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Abstract. Learning of classification models in practice often relies on
human annotation effort in which humans assign class labels to data
instances. As this process can be very time-consuming and costly, finding
effective ways to reduce the annotation cost becomes critical for building
such models. To solve this problem, instead of soliciting instance-based
annotation we explore region-based annotation as the feedback. A region
is defined as a hyper-cubic subspace of the input feature space and it
covers a subpopulation of data instances that fall into this region. Each
region is labeled with a number in [0, 1] (in binary classification setting),
representing a human estimate of the positive (or negative) class propor-
tion in the subpopulation. To learn a classifier from region-based feed-
back we develop an active learning framework that hierarchically divides
the input space into smaller and smaller regions. In each iteration we
split the region with the highest potential to improve the classification
models. This iterative process allows us to gradually learn more refined
classification models from more specific regions with more accurate pro-
portions. Through experiments on numerous datasets we demonstrate
that our approach offers a new and promising active learning direction
that can outperform existing active learning approaches especially in
situations when labeling budget is limited and small. Code related to
this paper is available at: https://github.com/patrick-luo/hierarchical-
active-learning.git.
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1 Introduction

Learning of classification models from real-world data often requires non-trivial
human annotation effort on labeling data instances. As this annotation process
is often time-consuming and costly, the key challenge then is to find effective
ways to reduce the annotation effort while guaranteeing that models built from
the limited feedback are accurate enough to be applied in practice. One popular
machine learning solution to address the annotation problem is active learning. It
aims to sequentially select examples to be labeled next by evaluating the possible
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impact of the examples on the solution. Active learning has been successfully
applied in domains as diverse as computer vision, natural language processing
and bio-medical data mining [8,14,15].

Despite enormous progress in active learning research in recent years, the
majority of current active learning solutions focus on instance-based methods
that query and label individual data instances. Unfortunately, this may limit
its applicability when targeting complex real-world classification tasks. There
are two reasons for this. First, when the labeling budget is severely restricted, a
small number of labeled data may not properly cover or represent the entire input
space. In other words, the data selected by active learning are likely to suffer
from sampling bias problem. To mitigate this issue Dasgupta [2] has developed
a hierarchical active learning approach to sample instances in a more robust way
which is driven by not only the current sampled data, but also the underlying
structure in the data.

Second, instance-based learning framework often assumes instances are easy
to label for humans. But it is not always true. Consider two realms of applica-
tions: (1) in political elections where the privacy is a concern, collecting one’s
feedback is hard or infeasible [9,10,16]; (2) in medical domain patient records
can be very complex as each record has numerous entries which require careful
reviewing [3,11]. For example, when a physician diagnoses a patient (e.g. for
possible heart condition) he/she must review the patient record that consists of
complex collections of results, symptoms and findings (such as age, BMI, glucose
levels, HbA1c blood test, blood pressure, etc.). The review and the assessment of
these records w.r.t. a specific condition may become extremely time-consuming
as it often requires physicians to peruse through a large quantity of data [4,5].

In light of this, novel active learning methods based on group queries have
been proposed: AGQ+ [3], RIQY [11] and HALG [7]. The basic idea here is to (1)
embody similar instances together as a group, (2) induce the most compact region
which are conjunctive patterns of the input feature space to represent the group
and (3) solicit a generic label on the region instead of on any specific instance.
The region label is a number in [0, 1] (known as proportion label [6,9,10,16])
which represents a human estimate of the proportion of instances in positive or
negative class in the subpopulation of instances in that region. This line of work
has shown empirically that active learning with proportion feedback on generic
regions works more efficiently than instance-based active learning.

