
replacing probability PX (t) of tuple t with its relative frequency σD(t) in D.
Entropy is a monotonic function: given two feature subsets X1 and X2, X1 ⊆ X2

implies Ĥ(X1) ≤ Ĥ(X2). The entropy is minimal and equal to zero for the empty
set; it is maximal for the whole set F of features. In order to formalize the
problem of computing efficiently the entropy of a large number of feature subsets,
one considers the analog problem of computing frequency of frequent patterns.
To this end, one defines the relative entropy ĥ(X ) as the ratio of Ĥ(X ) over
the maximal possible entropy Ĥ(F) of all features so that its values are always
between 0 and 1. One then says a subset X of features is definite relatively
to some threshold hmax ∈ [0, 1] if ĥ(X ) ≤ hmax (Definite subsets of binary
features are also called low-entropy sets in [6]). The considered problem is then
the following:

Problem 1. Given a dataset D of nominal features and a threshold hmax ∈ [0, 1],
the problem of mining definite feature subsets consists in computing the empirical
entropy of every definite subset of features relatively to hmax and D.

While this problem can naively be solved by implementing an APriori like
algorithm [1] based on formula 1, this method is highly unefficient, not only
because the APriori approach is not the best strategy but also because expres-
sion 1 requires for every feature subset X to compute frequencies of all possible
tuples whose number increases exponentially with the size of X . In order to pro-
vide a more efficient algorithm, empirical entropy should be defined as a function
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of data partitions. A data partition is any partition of the dataset D. Any sub-
set X of features can be mapped to a data partition. For this purpose, let’s say
two data d1 and d2 are equivalent relatively to X if for every feature X of X ,
their respective values X(d1) and X(d2) are equal. The set of equivalence classes
defines the said data partition denoted P (X ) of X . The empirical entropy Ĥ(X )
can thus be rewritten as the entropy H (P (X )) of its data partition defined as:

H (P (X )) def=
∑

P∈P(X )

|P |
|D| log2

( |D|
|P |

)

= log2(n) −
∑

P∈P(X ) |P | log2 (|P |)
n

(2)

The set of data partitions builds a lattice with intersection and union operators
that necessarily induces an ordering relation called refinement relation: a par-
tition P1 is a refinement of (or is included in) a partition P2 if every part of
P1 is included in any part of P2. The intersection P1 ∩ P2 is the most general
refinement of P1 and P2:

P1 ∩ P2 = {P1 ∩ P2 /P1 ∈ P1, P2 ∈ P2, P1 ∩ P2 	= ∅} (3)

It is easy to prove by double inclusion that the data partition of a set X of
features is the intersection of data partitions of all features of X :

P (X ) =
⋂

X∈X
P ({X}) (4)

This latter property is essential to design an efficient mining algorithm. Indeed
let’s assume there exists some encoding of data partitions that enables an efficient
procedure to compute the intersection of two data partitions and its entropy.
Under this hypothesis, it gets possible to enumerate efficiently in a depth first
search manner the definite feature subsets, by intersecting the data partition
P (X ) of the current pattern X with the data partition P ({Y }) of the next
feature Y /∈ X to add and then by pruning the current branch as soon as the
entropy of resulting partition P (X ∪ {Y }) is larger than Hlimit = hmax × Ĥ(F).
The next section explains the algorithm in details.

2.2 Algorithm HFP-growth

The presented algorithm is called HFP-growth since it adopts FP-growth’s data
structure called FP-tree along with its divide and conquer strategy [4]. The
symbol of entropy “H” emphasizes the fact HFP-growth computes entropy of
definite features sets instead of frequency of frequent itemsets. The next para-
graphs develop the three main components of HFP-growth: first, the HFP-tree
data structure that is an adaptation of FP-trees, then the algorithmic primi-
tives to process the HFP-tree which are the most different part compared to
FP-growth, finally the global algorithm with its divide and conquer approach.
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Table 2. Dataset

