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Abstract. The overall goal of online feature selection is to iteratively
select, from high-dimensional streaming data, a small, “budgeted” num-
ber of features for constructing accurate predictors. In this paper, we
address the online feature selection problem using novel truncation tech-
niques for two online sub-gradient methods: Adaptive Regularized Dual
Averaging (ARDA) and Adaptive Mirror Descent (AMD). The corre-
sponding truncation-based algorithms are called B-ARDA and B-AMD,
respectively. The key aspect of our truncation techniques is to take
into account the magnitude of feature values in the current predictor,
together with their frequency in the history of predictions. A detailed
regret analysis for both algorithms is provided. Experiments on six high-
dimensional datasets indicate that both B-ARDA and B-AMD outper-
form two advanced online feature selection algorithms, OFS and SOFS,
especially when the number of selected features is small. Compared to
sparse online learning algorithms that use �1 regularization, B-ARDA
is superior to �1-ARDA, and B-AMD is superior to Ada-Fobos. Code
related to this paper is available at: https://github.com/LUCKY-ting/
online-feature-selection.
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1 Introduction

Feature selection is an important topic of machine learning and data mining, for
constructing sparse, accurate and interpretable models [7,9,13]. Given a batch
of high-dimensional data instances, the overall goal is to find a small subset
of relevant features, which are used to construct a low-dimensional predictive
model. In modern applications involving streaming data, feature selection is not
a “single-shot” offline operation, but an online process that iteratively updates
the pool of relevant features, so as to track a sparse predictive model [16,20].
A prototypical example of online feature selection is the anti-spam filtering task,
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in which the learner is required to classify each incoming message, using a small
subset of features that is susceptible to evolve over time.

Conceptually, the online feature selection problem can be cast as a repeated
prediction game between the learner and its environment. During each round t
of the game, the learner starts by selecting a subset of at most B features over
{1, · · · , d}, where B is a predefined budget. Upon those selected features is built
a predictive model wt which, in the present paper, is assumed to be a linear
function over R

d. Then, a labelled example (xt, yt) ∈ R
d × R is supplied by the

environment, and the learner incurs a loss f(wt;xt, yt). The overall goal for the
learner is to minimize its cumulative loss over T rounds of the game.

From a computational viewpoint, online feature selection is far from easy
since, at each round t, the learner is required to solve a constrained optimization
task, characterized by a budget (or �0 pseudo-norm) constraint on the model
wt. Actually, this problem is known to be NP-hard for common loss functions
advocated in classification and regression settings [10]. In order to alleviate this
difficulty, two main approaches have been proposed in the literature. The first
approach is to replace the nonconvex �0 constraint by a convex �1 constraint, or
an �1 regularizer [3,4,6,8,11,15]. Though this approach is promoting the sparsity
of solutions, it cannot guarantee that, at each iteration, the number of selected
features is bounded by the predefined budget B. The second approach is divided
in two main steps: first, solve a convex, unconstrained optimization problem, and
next, seek a new solution that approximates the unconstrained solution while
satisfying the �0 constraint. Based on this second approach, the OFS [16] and
SOFS [20] strategies exploit truncation techniques for maintaining a budgeted
number of features. However, OFS is oblivious to the history of predictions made
so far, which might prove useful for assessing the frequencies of features. SOFS
uses a suboptimal truncation rule that only considers the confidence of feature
values in the current model, but ignores the magnitude of feature values which,
again, could prove useful for estimating their relevance. Moreover, Wu et al. [20]
did not provide any theoretical analysis for SOFS.

In this paper, we investigate the online feature selection problem using novel
truncation techniques. Our contributions are threefold:

1. Two online feature selection algorithms, called Budgeted ARDA (B-ARDA)
and Budgeted AMD (B-AMD), are proposed. B-ARDA and B-AMD perform
truncation to eliminate irrelevant features. In our paper, the relevance of
features is assessed by their frequency in the sequence of predictions, and
their magnitude in the current predictor.

2. A detailed regret analysis for both algorithms is provided, which captures the
intuition and rationale behind our truncation techniques.

3. Experiments on six high-dimensional datasets reveal the superiority of the
proposed algorithms compared with both advanced feature selection algo-
rithms and �1-based online learning algorithms.

The paper is organized as follows. Section 2 provides some related work in fea-
ture selection and online learning. Section 3 presents the notation used through-
out the paper and elaborates on the problem setting. Our learning algorithms
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and their regret analysis are detailed in Sect. 4. Comparative experiments are
given in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

Feature selection is a well-studied topic in machine learning and data mining
[1,7,23]. Existing feature selection approaches include batch (or offline) meth-
ods and online methods. Batch methods, examined for instance in [12–14,18],
typically require an access to all available data, which makes them difficult to
operate on sequential data. On the other hand, online methods are more suited
to handle large-scale, and potentially streaming, information. Currently, there
are two different “online modes” for selecting features. The first mode assumes
that the number of examples is fixed but features arrive sequentially over time,
such as in [17,19,22]. Contrastingly, the second mode assumes that the number
of features is known in advance, but examples are supplied one by one, as studied
for example in [16,20]. We focus here on the second online mode, which is more
natural for real-world streaming data. According to this mode, online feature
selection methods can be grouped into three categories, summarized in Table 1.