Our Contribution. In this work, we develop and explore a new region-based
active learning framework called HALR (Hierarchical Active Learning with pro-
portion feedback on Regions) that learns instance-level classifiers from region
queries and region-proportion feedback. In particular, our framework actively
builds a hierarchical tree of regions with the aim to refine the leaf regions to be
as pure as possible after very few splits and queries made. Briefly, our method
starts from an unbounded region that covers the entire input feature space and
this region initializes as the root of the tree. Then we grow this tree incrementally
by splitting the most uncertain leaf region into two sub-regions. Whenever the
new regions are generated, their proportion labels are either directly assigned
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Fig. 1. An example of building a hierarchical tree of regions which is conceptually
equivalent to a decision tree. The left shows a snapshot of the tree structure after
t = 3 splits, generated from the root region on the top level. Each rectangle represents
a certain region and the percentage number means its proportion label. Each link
is a value constraint on some dimension ai and it is inherited to all the descendant
regions. To query the proportion label of a new region (say the right one on the lowest
level), we describe it by using conjunctive patterns shown on the bottom right and a
human annotator will assign a label to it according to its description. The label of the
complementary region (the one on the left) will be inferred according to the constraint
between its parent’s label and sibling’s label.

by a human annotator, or inferred by the proportion constraint. The general
picture is illustrated in Fig. 1. At the end our algorithm outputs a hierarchical
tree of labeled regions that can be either (1) directly used as a decision tree
classifier, or alternatively, (2) be used to learn many different parametric binary
classification models from proportion labels as proposed by [6,9,10,16], or by
simply sampling instance labels [7] according to the known class proportion in
each region and feeding them to standard instance-level learning algorithms.

The crucial part of our algorithm is to develop a strategy to split the leaf
regions without knowing any labeled instances. To meet this challenge we design
a competition procedure which dynamically tests and chooses one of two heuristic
strategies to split the regions. The first one is unsupervised which is based on
clustering. The second one is supervised and it relies on classification model
that assigns class probabilities to every data instance. We will show that these
heuristics can actively compete and also assist each other to drive our splits.

The remainder of the paper is organized as follows. First, we will review past
work closely related to our framework. Second, we will explain the details of our
proposed framework from Sects. 3 to 7. After that we will test our approach on a
number datasets and compare its performance to multiple other active learning
approaches. Finally, we will discuss the experiment results.
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2 Related Work

2.1 Hierarchical Active Learning

Our hierarchical learning framework is motivated by Dasgupta et al.’s work [2,
13] that leverages a pre-compiled hierarchical clustering to drive the instance
selection procedure. They start learning from a few coarse-grained clusters and
gradually split clusters that are impure (in terms of class labels) to smaller ones
such that the label entropy is reduced. In terms of training models, not only
the labeled instances but also the ones with predicted labels in the sufficiently
pure clusters are used for learning. While their approach is able to reduce the
sampling bias, learning with predicted labeled data can be risky especially when
the class distribution is severely unbalanced, as the instances from the minor
class are hardly sampled. In our work we overcome this limitation by directly
querying and learning from regions of which the proportion labels are friendlier
to the minor class. Another difference worth noting is that we do not pre-compile
a hierarchy of regions which can be done totally unsupervisedly (e.g. build a K-
Dimension tree beforehand). Instead, we build the tree dynamically where each
of the splits is determined by not only the unsupervised heuristic but also a
supervised heuristic which reflects the current belief of the base model.

2.2 Learning from Group Proportion Feedback

Multiple works [6,9,10,16] study the problem of learning instance-level classifiers
from apriori given groups/regions and their class proportion labels. The motiva-
tion scenarios can be political election, online purchasing or spam filtering. For
example, we can easily obtain the percentage of voting results on election in each
county and use these group proportions to predict individual’s voting preference.
These real life examples have greatly encouraged the development of learning
algorithms that can eat proportion feedback. There are two main categories of
the algorithms. The first one uses the proportion label as a proxy that approxi-
mates to the sufficient statistics required by the final likelihood function [9,10].
The second category develops models that generate consistent instance labels
with the group proportions [6,16]. What beyond the scope of the above works
is that they assume the groups are formed and labeled apriori, and thus they
do not study the problem of how to form the groups and how to obtain the
proportion labels for these groups.