F1 F2 F3

a c f

a c g

a d f

a e f

b c f

b c g

b d f

b e f

Fig. 1. Equivalent FP-tree

HFP-Tree. FP-growth is a frequent itemset mining algorithm that stores the
whole dataset in memory thanks to a compact data structure called FP-tree.
Many variants of FP-tree exist. Only the simplest most essential form is pre-
sented here: An FP-tree is mainly a lexicographic tree, also called trie, that
encodes a dataset viewed as a collection of itemsets. In order for the trie to
have the smallest memory footprint and thus the smallest number of nodes, the
unfrequent items are removed and the remaining frequent items are sorted in
decreasing order of frequency. The FP-tree represented on Fig. 1 is built from
dataset shown on Table 2. An FP-tree also provides for every item i a single linked
list enumerating nodes representing item i in the lexicographic tree, traversing
the trie from left to right. These lists are called levels hereafter. Levels are rep-
resented with dashed lines on Fig. 1. A node n represents the itemset containing
items of levels intersecting the branch from the root node up to n. For instance
rightmost node of g’s level represents itemset bcg. Every node essentially stores
pointers to its parent node and to its right sibling in its level, along with a
counter set to the number of data containing node’s itemset.

HFP-tree is an FP-tree with some differences as shown on Fig. 2:

– An HFP-tree has additional components called groups of levels. Every group
corresponds to some feature X. X’s group is the entry point for levels, one
for each possible value of X. Levels attached to X’s group thus represent the
parts of P ({X}).

– A group also stores entropy Ĥ({X}) of X computed at startup when reading
the dataset. Features whose entropy Ĥ({X}) is greater than Hlimit are not
considered as they cannot be part of a definite feature set. This allows to sort
groups in increasing order of entropy so that nodes representing the most
definite features are close to the root node whereas leaf nodes at the bottom
of the tree represent the most fluctuating features: this trick reduces the
number of nodes, while remaining compatible with the intersection procedure
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Fig. 2. An HFP-tree

explained later. In particular it does not interlace levels of different groups as
standard FP-tree would do (like f and g levels of group F3 on Fig. 1).

– A node stores in addition to fields already mentioned for FP-tree, two addi-
tional node pointers called master and heir that are essential for processing
the tree as explained in the next subsection.

– Another difference compared to FP-growth is that only one HFP-tree is built
to represent the input dataset. This characteristic is very convenient as HFP-
growth does not dynamically allocate memory but at startup. If HFP-growth
succeeds in building its tree (and in practice it always does on current datasets
less than few gigabytes), it will eventually complete without running out
of memory after potentially several hours of processing. In comparison FP-
growth clones many FP-trees during its run. However this advantage has to be
mitigated as some later FP-growth implementations have managed to avoid
FP-tree cloning.

Processing HFP-Tree. The interest of HFP-tree is to enable a fast computa-
tion of data partitions when feature subsets are enumerated in a depth search
order consistent with the way features are indexed. To explain why, let’s describe
in a first stage how a data partition P (X ) is encoded in the HFP-tree for some
given subset X of features without explaining how this encoding can be built. In
the followings, index i of feature Xi refers to the feature of the ith group: feature
X1 matches the first group, i.e the closest of the tree root, feature X2 matches the
2nd closest group and so on. Let’s assume X = {Xi1 , . . . , Xik} with i1 < · · · < ik.
Individual nodes in Xik ’s levels represent parts of P (∪ik

i=1{Xi}
)

= ∩ik
i=1P ({Xi}).

Since P (∪ik
i=1{Xi}

)
is a refinement of P (X ), for any given part P of P (X ), there

are several nodes of Xik ’s group that are part of P , or put another way, data
members of P are covered by different nodes of Xik ’s group. These nodes rep-
resenting P might spread among several levels of the ik

th group but they can
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be identified as those sharing a same reference to a representative node called
master node. This master node can be any node of any previous or current group
(i.e whose index is not greater than ik). The only requirement is that two nodes
belong to the same part if and only if their master nodes are the same. The use
of master nodes to implicitely represent parts of partitions avoids dynamic mem-
ory allocation of objects to explicitely represent these parts. This implementation
technique substantially improves speed. At startup, the only available partition
encoding is represented by the root node, which is a special node as it is the
only one not to be a member of any level of any group. The root node is its own
master node. It represents the zero entropy partition P (∅) = {D} of the empty
set of features, made of a single part containing the whole dataset.