Table 1. A list of recent works in online feature selection

Sparsity strategy References/methods

�1 constraint [2,5]

�1 regularization Fobos [3], TrunGrad [8], �1-RDA [21], CMD [6], �1-ARDA [4],
Ada-Fobos [4], SOL [15]

�0 truncation OFS [16], SOFS [20]

�1 Constraint/Regularization. Methods enforcing �1 constraints project the solu-
tion w after gradient descent update onto an �1 ball with radius r. Recent works,
such as [2,5], focus on designing efficient projection algorithms. There are also
many researches which aim at solving an �1-regularized convex optimization
problem. Notably, in [3], Duchi et al. propose the Fobos algorithm, which first
performs a sub-gradient descent in order to get an intermediate solution, and
then seeks a new solution that stays close to the intermediate solution and has
a low �1 norm complexity. The second stage can be solved efficiently by truncat-
ing coefficients below a threshold in the intermediate solution. In [8], Langford
et al. claim that such truncation operation is too aggressive and propose an
alternative truncated gradient technique (TrunGrad), which gradually shrinks
the coefficients to zero by a small amount. In [6], Duchi et al. generalize the
Online Mirror Descent (OMD) to regularized losses, and propose the Composite
Mirror Descent (CMD) algorithm, which exploits the composite structure of the
objective to get desirable effects. Their derived algorithms include Fobos as an
special case. In [21], Xiao presents an �1-Regularized Dual Averaging algorithm
(�1-RDA) which, at each iteration, minimizes the sum of three terms: a linear
function obtained by averaging all previous sub-gradients, an �1 regularization
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term and an additional strongly convex regularization term. In [4], Duchi et al.
propose ARDA and ACMD, which adaptively modify the proximal function in
order to incorporate the information related to the geometry of data observed in
earlier iterations. The derived algorithms, �1-ARDA and Ada-Fobos, achieve bet-
ter performance than their non-adaptive versions, namely, �1-RDA and Fobos. In
[15], Wang et al. present a framework for sparse online classification. Their meth-
ods perform feature selection by carefully tuning the �1 regularization parameter.

�0 Truncation. In contrast with the above approaches, Jin et al. [16] propose
a truncation method that satisfies the budget (or �0) constraint at each itera-
tion. Their OFS algorithm first projects the predictor w (obtained from gradient
descent) onto an �2 ball, so that most of the numerical values ofw are concentrated
to their largest elements, and then keeps only the B largest weights in w . Wu et
al. [20] further explore the truncation method for a confidence-weighted learning
algorithm AROW, and proposed SOFS, which simply truncates the elements with
least confidence after the update step in the diagonal version of AROW.

Our proposed online feature selection algorithms are also based on truncation
techniques. Yet, our approaches differ from OFS and SOFS in the sense that
truncation strategies are tailored to advanced adaptive sub-gradient methods,
namely ARDA and AMD, which can perform more informative gradient descent,
and which can find highly discriminative but rarely seen features. Moreover, we
provide a detailed regret analysis for truncated versions of ARDA and AMD.

3 Notation and Problem Setting

In what follows, lowercase letters denote scalars or vectors, and uppercase letters
represent matrices. An exception is the parameter B that captures our budget
on the number of selected features. Let [d] denote the set {1, · · · , d}. We use I
to denote the identity matrix, and diag(v) to denote the diagonal matrix with
vector v on the diagonal. For a linear predictor w t chosen at iteration t, we
use wt,i to denote its ith entry. As usual, we use 〈v ,w〉 to denote the inner
product between v and w , and for any p ∈ [1,∞], we use ||w ||p to denote the
�p norm of w . We also use ||w||0 to denote the �0 pseudo-norm of w, that is,
||w||0 = |{i ∈ [d] : wi �= 0}|. For a convex loss function ft, the sub-differential set
of ft at w is denoted by ∂ft(w), and g t is used to denote a sub-gradient of ft at
w t, i.e. g t ∈ ∂ft(w t). When ft is differentiable at w, we use ∇ft(w) to denote its
unique sub-gradient (called gradient). Let g1:t = [g1 g2 · · · g t] be a d× t matrix
obtained by concatenating the sub-gradients g j from j = 1 to t. The ith row
vector of g1:t is denoted by g1:t,i. Let ψt be a strictly convex and continuously
differentiable function defined, at each iteration t, on a closed convex set C ⊆ R

d

and let Dψt
(x ,y) denote the corresponding Bregman divergence, given by:

Dψt
(x ,y) = ψt(x ) − ψt(y) − 〈∇ψt(y),x − y〉, ∀x ,y ∈ C.