2.3 Active Learning from Group Proportion Feedback

AGQ+ [3] and RIQY [11] are the early works that explore active learning strate-
gies with group/region proportion feedback instead of instance-based feedback.
The motivation for the group queries is that in many practical domains, anno-
tators may prefer to work with region-based queries which are shorter (in terms
of feature space), less confusing and more intuitive. As an example consider the
heart disease classification task presented in [11]:
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An Instance Query Example. An instance query for the heart disease prob-
lem covers all features of the patient case: “Consider a patient with (sex= female)
∧ (age= 39) ∧ (chest pain type= 3) ∧ (fasting blood sugar= 150mg/dL) ... (20
more features omitted). Does the patient has a heart disease?” The label is a
binary (true, false) response.

A Group Query Example. In contrast, a group query using conjunctive pat-
terns which represent a region of the input feature space may be only asso-
ciated with a subset of the features: “Consider a population of patients with
(sex= female) ∧ (40 < age < 50) ∧ (chest pain type= 3) ∧ (fasting blood sugar
within [130,150] mg/dL) ... (not necessarily using all the features). What is the
chance that a patient from this population has a heart disease?”. The label is an
empirical estimate of the proportion of cases in the population who suffer from
the heart disease, say “75% patients within this region suffer from the disease”.

In terms of group formation, both AGQ+ and RIQY build groups by (1)
choosing the most uncertain instance xu from the unlabeled data pool according
to the current classification model, and (2) aggregating a number of instances
as a group Gu in a close neighborhood of xu. The region description of the
group Gu is then automatically learned using decision tree algorithm. After
the proportion label of the group Gu is annotated, all the instances inside the
group Gu are either assigned hard labels (RIQY) or weighted labels (AGQ+).
Finally the classification model is re-trained using all the labeled data. The
major limitation of the methods is that their group selection approach is ad-hoc,
driven by instance-based selection and enriched by nearby data instances. As a
consequence, this approach may fail to discover meaningful regions.

A more recent approach that addresses some limitations of the early group
active-learning methods is HALG [7]. HALG uses a hierarchical clustering, sim-
ilarly to Dasgupta et al ’s work, to generate clusters of instances which are then
approximated by regions. As this hierarchy of regions is pre-clustered, their active
learning algorithm, which selects groups/regions to be split and labeled next, can
only make decisions within this fixed hierarchy. While this novel group formation
approach is able to capture the structure of the unlabeled data (unsupervised
heuristic), the fixed hierarchy can significantly limit the behavior of seeking
the class information which is important to the model (supervised heuristic).
That is, the unsupervised heuristic used in HALG overly dominates its super-
vised heuristic. To overcome this issue, our proposed HALR method dynamically
refines regions by directly dividing the input feature space into sub-spaces (still
in a hierarchical fashion) and further, our active region refinement is explicitly
controlled and balanced between the supervised and unsupervised heuristics.

3 Our Framework

Our HALR framework is summarized in Algorithm1. It aims to actively build a
hierarchical tree of regions with proportion labels and then uses this tree to learn
an instance-level binary classification model. We assume the classification model
is a probabilistic one (e.g. Logistic Regression or an Support Vector Machine
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Algorithm 1. Hierarchical Active Learning Framework (HALR)
Input: An unlabeled data pool U ; A labeling budget
Output: A binary classification model P (y|x; θ̂)
1: T ← Build a 1-node tree whose root region is the entire feature space of U ;
2: Query the proportion label of T ’s root;
3: Leaf nodes L(1) ← {T ’s root};
4: Active learning time t ← 1;
5: repeat

6: Train the base model P (y|x; θ̂
(t)

) with current leaf nodes L(t);
7: Choose a most uncertain region R∗ in L(t) to be split;
8: Divide R∗ into two sub-regions (it is co-decided by probabilistic clustering

and probabilistic classification (based on P (y|x; θ̂
(t)

));
9: Query or infer the proportion labels of the sub-regions derived from R∗;

10: L(t+1) ← {L(t) − R∗} ∪ {R′
∗s sub-regions};