Now the remaining issue is to define the recursive generation of partition
encodings: given a current pattern X whose partition is encoded on nodes of
the ik

th group, how can be generated partition encoding for any child pattern
X ∪ {Xik+1} of X ? Put another way, let’s consider some new feature Xj with
j > ik and let’s assume nodes of the previous (j − 1)th group encode partition
of X , then the jth group must generate two different exploration branches:

– Either one adds feature Xj to current pattern X . In this case, one has to
encode on nodes of the jth group, partition P (X ∪ {Xj}) = P (X )∩P ({Xj})
using (1) the available encoding of partition P (X ) by nodes of the (j − 1)th

group and (2) the partition P ({Xj}) whose parts are levels of the jth group.
This is called the intersect operation applied to the jth group.

– Or feature Xj is not added to X . In this case, one simply has to forward the
available encoding of P (X ) from nodes of the (j − 1)th group to nodes of the
current jth group. This is called the skip operation applied to the jth group.

The skip operation can easily be parallelized as it simply consists for every node
n of every level of the jth group to declare its master node to be the master node
of its parent node. The intersect operation is more subtle as every part of the
j − 1th group might be intersected by different levels of the jth group. For every
level L of the jth group, one has to gather nodes of L whose parents are member
of the same part of P (X ), say otherwise, whose parents have the same master
node. These subsets define new parts of P (X ∪ {Xj}) as illustrated on Fig. 3.

Fig. 3. Running intersect on c’s level after skipping F3 and intersecting F1



An Efficient Algorithm for Computing Entropic Measures of Feature Subsets 491

More precisely, every time the parent of a node n of L has a master m not
processed yet, a new part P of P (X ∪ {Xj}) is discovered. n is then designated
as the master of P and its reference is saved in master m as its heir node.
When other nodes are found such that the master m of their parents is the same
as the one for n, they receive the heir of m as their master. After processing
nodes of a level, all discovered parts are complete so that the sum appearing in
expression 2 can be updated by their cardinalities. After processing all levels of
the group j, its nodes completely encode partition P (X ∪ {Xj}) and since the
sum of expression 2 is completed, intersect can return entropy Ĥ(X ∪ {Xj}).

Algorithm. Once the HFP-tree has been built, HFP-growth uses a divide and
conquer strategy based on the two previous operations skip and intersect. This
strategy is similar with the one of FP-growth but while skip and intersect
require a top down recursion (i.e. from the top of the tree to the bottom), FP-
growth’s algorithm requires to process levels in a bottom up order, starting from
the deepest levels in the FP-tree. Let m be the number of groups in the HFP-
tree, i.e. the number of features of F after removing feature X with entropy less
than Hlimit. The algorithm is based on a recursive mine function as shown by
pseudocode 1. For every feature index i from 1 to m−1, it recursively calls mine
on the next i + 1th feature twice: first after applying the procedure intersect
on the ith group in the case the returned entropy is not greater than Hlimit,
second after appling skip to the ith group systematically.

Inputs : A dataset D and a threshold hmax ∈ [0, 1]
Output: List of definite feature sets X with their entropy Ĥ (X )

HFP-tree T , Hlimit ← build-HFP-tree(D, hmax) ;
output(∅, 0) ;
mine(∅, 1)

function mine(X , j) is
if j ≤ number m of groups of T then

H ← intersect(T , j) ;
if H ≤ Hlimit then

output(X ∪ {Xj}, H) ;
mine(X ∪ {Xj}, j + 1)

end
skip(T , j) ;
mine(X , j + 1)

end

end

Algorithm 1. The HFP-growth algorithm
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3 An Algorithm to Compute Mutual Information
of Feature Subsets

In this section one shows how HFP-growth can be adapted to compute efficiently
mutual information of feature subsets with some target feature, along with an
unbiased variant of it introduced in [9]. Because the main subject of this paper
is the efficient computation of entropic measures, one could limit the study to
mutual information since computing the unbiased variant does not fundamen-
tally change the algorithm. However this provides at the same time a sounder
statistical problem to solve and an existing algorithm to compare with. The
resulting algorithm is called IFP-growth, “I” standing for information.