By construction, we have Dψt
(x ,y) ≥ 0 and Dψt

(x ,x ) = 0 for all x ,y ∈ C.
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As mentioned above, the online feature selection problem can be formulated
as a repeated prediction game between the learner and its environment. At
iteration t, a new data point x t ∈ R

d is supplied to the learner, which is required
to predict a label for xt according to its current model wt. We assume that wt

is a sparse linear function in R
d such that ||wt||0 ≤ B, where B is a predefined

budget. Once the learner has committed to its prediction, the true label yt ∈ R of
x t is revealed, and the learner suffers a loss l(w t; (x t, yt)). We use here lt(w t) =
l(w t; (x t, yt)), and we assume that lt(w t) = ft(w t) + ϕ(w t), where ft(w t) is a
convex loss function and ϕ(w t) is a regularization function. The performance of
the learner is measured according to its regret :

RT =
T∑

t=1

lt(w t) − min
w∈Rd:||w ||0≤B

T∑

t=1

lt(w),

where ||w t||0 ≤ B for all t. Our goal is to devise online feature selection strategies
for which, regrets are sublinear in T . The nonconvex �0 constraint makes our
problem more challenging than standard online convex optimization tasks.

4 B-ARDA and B-AMD

Advanced ARDA and AMD algorithms can take full advantage of the sub-
gradient information observed in earlier iterations to perform more informative
learning. Since ARDA and AMD are different methods, we need to develop spe-
cific truncation strategies for each of them.

4.1 B-ARDA and Its Regret Analysis

A straightforward approach for performing �0 truncations is to keep the B
elements with largest magnitude (in absolute value) in the current predictor
w t. Such a naive approach suffers from an important shortcoming: frequently
occurring discriminative features tend to be removed. This flaw results from the
updating rule of adaptive sub-gradient methods: frequent attributes are given
low learning rates, while infrequent attributes are given high learning rates.

Thus, we need to consider a more sophisticated truncation approach which
takes into account the frequencies of features, together with their magnitude.
To this end, we present the pseudocode of B-ARDA described in Algorithm 1.
Basically, B-ARDA starts with a standard ARDA iteration from Step 1 to Step
9, and provides an intermediate solution z t+1, for which ||z t+1||0 ≤ B may
not hold; then at Step 10, the algorithm truncates z t+1 in order to find a new
solution w t+1 so that ||w t+1||0 ≤ B is satisfied. In our truncation operation, we
consider both the magnitude of elements in z t+1, and the frequency of features
conveyed by the diagonal matrix Ht.

Note that the update at Step 9 often takes a closed-form. For example, if we
use the standard Euclidean regularizer ϕ(w) = λ

2 ||w||22, we get that

zt+1 = −η(ληtI + Ht)−1
t∑

i=1

gi.
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Algorithm 1. B-ARDA
Input: Data stream {(xt, yt)}∞

t=1, constant δ > 0, step-size η > 0, budget B
Output: wt

1 w1 = 0, g1:0 = [];
2 for t = 1, 2, · · · do
3 Receive xt;
4 Predict the label of xt with wt;
5 Receive yt and suffer loss ft(wt);
6 Receive sub-gradient gt ∈ ∂ft(wt);
7 Update g1:t = [g1:t−1 gt], st,i = ||g1:t,i||2;
8 Set H t = δI + diag(st), ḡt = 1

t

∑t
i=1 gi, ψt(w) = 1

2
〈w,H tw〉;

9 ARDA update:

zt+1 = arg min
w ∈Rd

{

η〈ḡt,w〉 + ηϕ(w) +
1

t
ψt(w)

}

(1)

10 Truncation operation:

wt+1 = arg min
w ∈Rd

〈w−zt+1,H t(w−zt+1)〉, subject to ||w||0 ≤ B (2)

The truncation operation at Step 10 can be efficiently solved by a simple greedy
procedure. Let vt+1 ∈ R

d be the vector with entries vt+1,j = Ht,jjz
2
t+1,j . Based

on this notation, if ||zt+1||0 ≤ B, wt+1 = zt+1; otherwise, wt+1 = zB
t+1, where

zB
t+1,i =

{
zt+1,i if Ht,iiz

2
t+1,i occurs in the B largest values of vt+1,

0 otherwise.

The following result demonstrates that our truncation strategy for ARDA can
lead to a sublinear regret. The proof, built essentially on the work of [4], is
included in Appendix 1 for completeness.

Theorem 1. Let ξ2t = 〈wt −zt,Ht−1(wt −zt)〉, which is the factual truncation
error at iteration t− 1. Set maxt ||gt||∞ ≤ δ and maxt ξt ≤ ξ. For any w∗ ∈ R

d,
B-ARDA achieves the following regret bound:

RT
B-ARDA ≤ δ

2η
||w∗||22 +

(
1
2η

||w∗||∞ + η

) d∑

i=1

||g1:T,i||2 + ξ

√√√√2T

d∑

i=1

||g1:T,i||2.