11: t ← t + 1
12: until the labeling budget runs out

13: return P (y|x; θ̂
(t)

)

with Platt’s transformation). Such a model is treated as our base model which
will be used to provide supervised heuristic and decisions to guide the tree-
building process. Our algorithm works as follows. The tree is initialized with a
root region covering the entire input space and as well as all the unlabeled data U
(line 1). The root region is assigned a proportion label which can be interpreted
as the prior probability of classes (line 2). The tree is gradually refined through
active learning cycles (Line 5–12) which iteratively replace leaf regions with more
refined sub-regions. In each cycle, we (1) select the most uncertain leaf region
R∗ to split; (2) divide it two sub-regions using a condition that placed on one
the input dimension; (3) query or infer the proportion labels of the new sub-
regions and (4) replace R∗ with the new sub-regions in the tree. Every time
the new regions are generated and labeled, the base classification model will be
re-learned with all the labeled leaf regions. The whole process resembles decision
tree learning algorithm, but in our case we do not have any labeled instances
to drive the splits. In the following we will define region concept (Sect. 4) and
uncertainty of regions (Sect. 5) and then explain how we split the most uncertain
region (Sect. 6).

4 The Concept of Regions

Our base learning task is to learn a binary classification model and our active
learning scenario is a pool-based one [12] which assumes the unlabeled data are
abundant. That is, a pool of n unlabeled training instances U are randomly
drawn from a fixed marginal distribution p(x) of an unknown joint distribution
of p(x, y). Each instance x is a vector of d features, each of which can be sym-
bolic or numeric. So the input feature space is a d-dimensional one where each
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dimension is either discrete or continuous and the domain depends on the nat-
ural definition of that feature. x also has a binary class label y ∈ {0, 1} which
is never queried individually. In our framework, however, the class information
is given only on aggregated instances which are described as regions. Initially,
there is only region that is defined as the entire feature space of U . Because there
is no value constraint on any of the dimensions, this first region is unbounded
and it conceptually contains all the instances from U . When a binary split is
made on some value v from some dimension a, there will be two sub-regions gen-
erated with one value constraint on the dimension a either <v or ≥v. This type
of binary splits will recursively divide the sub-regions and in the end a hierarchi-
cal tree of regions will be generated where the leaf regions do not overlap with
each other but co-partition the whole feature space and data in U . Each region
is thus a hyper-cubic subspace defined by conjunctive patterns. For example a
region of patients may be described as: (gender=male) ∧ (heart rate 80–100) ∧
(temperature 100–110F)...(other dimensions unbounded).

In terms of the region feedback, the human assessment is made via a pro-
portion label which is an estimate of the proportion of the positive or negative
class in the population of instances that fall into the definition of that region.
For example, given the region of patients described above, physicians could say

“70% of patients in the population defined by a region suffer from a heart disease”.
Or alternatively, we can interpret the proportion label as an instance-level like-
lihood: “Each patient in the population is 70% likely to have a heart disease”.
Initially, the root region is assigned a proportion label which corresponds to the
prior probability of classes. So in this sense, the proportion label of each sub-
region can be understood as a conditional probability of classes given the value
constraints on some of the input dimensions.

5 The Uncertainty of Regions

Given the definition of regions we now want to define a score that would help
us to decide which region should be split next in each active learning cycle. One
sensible way is to use the uncertainty (or impurity) of regions. This idea has been
successfully used in decision tree learning process. Here, the impurity is measured
in terms of the entropy (C4.5) or the Gini-Index (CART) scores. With the help
of the impurity measure one can build a decision tree recursively where in each
step one leaf region is split along one of the input dimensions. By comparing all
possible splits for all eligible leaf regions, the best region and the best split that
leads to the maximum reduction in uncertainty, or the maximum information
gain, can be identified. Unfortunately, this process applied in the decision tree
learning to assess uncertainty and gain requires instance labels and hence, it
cannot be replicated in our framework where instance labels are unknown.