3.1 Problem Statement

Mutual information I(X ;Y) = H(X ) + H(Y) − H(X ∪ Y) estimates the amount
of information shared by two feature subsets X and Y. It is equal to zero in
case X and Y are independent. Mutual information is particularly interesting
in supervised problems where Y is restricted to a single target feature Y . In
such problems, one searches to predict Y from highly dependent feature subsets
X , i.e. with a large mutual information I(X ; {Y }). Mutual information can be
estimated empirically from data partitions according to:

Î(X ;Y) = Ĥ(P (Y)) + Ĥ(P (X )) − Ĥ(P (X ) ∩ P (Y)) (5)

Because H(Y) is an upper bound for I(X ;Y), one often uses a normalized
mutual information F (X ;Y) = I(X ;Y)

H(Y) within the range [0, 1] called fraction
of information ratio in [3,9]. As stated in the introduction, mutual information
X �→ Î(X ,Y) is a non decreasing function of X . Obviously the more features in
X , the more predictable Y from X . However one should not forget that a dataset
D is a limited sampling of the real joint distribution of X and Y. For large fea-
ture sets X , data partition of P (X ∪ Y) is the intersection ∩X∈X∪YP ({X}) of
many data partitions. Therefore parts of P (X ∪ Y) get statistically very small
when the size of X increases. Within these small parts, strong but spurious
dependencies appear between X and Y even when X and Y are drawn from
independent distributions. New entropic measures have since been proposed in
[9,12–14]. These measures are similar in spirit with mutual information but
robust to the previous “just by chance” artefact. One of these mesures con-
sidered in [9] is the reliable fraction of information F̂0(X ;Y) that is unbiased,
i.e whose expected value is 0 when X and Y are independent. More precisely
F̂0(X ;Y) = F̂ (X ;Y)− m̂0(X ,Y)

Ĥ(Y)
where m̂0(X ,Y) is the expected value of Î(X ;Y)

under hypothesis of independence between X and Y. This bias is computed
using a permutation model defined over contingency tables of X and Y respec-
tively. Since the elements in these tables are nothing else than the cardinalities
of parts in P (X ) and P (Y), m̂0(X ,Y) can be rewritten as m̂0(P (X ) ,P (Y)),
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i.e as a function depending only on P (X ) and P (Y). The exact expression of
m̂0(P (X ) ,P (Y)) is given by a sum of expected values for hypergeometric dis-
tributions. The detailed equation and derivation details are provided in [9] with
reference to [12,14]. The expression of F̂0(X ;Y) to compute is finally:

F̂0(X ;Y) = 1 +
Ĥ(P (X )) − Ĥ(P (X ) ∩ P (Y)) − m̂0(P (X ) ,P (Y))

Ĥ(P (Y))
(6)

It is worth noting X �→ F̂0(X ;Y) is not a monotonic function as mutual
information is. It has the expected nice property of penalizing with low scores
not only short non informative sets of features X but also long informative but
not statistically representative patterns. Finding the top-k feature sets X with
highest score F̂0(X ; {Y }) relatively to a target feature Y is thus a sound and non
trivial optimization problem addressed in [9]: the resulting associations X →
Y are called the top-k reliable approximate functional dependencies (RAFD).
A mining algorithm is also proposed in [9] whose implementation is called dora.
This algorithm finds these dependencies using a beam search strategy coupled
to a branch and bound pruning: it backtracks the current branch as soon as
the upper bound 1 − m̂0(X ; {Y })/Ĥ({Y }) of scores accessible from the current
pattern X is not greater than score F̂0(Xk; {Y }) of the worst top-k pattern Xk

found so far. In order to process difficult datasets, the algorithm can also solve
a relaxed version of this problem: it consists in replacing the previous pruning
condition by predicate α × (1 − m̂0(X ; {Y })/Ĥ({Y })) ≤ F̂0(Xk; {Y }) for some
parameter α ∈]0, 1], a value α = 1 corresponding to the exact resolution. This
approximation amounts to find k feature subsets (X̂i)1≤i≤k so that the lowest
score F̂0(X̂k; {Y }) of these patterns is not lower than α× F̂0(Xk; {Y }) where Xk

is the pattern with the lowest score among the real top-k patterns (Xi)1≤i≤k. In
summary, mining reliable approximate functional dependencies is defined by a
dataset D, a target feature Y , a number k and an α coefficient. A new algorithm
to address this problem is proposed in the next section.