To see why the bound is sublinear, we notice from [4] that

d∑

i=1

||g1:T,i||2 =
√

d

√√√√ inf
s:s�0,〈1,s〉≤d

{
T∑

t=1

〈gt,diag(s)−1gt〉
}

≤
√

d

√√√√
T∑

t=1

||gt||22.

For the maximum truncation error ξ = 0, we directly recover the regret
bound of ARDA. If ξ �= 0, we get bounds of the form:
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1. if ξ is O(||w∗||∞
√∑d

i=1 ||g1:T,i||2/T ), RT
B-ARDA = O(||w∗||∞ ∑d

i=1 ||g1:T,i||2).
2. if ξ is Ω(||w∗||∞

√∑d
i=1 ||g1:T,i||2/T ), RT

B-ARDA = O(ξ
√

2T
∑d

i=1 ||g1:T,i||2).
In other words, the cumulative loss of B-ARDA using only B features converges
to that of an optimal solution in hindsight as T approaches infinity. The value of
ξ is determined by the budget parameter B; larger values of B produce a smaller
ξ, while smaller values of B yield a larger ξ.

We mention in passing that the naive truncation method, described in the
beginning of this section, may be implemented by replacing the Step 10 in
Algorithm 1 with

wt+1 = arg min
w∈Rd

〈w − zt+1,w − zt+1〉, subject to ||w||0 ≤ B.

The regret produced by such truncation is, however, not sublinear since:
T∑

t=1

〈gt,wt − zt〉 ≤
T∑

t=1

||gt||2||wt − zt||2 ≤ ξ

T∑

t=1

||gt||2 (ξt = ||wt − zt||2).

4.2 B-AMD and Its Regret Analysis

We now focus on a truncation technique for the sub-gradient method AMD.
Our approach is also considering both the magnitude of elements and the fre-
quency of features. The pseudocode of B-AMD is presented in Algorithm 2,
where Dψt

(w,wt) is the Bregman divergence between w and wt. Note that we
use AMD rather than ACMD since we do not use the composite structure of the
objective function, but the truncation operation, to produce sparse solutions.

In essence, B-AMD performs an AMD iteration and then truncates the
returned solution. Importantly, the AMD update at Step 9 admits a closed-form
solution: zt+1 = wt − ηH−1

t gt. Similarly to B-ARDA, the truncation operation
at Step 10 can be solved efficiently: if ||zt+1||0 ≤ B, wt+1 = zt+1; otherwise,
wt+1 = zB

t+1 where zB
t+1,i = zt+1,i if Ht,ii|zt+1,i| occurs in the B largest values

of {Ht,jj |zt+1,j |, j ∈ [d]}, and zB
t+1,i = 0, otherwise.

The next theorem provides a regret bound for B-AMD, and conveys the
rationale for the designed truncation. The proof is given in Appendix 2.

Theorem 2. Set ξt =
∑d

i=1 Ht,ii|zt+1,i − wt+1,i|. For any w∗ ∈ R
d, B-AMD

achieves the following regret bound:

RT
B-AMD ≤ 1

η
||w∗||∞

T∑

t=1

ξt +
(

1
2η

max
t≤T

||w∗ − wt||2∞ + η

) d∑

i=1

||g1:T,i||2,

where the first term of right-hand side is obtained from truncation.
Informally, the regret bound in Theorem 2 indicates that the cumulative loss

of B-AMD converges toward the cumulative loss of the optimal w∗ as T tends
toward infinity, and the gap between the two is mainly dominated by the sum of
truncation errors, that is,

∑T
t=1 ξt. This observation implies that we should try

to minimize ξt at each round in order to reduce the gap. If the truncation error
is set to ξt = 0 for any t, the regret bound of AMD is immediately recovered.
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Algorithm 2. B-AMD
Input: Data stream {(xt, yt)}∞

t=1, constant δ, step-size η, budget B
Output: wt

1 w1 = 0, g1:0 = [] ;
2 for t = 1, 2, · · · do
3 Receive xt;
4 Predict the label of xt with wt;
5 Receive yt and suffer loss ft(wt);
6 Receive sub-gradient gt ∈ ∂ft(wt) + ∂ϕ(wt);
7 Update g1:t = [g1:t−1 gt], st,i = ||g1:t,i||2;
8 Set H t = δI + diag(st), ψt(w) = 1

2
〈w,H tw〉;

9 AMD update:

zt+1 = arg min
w ∈Rd

{η〈gt,w〉 + Dψt(w,wt)} (3)

10 Truncation operation:

wt+1 = arg min
w ∈Rd

d∑

i=1

Ht,ii|wi −zt+1,i|, subject to ||w||0 ≤ B (4)

5 Experiments

This section reports two experimental studies1. In the first experiment, we com-
pare B-ARDA and B-AMD with OFS and SOFS; in the second one, we com-
pare our algorithms with �1-ARDA and Ada-Fobos, which achieve feature selec-
tion by carefully tuning the �1 regularization parameter. Although the theo-
retical analysis of our algorithms holds for many convex losses and regulariza-
tion functions, we use here the squared hinge loss and �2 regularizer, that is,
ft(wt) = (max{0, 1 − yt〈wt,xt〉})2 and ϕ(wt) = λ

2 ||wt||22.