Another issue to consider in the development of the region splitting criteria is
that the information gain ignores the region size. Here the region size is defined
as the empirical number of instances contained in a region. Intuitively, the largest
benefit from the split should be realized when not only the impure regions but
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also large regions are split. In light of this, we propose a new uncertainty score
that takes into account both the size and the proportion label in deciding which
region should be split next.

Suppose that at time t there are N (t) leaf regions L(t) = {(Ri, μi)}N(t)

i=1 where
each region Ri = {xij}ni

j=1 has ni instances and has been assigned a label μi ∈
[0, 1] representing the positive class proportion, our goal is to choose the most
uncertain region R∗ to split. The uncertainty of each region Ri is defined as the
expected number of wrong labels (denoted by wi) if we randomly guess the class
labels of all instances in Ri based on its proportion label μi. In particular, the
procedure to calculate uncertainty is explained as follows:

i. For each instance in Ri, sample its label as an independent Bernoulli process
with the parameter = μi. This creates ni sampled labels;

ii. Calculate the distribution of wi, i.e. the number of mismatches between the
sampled labels and the true labels. Although the true labels are unknown,
each true label can be assumed to follow an independent Bernoulli distribu-
tion with the parameter = μi. Therefore, the probability of mismatch for
each instance also follows in independent Bernoulli distribution with param-
eter = P (mismatch) = P [false positive]+P [false negative] = 2μi(1−μi).
Then apparently wi follows a Binomial distribution Bin(ni, 2μi(1 − μi));

iii. And use the expectation E(wi) = 2μi(1 − μi)ni as the uncertainty of Ri.

This uncertainty defined above clearly shows that larger ni or more uncertain μi

(closer to 0.5) leads to more uncertainty of region Ri. Please note here 2μi(1−μi)
matches exactly the definition of Gini-Index, so throughout this paper we will
choose Gini-Index as the gain measurement for later use. Finally we select R∗ =
arg maxRi∈L(t) E(wi) to be the most uncertain region to split at current active
learning cycle t.

6 The Split of Regions

Now given the region R∗, we need to determine what input dimension to split
and what value should be used to define the split. Since there are no labeled
instances in our framework, we resort to two heuristics to drive the split.

6.1 Unsupervised Heuristic

The first heuristic is unsupervised. It is based on probabilistic clustering. Clus-
tering is a simple yet often effective guidance. The assumption behind it is that
similar data instances tend to carry similar class labels and it has been used
frequently in semi-supervised learning [17]. In other words, dissimilar data are
likely to fall into different classes and so the region splits should be driven by
the underlying structure of data. To implement this idea, we perform a 2-means
probabilistic clustering on the instances {x∗j}n∗

j=1 in R∗, assuming there is mix
of two cluster centers in {x∗j} and the probabilities of cluster membership are
given by Expectation and Maximization (EM) algorithm. Thus each instance
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x∗j will have an Unsupervised probabilistic label pUj indicating the chance of
belonging to one of the two clusters. Given these instance-level labels, standard
decision tree splitting procedure based on information gain can be now directly
applied to split R∗. Here we use Gini-Index and say this procedure gives us the
empirically optimal split of R∗ from value vU on dimension aU based on the set
of probabilistic unsupervised labels {pUj }.

6.2 Supervised Heuristic

Our second heuristic is supervised and it relies on the base classification model.
In various active learning algorithms the base model plays an important role
in determining which data should be queried next. An example is the classic
Uncertainty Sampling approach [12]. The base model reflects the current belief
of the class distribution on instances and thus its guidance on the region splitting
cannot be ignored. Formally at learning time t, the base model is learned as

P (y|x; θ̂
(t)

), so each instance x∗j will also have a Supervised probabilistic label
pSj reflecting the likelihood of belonging to one of the two classes. Here pSj =

P (y = 1|x∗j ; θ̂
(t)

). Similarly, given these instance-level labels Gini-Index-based
gain can again be applied to split R∗ and say it gives the best split from value
vS on dimension aS .