3.2 Algorithm IFP-Growth

Two preliminary remarks can be done about Eq. 6: first P (Y) and a fortiori
Ĥ(P (Y)) are constants independent ofX so that they canbe computedonce forever
at startup. Second F̂0(X ;Y) could be computed directly with two parallel HFP-
trees: one whose groups encode P ({X}) for every feature X ∈ F \{Y }, the second
whose groups encodeP ({X} ∩ P ({Y })). However this approach ismemory-costly
while it is possible to get a solutionwithauniqueHFP-tree.The resultingalgorithm
IFP-growth is summarized by pseudocode 2.

A first trick of IFP-growth is to put the group of target feature Y at the
bottom of HFP-tree, independently of its entropy. This last group is processed
differently than the others. Another trick is to switch the order HFP-growth
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Inputs : A dataset D, target feature Y , number k, coef. α ∈ [0, 1]
Output: List of top-k feature sets (Xi)1≤i≤k with their score F̂0 (Xi)

F kth
0 ← 0 ; Q ← build-min-priority-queue() ;

HFP-tree T , HY ← build-IFP-tree(D, Y ) ;
mine(∅, 1) ; Output content of Q

function mine (X , j) is
if j < number m of groups of T then

skip(T , j) ; mine(X , j + 1) ;
HX ← intersect(T , j) m0 ← compute-bias(T , j) ;

if 1 − m0/HY > F kth
0 /α then

mine(X ∪ {Xj}, j + 1)
end

else
HXY ← intersect(T , j) ;
F0 ← 1 + (HX − HXY − m0)/HY ;
Q.insert((X , F0)) ;
if Q.size > k then

Q.pop-min() ; F kth
0 ← min(Q).F0

end

end

end

Algorithm 2. The IFP-growth algorithm

calls intersect and skip: IFP-growth first develops the skip ’s branch before
intersect ’s one. When intersect is applied to ik

th group in order to generate
encoding of P ({Xi1 , . . . , Xik}), combination of these two changes allow:

– First to save in global variables the entropy Ĥ(X ) (that intersect just
returned) and the bias m̂0(X ; {Y }) that can be computed from constant P (Y)
and from P (X ) (whose encoding has also been computed by intersect).

– Then to call recursively the skip operation on the successive groups up to
reaching the last group of Y without modifying values of the two global
variables. Calling intersect then returns Ĥ(X ∪ {Y }). At this points all
terms of Eq. 6 are available to compute F̂0(Xk; {Y }) and see if this score
is sufficient for it to be inserted in the priority queue Q storing the top-k
patterns.

As shown by pseudocode 2, the branch and bound pruning strategy with coeffi-
cient α can seamlessly be integrated in IFP-growth. However IFP-growth prun-
ing is assumed to be less efficent than dora’s one since dora uses a beam search
strategy converging quickly to good top-k pattern candidates while HFP-tree
dictates more rigidly the order in which subsets must be enumerated.
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4 Empirical Evaluation

For sake of comparison, datasets considered in [9] are reused (see the KEEL
data repository at http://www.keel.es). However in order to limit their number,
only the most challenging datasets given on Table 3 are considered, defined as
those whose processing by either IFP-growth or dora requires more than 10 s for
k = 1. In order to be fair with dora whose beam search strategy is compatible
with an intensive use of multithreading, tests are run on an Intel Xeon Silver
4414 biprocessor with a total of 20 hyper-threaded cores. The memory footprint
of every running algorithm is monitored (internal Java Virtual Machine’s heap
size for dora and processus heap size for other algorithms) and limited to 45
GB. Source codes of HFP-growth, IFP-growth and HApriori can be downloaded
from https://github.com/P-Fred/HFP-Growth whereas dora is available from
http://eda.mmci.uni-saarland.de/prj/dora.