5.1 Datasets

Our experiments were performed on six high-dimensional binary classifica-
tion datasets, selected from different domains. Their statistics are presented
in Table 2, where “data density” is the maximal number of non-zero features
per instance divided by the total number of features. Arcene’s task is to dis-
tinguish cancer versus normal patterns from mass-spectrometric data. Dex-
ter and farm ads are text classification problems in a bag-of-words represen-
tation. Gisette aims to separate the highly confusable digits ‘4’ and ‘9’. The
above four datasets are available in UCI repository. Pcmac and basehock are
a subset extracted from 20newsGroup2. Pcmac is to separate documents from
1 Our codes are available at https://github.com/LUCKY-ting/online-feature-

selection.
2 http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.

https://github.com/LUCKY-ting/online-feature-selection
https://github.com/LUCKY-ting/online-feature-selection
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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Table 2. A summary of datasets

Dataset # features (d) # train (n) # test density

arcene 10000 100 100 71.25%

dexter 20000 300 300 1.65%

gisette 5000 6000 1000 29.6%

basehock 26214 1197 796 6.48%

pcmac 26214 1168 777 4.5%

farm ads 54877 3313 830 4.19%

“ibm.pc.hardware” and “mac.hardware”, and basehock is to distinguish “base-
ball” versus “hockey”.

5.2 Comparison with Online Feature Selection Algorithms

We first compared B-ARDA and B-AMD with OFS [16] and SOFS [20] on
datasets in Table 2. For OFS, B-ARDA and B-AMD algorithms, the regular-
ization parameter λ and the step-size η were obtained by choosing values in
{10−1, 10−1.5, · · · , 10−8}, and taking the best performance in the training set.
A similar interval was used for selecting the best parameter 1/γ for SOFS. We
set δ = 10−2 for B-ARDA and B-AMD on all datasets. Based on these empiri-
cally optimal parameter values, we vary the budget B in order to plot the test
accuracy versus the number of selected features.

In order to make our results reliable under the optimal parameter setting,
each algorithm was run 10 times, each time with τ passes on the training exam-
ples. Namely, each pass is done with a random permutation of the training set,
and the classifier output at the end of τ passes is evaluated on a separated test
set. The number of passes τ was set as  2d

n � for each dataset. Figures 1 and 2
display the average test accuracy of all algorithms for varying feature budgets.

Based on Fig. 1, we can observe that B-ARDA achieves the highest test accu-
racy for every budget parameter B. By contrast, B-AMD is outperformed by
B-ARDA, but remains better than SOFS. By coupling Figs. 1 and 2, we observe
that the performance gap between B-ARDA and the other algorithms decreases
as the budget B increases. The results for B-AMD are mixed: for small values
of B, this strategy is outperformed by OFS, due to a large truncation error; but
when the budget is gradually increasing, B-AMD outperforms OFS at some value
of B. For example, on the gisette and farm ads datasets, B-AMD outperforms
OFS at B ≥ 1000 and B ≥ 2000, respectively. SOFS achieves poor accuracy
for small budgets, but its performance is approaching B-ARDA and B-AMD by
increasing B. This steams from the fact SOFS tends to keep more features to
achieve an accuracy that is competitive with that of B-ARDA and B-AMD. We
can clearly see that B-ARDA, B-AMD and SOFS are all outperforming OFS
for large values of B. To sum up, when a small number of features is desired,
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Fig. 1. Test performance w.r.t. OFS and SOFS (small feature budgets)

Fig. 2. Test performance w.r.t. OFS and SOFS (large feature budgets)



440 T. Zhai et al.

B-ARDA is the best choice, and when more features are allowed, both B-ARDA
and B-AMD are better than OFS and SOFS.

5.3 Comparison with Sparse Online Learning Algorithms

We have also compared our proposed algorithms with �1-ARDA [4] and Ada-
Fobos [4], which achieve feature selection by carefully tuning the �1 regularization
parameter. For fair comparisons, the choice of step-sizes follows the experimental
setup in Sect. 5.2. Once the step-size value is determined, the �1 regularization
parameter is gradually modified for deriving different numbers B of features for
�1-ARDA and Ada-Fobos. For B-ARDA and B-AMD, the input budget values B
are those obtained by �1-ARDA and Ada-Fobos, respectively. Figure 3 presents
the test accuracy of these algorithms when a small number of features is selected.
The plot for Ada-Fobos does not appear in some subfigures since its accuracy
falls outside the specified range.