6.3 Combination of the Two Heuristics

Table 1 summarizes the pros and cons of the two heuristics. Initially when the
supervision is scarce, the base model trained can be very likely to make biased
decisions. This problem was formally stated as sampling bias by Dasgupta et
al. [2] and they leverage hierarchical clustering to assist the base model. In our
framework we use clustering too as an unsupervised heuristic to alleviate the bias
issue. However, the unsupervised heuristic may not always work well in the long
run. Hence the best option appears to be the combination of the two heuristics.

Table 1. Comparison of the two heuristics

Unsupervised heuristic Supervised heuristic

Pros Relies on the semi-supervised
assumption which is often effective

Gives instance-level estimates
which directly reflect the class
distribution

Cons But this assumption may not hold
all the time

But initially these estimates are
poor simply because the
supervision is little

To combine and also to evaluate the two heuristics, we introduce a competi-
tion procedure described in Algorithm2. The general idea is to perform a test
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split on each of the proposed splits separately and compare their actual gains.
Larger gain is better and so the final split will take whatever the corresponding
heuristic suggests. We also maintain a list H that records the winning history
of the heuristics in the past splits and this H will be used to test whether the
supervised heuristic is doing significant better than the unsupervised one in the
long run. If the test result is significant, it marks that our base model is good
enough to make splitting decisions alone and from then on, every region split
will only be determined by the supervised heuristic. That is, Algorithm2 will
not be called any more once we believe the supervised heuristic is performing
significantly better and the final split will directly take the supervised proposal.

Algorithm 2. The competition procedure of choosing heuristic
Input: Unsupervised split (aU , vU ); Supervised split (aS , vS); Winning history of

heuristics H
Output: The final split (aF , vF ); updated history H; Binomial test result of

supervised heuristic
1: Binomial test result r ← Not significant
2: if aU = aS and vU = vS then
3: aF ← aS ; vF ← vS ;
4: else
5: Do a test split on (aU , vU ) and get its gain GU ;
6: Do a test split on (aS , vS) and get its gain GS ;
7: if GU > GS then
8: Append “Unsupervised heuristic wins” to H;
9: aF ← aU ; vF ← vU ;

10: else
11: Append “Supervised heuristic wins” to H;
12: aF ← aS ; vF ← vS ;
13: Test result r ← Binomial test (Algorithm 3) on H;
14: end if
15: end if
16: return (aF , vF ), H and r

Test Split. The test split and the calculation of the gain procedure called in
Line 5 or 6 in Algorithm2 is identical to the evaluation of a standard decision
tree splitting. Here we show how to calculate the gain GS of the test split on R∗
proposed by the supervised heuristic. The gain of GU can be calculated similarly.

i. Split R∗ from value vS on dimension aS into two sub-regions RL and RR;
ii. Route each instance in R∗ to RL or RR by testing the feature value of the

instance on dimension aS either < vS or ≥ vS ;
iii. Query the proportion label of one sub-region. Say RL is given a label μL;
iv. Infer the label μR of RR. This does not require a human assessment because

of the proportion label constraint: nLμL+nRμR = n∗μ∗ with nL+nR = n∗,
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where nL, nR and n∗ are the number of instances contained in RL, RR and
R∗, and μ∗ is the label of R∗. Simply μR = (n∗μ∗ − nLμL)/nR;

v. Apply Gini-Index to calculate the gain (or uncertainty reduction):

GS = GI(μ∗) − nL

n∗
GI(μL) − nR

n∗
GI(μR)

where GI(μ) = 2μ(1 − μ).

Algorithm 3. Binomial test of the supervised heuristic
Input: Winning history of heuristics H; Window size W ; Significance level α
Output: Significant or Not significant
1: if length(H) < W then
2: return Not significant
3: end if
4: H0: winning chance of supervised heuristic pS ≤ 0.5 in the last W trials in H;
5: HA: pS > 0.5
6: Test statistic B∗ ← number of supervised wins in the last W outcomes;
7: p value ← do binomial test on B∗;
8: return Significant if p value < α else Not significant

Binomial Test. Algorithm 3 provides the details of the Binomial test that
decides whether the supervised heuristic is doing significantly better than the
unsupervised one. The null hypothesis H0 means the supervised heuristic is doing
equally well or worse than the unsupervised heuristic in the latest W trials. In
other words, the winning chance of the supervised heuristic pS is ≤0.5. Under H0

the number of supervised wins B∗ follows a Binomial distribution Bin(W, 0.5)
and we do a right-tailed test of B∗ to carry out the p-value. We reject H0 if the
p-value is less than a given confidence level α and choose the alternative.