Evaluation of HFP-Growth. Since HFP-growth cannot be straightforwardly
compared with an existing algorithm, one studies to what extent the well known
performance gap between FP-growth and the baseline algorithm APriori [2] is
reproduced between HFP-growth and the APriori counterpart, specially imple-
mented for this purpose. This latter algorithm, hereafter called H-APriori, uses
the same levelwise pruning method as APriori to remove candidate subsets hav-
ing at least one predecessor that is not definite. It then computes in one pass
over the dataset the entropies of all remaining candidates using formula 1. HFP-
growth’s processing times (resp. memory footprints) as functions of hmax are
given on Fig. 4 (resp. Fig. 5). The time (resp. memory) gain factor defined as the
ratio of H-APriori’s processing time (resp. memory footprint) over HFP-growth’s
one is provided on Fig. 6 (resp. Fig. 7).

Fig. 4. HFP-growth’s processing times
(in seconds)

Fig. 5. HFP-growth’s memory
footprints (in megabytes)

http://www.keel.es
https://github.com/P-Fred/HFP-Growth
http://eda.mmci.uni-saarland.de/prj/dora
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Fig. 6. Time gain factors Fig. 7. Memory gain factors

HFP-growth appears 1 to 3 orders of magnitude faster than H-APriori, with a
speedup factor increasing with threshold hmax. Memory gain is even bigger: HFP-
growth has a low constant memory footprint of few megabytes (values on Fig. 5
appear to be rounded by the OS’s heap allocation mechanism) whereas H-APriori
shortly requires many gigabytes of memory to store candidate patterns. While
HFP-growth can run as long as necessary, H-APriori often runs out of memory
before completing.

Evaluation of IFP-Growth. In order to limit the number of tests to com-
pare IFP-growth and dora, one only considers the exact problem of discovering
RAFD, i.e for α = 1. However similar conclusions can be drawn for values of
α less than one. Table 3 summarizes processing times and memory footprints of
both algorithms for the selected datasets and for increasing values of k from 1
to 106. A memory footprint of “>45” means the algorithm prematurely stopped
as it ran out of memory. A processing time of “>3 h” means the algorithm was
interrupted after a time limit of 3 h.

Results are similar with the ones obtained for HFP-growth: For all datasets
and all values of k, IFP-growth appears always faster than dora. The gap
between processing time tends to increase with k. While dora cannot complete
15 over the 16 datasets for k = 106 as it requires more than 45 GB, IFP-growth
never runs out of memory as it requires at least 103 times less memory than dora,
with a memory footprint always much less than 1 GB, even for large values of k.
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Table 3. Comparison of processing times and memory footprints of IFP-growth (IFPG)
and dora for various datasets and values for k. Datasets are sorted from the easiest
to the most difficult (according to IFPG’s processing time for k = 106). Tuples under
dataset names provide the main dataset characteristics: for a tuple (n, m, c), n is the
number of data, m is the number of features and c is the number of classes for the
target feature.
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5 Conclusion

In this paper, an efficient algorithm computes entropy of definite feature sub-
sets likewise efficient algorithms exist to compute frequency of frequent itemsets.
This algorithm proves to be much faster and scalable than its counterpart based
on a levelwise approach. This algorithm is extended to compute mutual infor-
mation and reliable fraction of information relatively to some target feature.
Again, when applied to the discovery of the top-k reliable approximate func-
tional dependencies, this algorithm shows an important gain of time and space
efficiency compared to the existing algorithm. While these algorithms have been
instanciated on two specific problems, they should be considered as generic algo-
rithmic building blocks enabling to solve various data mining problems relying
on entropic measures such as entropy or mutual information. These algorithms
can also be easily adapted for computing any other non entropic measures whose
expression depends mainly on data partitions. This is the case of the first scores
proposed in the context of approximate functional dependencies. The level of
performance of these algorithms also enable a more systematic search of sets of
non redundant informative subsets of features. Another promising application is
the extraction of Bayesian networks from data as these models can be seen as
solutions of entropy-based optimization problems.
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Grande Région project “GRONE”.
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tern function variations. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.)
ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 34–49. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15939-8 3

11. Pennerath, F., Napoli, A.: The model of most informative patterns and its appli-
cation to knowledge extraction from graph databases. In: Buntine, W., Grobelnik,
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