Based on Fig. 3, we observe that both B-ARDA and �1-ARDA outperform
B-AMD and Ada-Fobos. This indicates that the regularized dual averaging
method is more competitive than the mirror descent method especially when
very sparse solutions are desired. Remarkably, B-ARDA is better than �1-ARDA
when a small number of features is required, which means that our truncation
strategy for ARDA is successful. We also notice that Ada-Fobos has a poor per-
formance for small budgets; by contrast, B-AMD is much better. We do not
present the plots for large number of features due to space constraints, but

Fig. 3. Test performance w.r.t. �1-ARDA and Ada-Fobos (small feature budgets)
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we report the observed results: as the number of features increases, the perfor-
mance gaps among these algorithms are gradually shrinking, and finally, these
algorithms empirically attain a similar test accuracy. Yet, from a practical view-
point, it is much simpler to select a desired number of features for B-ARDA and
B-AMD. For �1-ARDA and Ada-Fobos, the number of features cannot be deter-
mined in advance: it is empirically conditioned by the choice of the regularization
parameter.

6 Conclusion

In this paper, two novel online feature selection algorithms, called B-ARDA and
B-AMD, have been proposed and analyzed. Both algorithms perform feature
selection via truncation techniques, which take into account the magnitude of
feature values in the current predictor, together with the frequency of features in
the observed data stream. By taking as input a desired budget, both algorithms
are easy to control, especially in comparison with �1-based feature selection tech-
niques. We have shown on six high-dimensional datasets that B-ARDA outper-
forms advanced OFS and SOFS especially when a small number of features is
required; when more features are allowed, both B-ARDA and B-AMD are bet-
ter than OFS and SOFS. Compared with �1-ARDA and Ada-Fobos that achieve
feature selection by carefully tuning the �1 regularization parameter, B-ARDA
is shown to superior to �1-ARDA and B-AMD superior to Ada-Fobos, which
corroborates the interest of our truncation strategies. A natural perspective of
research is to investigate whether our approach may be extended to “structured”
feature selection tasks, such as group structures.
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Appendix 1: Proof of Theorem 1

Proof. Denote the Mahalanobis norm with respect to a symmetric matrix A by
|| · ||A =

√〈·,A·〉. If A is positive definite, || · ||A is a norm.
Recall that a function ψ is μ-strongly convex with respect to a norm || · || if

the following inequality holds for any w1 and w2:

ψ(w1) − ψ(w2) − 〈∇ψ(w2),w1 − w2〉 ≥ μ

2
||w1 − w2||2.

Note that since ψt(w) = 1
2 〈w,Htw〉, and Ht is positive definite, tϕ(w) +

ψt(w )
η is 1

η -strongly convex with respect to the norm || · ||H t
.

Let ψ∗
t be the conjugate dual of tϕ(w) + ψt(w )

η , that is,

ψ∗
t (v) = sup

w∈Rd

{
〈v,w〉 − tϕ(w) − ψt(w)

η

}
.
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Since ψ∗
t (v) is a linear function of v, we have

∇ψ∗
t (v) = arg min

w∈Rd

{
−〈v,w〉 + tϕ(w) +

ψt(w)
η

}
.

Owing to the duality of strong convexity and strong smoothness, ψ∗
t is η-

smooth with respect to || · ||H−1
t

. From the definition of smoothness, we have for
any v1 and v2,

ψ∗
t (v1) − ψ∗

t (v2) − 〈∇ψ∗
t (v2),v1 − v2〉 ≤ η

2
||v1 − v2||2H−1

t
. (5)

Let vt =
∑t

i=1 gi. For any w∗ ∈ R
d, we have

T∑

t=1

(lt(wt) − lt(w∗)) =
T∑

t=1

(ft(wt) + ϕ(wt) − ft(w∗) − ϕ(w∗))

= ϕ(w1) − ϕ(wT+1) +
T∑

t=1

(ft(wt)

+ϕ(wt+1) − ft(w∗) − ϕ(w∗))

≤
T∑

t=1

(〈gt,wt − w∗〉 + ϕ(wt+1) − ϕ(w∗))

≤
T∑

t=1

(〈gt,wt〉 + ϕ(wt+1)) +
1
η
ψT (w∗)

+ sup
w∈Rd

{
−

T∑

t=1

〈gt,w〉 − Tϕ(w) − 1
η
ψT (w)

}

≤
T∑

t=1

(〈gt,wt〉 + ϕ(wt+1)) +
1
η
ψT (w∗) + ψ∗

T (−vT ).

According to the update Eq. (6) of B-ARDA, we have

ψ∗
T (−vT ) = −〈vT ,zT+1〉 − Tϕ(zT+1) − 1

η
ψT (zT+1)

≤1 −〈vT ,zT+1〉 − (T − 1)ϕ(zT+1) − 1
η
ψT−1(zT+1) − ϕ(zT+1)

≤ sup
w∈Rd

{
−〈vT ,w〉 − (T − 1)ϕ(w) − 1

η
ψT−1(w)

}
− ϕ(zT+1)

= ψ∗
T−1(−vT ) − ϕ(zT+1)

≤2 ψ∗
T−1(−vT−1) − 〈∇ψ∗

T−1(−vT−1), gT 〉 +
η

2
||gT ||2

H−1
T−1

− ϕ(zT+1)

= ψ∗
T−1(−vT−1) − 〈zT , gT 〉 +

η

2
||gT ||2

H−1
T−1

− ϕ(zT+1),
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where ≤1 follows from the monotonicity of ψt(w), that is, ψt+1(w) ≥ ψt(w) and
≤2 follows from (5).