To make the test stronger, or to be more conservative, multiple such tests with
different window sizes can be done simultaneously. To ensure the same family
wise error rate α, Bonferroni correction can be applied. In our implementation,
we combine a short term window WS = 5 and a long term window WL = 10 with
the same family wise α = 0.05. The purpose of performing two tests together is
to ensure the supervised heuristic is indeed doing stably well both in the most
recent time and in the long run.

7 Learning a Model from Labeled Regions

Now the last remaining question is how to learn a general instance-level model
from labeled regions. As introduced in Related Work section, various algorithms
can be applied to learn instance-level classification models from proportion
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labels [6,9,10,16]. Hence, at any time t the base classification model P (y|x;θ)
can be learned from the set of leaf regions L(t) = {(Ri, μi)} where each region
Ri has been labeled as μi and contains a certain number of training instances.

Apart from the complex learning methods, we adopt another simple but
effective method based on instance sampling such that instance-based learning
algorithms can be used (introduced by HALR [7]). The idea is to create a sample
of labeled instances S = {(xk, yk)}Kk=1 from L(t). The {xk}Kk=1 part in S is sort
of fixed while each of the label yk is sampled from Bernoulli distribution with the
parameter equal to μi, which is the proportion label of region Ri that contains
xk. Now given S, the parameter vector of the base model can be learned through
maximum likelihood estimation (MLE), denoted by θ̂. θ̂ may vary because of the
randomness in S, however under some moderate MLE assumptions required by
Central Limit Theorem, θ̂ asymptotically follows a normal distribution N (θ,Σ)
conditioned on {xk}, where θ is the converged parameter when K → ∞ and the
variance Σ is the inverse of Fisher information matrix IK(θ) depending on the
actual finite sample size K. In practice, the asymptotic property can be satisfied
by sampling multiple times the label of each xk and aggregating them up into S.
In our experiments each instance label is sampled from 5 to 10 times depending
on datasets and then S is large enough to give a small Σ (estimated as Σ̂ by θ̂).

8 Experiments

We conduct an empirical study to evaluate our proposed approach on 8 general
binary classification data sets collected from UCI machine learning repository
[1]. The purpose of this study is to research how efficiently (in terms of number
of queries) our framework can learn classification models in cost-sensitive tasks.

8.1 Data Sets

The 8 data sets come from a variety of real life applications:

i. Seismic: Predict if seismic bumps are in hazardous state.
ii. Ozone: Detect ozone level for some days.
iii. Messidor: Predict if Messidor images contain signs of diabetic retinopathy.
iv. Spam: Detect spam emails in commercial emails.
v. Music: Classify the geographical origin of music.
vi. Wine: Predict wine quality based on its properties.
vii. SUSY: Distinguish a physical signal from background process.

Table 2 suggests various properties of the datasets. Some have been used in
previous work (Wine) [11,15]; some are high-dimensional (Ozone, Spam, Music);
and some are unbalanced in class distribution (Seismic, Ozone, Wine unbalance).
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Table 2. 8 UCI data sets

Dataset # of data # of features Major class % Feature type

Seismic 2584 18 93% Numeric, Symbolic

Ozone 1847 72 93% Numeric

Messidor 1151 19 53% Numeric, Symbolic

Spam 4601 57 60% Numeric, Symbolic

Music 1059 68 53% Numeric

Wine 4898 11 67% Numeric

Wineub 1895 11 95% Numeric

SUSY 5000 18 55% Numeric

8.2 Methods Tested

We compare our method (HALR) to 3 different methods:

i. DWUS: Density-Weighted Uncertainty Sampling is an instance-based
method that combines both the uncertainty score and the structure of
data [12].

ii. RIQY: The state-of-the-art method with proportion feedback on
regions [11].

iii. HS: Hierarchical Sampling by Dasgupta [2].