Combining the above inequality and using the fact that ϕ(wt) ≤ ϕ(zt) for
any t, we obtain that

T∑

t=1

(lt(wt) − lt(w∗)) ≤ 1
η
ψT (w∗) + ψ∗

T−1(−vT−1) +
η

2
||gT ||2

H−1
T−1

+ 〈gT ,wT − zT 〉 +
T−1∑

t=1

(〈gt,wt〉 + ϕ(wt+1)).

Since {w ∈ R
d : ||w||0 ≤ B} is a subset of Rd, the above upper bound holds

for RT
B-ARDA.

By repeating the above process, we get that

RT
B-ARDA ≤ 1

η
ψT (w∗) + ψ∗

0(−v0) +
η

2

T∑

t=1

||gt||2H−1
t−1

+
T∑

t=1

〈gt,wt − zt〉

≤1
1
η
ψT (w∗) +

η

2

T∑

t=1

||gt||2H−1
t−1

+
T∑

t=1

||wt − zt||H t−1 ||gt||H−1
t−1

≤2
1
η
ψT (w∗) +

η

2

T∑

t=1

||gt||2H−1
t−1

+ ξ

T∑

t=1

||gt||H−1
t−1

≤ 1
η
ψT (w∗) +

η

2

T∑

t=1

||gt||2H−1
t−1

+ ξ

√√√√T

T∑

t=1

||gt||2H−1
t−1

, (6)

where we used ψ∗
0(−v0) = 0 and the Hölder’s inequality (for dual norms) for

≤1. For ≤2, we used ξt = ||wt − zt||H t−1 and the assumption that ξt ≤ ξ for
t = 1, 2, · · · T . We now give a bound for each term.

ψT (w∗) =
δ

2
||w∗||22 +

1
2
〈w∗,diag(sT )w∗〉 ≤ δ

2
||w∗||22 +

1
2
||w∗||∞

d∑

i=1

||g1:T,i||2

With the assumption maxt ||gt||∞ ≤ δ, we can use Lemma 4 in [4] and get

T∑

t=1

||gt||2H−1
t−1

≤
T∑

t=1

〈gt,diag(st)−1gt〉 ≤ 2
d∑

i=1

||g1:T,i||2

The main result follows by plugging these local bounds into (6).
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Appendix 2: Proof of Theorem 2

Proof. For any w∗ ∈ R
d, we have

η(ft(wt) + ϕ(wt) − ft(w
∗) − ϕ(w∗))

≤ 〈ηgt,wt − w∗〉 = 〈ηgt,wt − zt+1 + zt+1 − w∗〉
= 〈ηgt + H t(zt+1 − wt), zt+1 − w∗〉 + 〈ηgt,wt − zt+1〉

+ 〈H t(wt − zt+1), zt+1 − w∗〉
≤1 〈ηgt,wt − zt+1〉 + 〈H t(wt − zt+1), zt+1 − w∗〉
= η〈√ηgt,

1√
η
(wt − zt+1)〉 + Dψt(w

∗,wt) − Dψt(w
∗, zt+1) − Dψt(zt+1,wt)

≤2
η2

2
||gt||2H −1

t
+

1

2
||wt − zt+1||2H t

− Dψt(zt+1,wt)

+ Dψt(w
∗,wt) − Dψt(w

∗, zt+1)

=
η2

2
||gt||2H −1

t
+ Dψt(w

∗,wt) − Dψt(w
∗, zt+1)

=
η2

2
||gt||2H −1

t
+ Dψt(w

∗,wt) − Dψt(w
∗,wt+1) + (Dψt(w

∗,wt+1) − Dψt(w
∗, zt+1))

≤3
η2

2
||gt||2H −1

t
+ Dψt(w

∗,wt) − Dψt(w
∗,wt+1) + ξt||w∗||∞,

where ≤1 follows from the KKT optimality condition for (3), i.e. for any w ∈ R
d,

〈ηgt + Ht(zt+1 − wt),w − zt+1〉 ≥ 0.

In ≤2, Fenchel-Yong inequality is used, and ≤3 follows from

Dψt
(w∗,wt+1) − Dψt

(w∗,zt+1)

=
1
2

(||wt+1||2H t
− ||zt+1||2H t

)
+ 〈w∗,Ht(zt+1 − wt+1)〉

≤ 〈w∗,Ht(zt+1 − wt+1)〉 ≤ ||w∗||∞
d∑

i=1

Ht,ii|zt+1,i − wt+1,i| = ξt||w∗||∞.