8.3 Experimental Settings

Data Split. We split each data set into three disjoint parts: the initial labeled
dataset (about 1%–2% of all available data), a test dataset (about 25% of data)
and an unlabeled dataset U (the rest) used as training data. DWUS and RIQY
require the initial labeled data to start training, but not our method nor HS.

Region Proportion Label Feedback. To simulate the effect of a human
oracle in determining the label of a region, RIQY has originally introduced the
way of region queries, which is to simply count the class proportion from labels
of the empirical instances that fall into the region.

Evaluation Metrics. We adopt Area Under the Receiver Operating Charac-
teristic curve (AUC) to evaluate the generalized classification quality of Logistic
Regression on the test data. Our graphs will plot the AUC scores iteratively after
each t ≤ 200 queries are posed, which is large enough for all methods to con-
verge. Also we assume all kinds of queries consume the same unit cost, although
in practice sometimes a instance query is cheaper or oppositely in our cases a
region query is more feasible and efficient. To reduce the experiment variations
all results are averaged over 20 runs in different random splits.
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Fig. 2. Performances of different methods on the first 4 datasets (Color figure online)

8.4 Experiment Results

The main results are shown in Figs. 2 and 3. Overall, our HALR (in red line)
is able to outperform other methods on majority of the datasets and is close
to the best performing method on the remaining sets. There are two primary
strengths: first, initially when the labeling budget is severely limited, learning
with region-based feedback is superior to learning with the same number of
labeled instances, simply because generic region-based queries can carry richer
class information than specific instance queries. Second, the initial steep slopes
and early convergence in our learning curves lend great credence to our active
learning strategy that it is capable of splitting the most uncertain region in the
right way and consequently it can accelerate the base model convergence rate.

Unbalanced Class. For data sets Seismic, Ozone and Wine unbalance (simu-
lated from Wine) with unbalanced class distribution, our method performs even
better as it could capture the minor class information via proportion labels. In
contrast, instance-based methods (e.g. DWUS) may find them slowly; hierarchi-
cal sampling (HS) completely failed due to the reason that it always determines
the labels of unlabeled instances by majority vote in those pure enough (but not
entirely pure) clusters, which may totally lose the minor class information.
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Fig. 3. Performances of different methods on the last 4 datasets (Color figure online)

Complexity of Region Description. Here we show how complex on average
our region description could be, in terms of number of features used in the
conjunctive patterns. In particular, we calculate feature reduction rate for each
region R, which is defined as 1 − #features to describe R

#(All features) . The results in Table 3
show the average reduction rate among 20 repetitions. This table suggests that
region-based queries only use less than half or even 10% of the full dimensional
information for human to annotate. This property considerably simplifies the
interaction with human annotators when objects are high-dimensional, as region-
based queries will present only the relevant features for querying.

Table 3. The averaged feature reduction rate (FRR) of region queries

Dataset FRR Dataset FRR

Wine 59% Spam 76%

Ozone 90% Music 90%

Messidor 66% SUSY 74%

Seismic 77% Wineub 58%
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9 Conclusions

We develop a new learning framework HALR that can actively learn instance-
based classification models from proportion feedback on regions. The regions
used in our framework are formed by hierarchical division of the input feature
space. In each of the splits, we choose the most uncertain region to divide which
considers both the size and the label purity of the region. Then the actual splits
are co-decided by both unsupervised and supervised heuristics. Our empirical
experiment results show that the regions can be refined to be pure in very few
splits and thus they are able to improve the base model quality rapidly. In
terms of application, our framework is best suited when providing region-based
feedback is more feasible or easier than instance-based queries, as we only present
the relevant and partial feature information for querying.
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