Summing over t = 1, 2, · · · T , we have that

RT
B-AMD ≤ η

2

T∑

t=1

||gt||2H −1
t

+
1

η
||w∗||∞

T∑

t=1

ξt +
1

η
Dψ1(w

∗,w1)

+
1

η

T−1∑

t=1

(Dψt+1(w
∗,wt+1) − Dψt(w

∗,wt+1))

≤ η

2

T∑

t=1

||gt||2H −1
t

+
1

η
||w∗||∞

T∑

t=1

ξt +
1

2η
max
t≤T

||w∗ − wt||2∞
d∑

i=1

||g1:T,i||2

≤1 η

d∑

i=1

||g1:T,i||2 +
1

η
||w∗||∞

T∑

t=1

ξt +
1

2η
max
t≤T

||w∗ − wt||2∞
d∑

i=1

||g1:T,i||2,

where the last inequality follows from Lemma 4 in [4].



Online Feature Selection by Adaptive Sub-gradient Methods 445

References

1. Brown, G., Pocock, A.C., Zhao, M., Luján, M.: Conditional likelihood maximi-
sation: a unifying framework for information theoretic feature selection. J. Mach.
Learn. Res. 13, 27–66 (2012)

2. Condat, L.: Fast projection onto the simplex and the �1 ball. Math. Program.
158(1–2), 575–585 (2016)

3. Duchi, J.C., Singer, Y.: Efficient online and batch learning using forward backward
splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)

4. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learn-
ing and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

5. Duchi, J.C., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto
the �1-ball for learning in high dimensions. In: Proceedings of ICML, pp. 272–279
(2008)

6. Duchi, J.C., Shalev-Shwartz, S., Singer, Y., Tewari, A.: Composite objective mirror
descent. In: Proceedings of COLT, pp. 14–26 (2010)

7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

8. Langford, J., Li, L., Zhang, T.: Sparse online learning via truncated gradient. J.
Mach. Learn. Res. 10, 777–801 (2009)

9. Rao, N.S., Nowak, R.D., Cox, C.R., Rogers, T.T.: Classification with the sparse
group lasso. IEEE Trans. Signal Process. 64(2), 448–463 (2016)

10. Shalev-Shwartz, S., Srebro, N., Zhang, T.: Trading accuracy for sparsity in opti-
mization problems with sparsity constraints. SIAM J. Optim. 20(6), 2807–2832
(2010)

11. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for �1-regularized loss mini-
mization. J. Mach. Learn. Res. 12, 1865–1892 (2011)

12. Song, L., Smola, A.J., Gretton, A., Bedo, J., Borgwardt, K.M.: Feature selection
via dependence maximization. J. Mach. Learn. Res. 13, 1393–1434 (2012)

13. Tan, M., Tsang, I.W., Wang, L.: Towards ultrahigh dimensional feature selection
for big data. J. Mach. Learn. Res. 15(1), 1371–1429 (2014)

14. Tan, M., Wang, L., Tsang, I.W.: Learning sparse SVM for feature selection on very
high dimensional datasets. In: Proceedings of ICML, pp. 1047–1054 (2010)

15. Wang, D., Wu, P., Zhao, P., Wu, Y., Miao, C., Hoi, S.C.H.: High-dimensional
data stream classification via sparse online learning. In: Proceedings of ICDM, pp.
1007–1012 (2014)

16. Wang, J., Zhao, P., Hoi, S.C., Jin, R.: Online feature selection and its applications.
IEEE Trans. Knowl. Data Eng. 26(3), 698–710 (2014)

17. Wang, J., et al.: Online feature selection with group structure analysis. IEEE Trans.
Knowl. Data Eng. 27(11), 3029–3041 (2015)

18. Woznica, A., Nguyen, P., Kalousis, A.: Model mining for robust feature selection.
In: Proceedings of SIGKDD, pp. 913–921 (2012)

19. Wu, X., Yu, K., Ding, W., Wang, H., Zhu, X.: Online feature selection with stream-
ing features. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1178–1192 (2013)

20. Wu, Y., Hoi, S.C.H., Mei, T., Yu, N.: Large-scale online feature selection for ultra-
high dimensional sparse data. ACM Trans. Knowl. Discov. Data 11(4), 48:1–48:22
(2017)



446 T. Zhai et al.

21. Xiao, L.: Dual averaging methods for regularized stochastic learning and online
optimization. J. Mach. Learn. Res. 11, 2543–2596 (2010)

22. Yu, K., Wu, X., Ding, W., Pei, J.: Scalable and accurate online feature selection
for big data. ACM Trans. Knowl. Discov. Data 11(2), 16:1–16:39 (2016)

23. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy.
J. Mach. Learn. Res. 5, 1205–1224 (2004)


	Online Feature Selection by Adaptive Sub-gradient Methods
	1 Introduction
	2 Related Work
	3 Notation and Problem Setting
	4 B-ARDA and B-AMD
	4.1 B-ARDA and Its Regret Analysis
	4.2 B-AMD and Its Regret Analysis

	5 Experiments
	5.1 Datasets
	5.2 Comparison with Online Feature Selection Algorithms
	5.3 Comparison with Sparse Online Learning Algorithms

	6 Conclusion
	References




