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Abstract. We study the problem of learning a latent variable model
online from a stream of data. Latent variable models are popular because
they can explain observed data through unobserved concepts. These
models have traditionally been studied in the offline setting. In the online
setting, online expectation maximization (EM) is arguably the most pop-
ular approach for learning latent variable models. Although online EM
is computationally efficient, it typically converges to a local optimum.
In this work, we develop a new online learning algorithm for latent vari-
able models, which we call SpectralLeader. SpectralLeader converges
to the global optimum, and we derive a sublinear upper bound on its
n-step regret in a single topic model. In both synthetic and real-world
experiments, we show that SpectralLeader performs similarly to or bet-
ter than online EM with tuned hyper-parameters.
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1 Introduction

Latent variable models explain observed data through unobserved concepts.
They have been successfully applied in a wide variety of fields, such as speech
recognition, natural language processing, and computer vision [5,15,16,20].
Despite their successes, latent variable models are typically studied in the offline
setting. However, in many practical problems, a learning agent needs to learn a
latent variable model online. With online algorithms, we can update the model
efficiently and do not need to store all the past data. For instance, a recom-
mender system may want to learn to cluster its users online based on their real-
time behavior. This paper aims to develop algorithms for such online learning
problems.
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Several existing algorithms learn latent variable models online by extend-
ing expectation maximization (EM) algorithm. Those algorithms are known as
online EM, and include stepwise EM [6,13] and incremental EM [14]. Similar to
offline EM, each iteration of online EM includes an E-step to fill in the values of
latent variables based on their estimated distribution, and an M-step to update
the model parameters. The main difference is that each step of online EM only
uses data received recently, rather than the whole dataset. This ensures that
online EM is computationally efficient and can be used to learn latent variable
models online. However, similar to offline EM, online EM algorithms have one
major drawback: they may converge to a local optimum and hence suffer from
a non-diminishing performance loss.

To overcome these limitations, we develop an online learning algorithm that
performs almost as well as the globally optimal latent variable model, which we
call SpectralLeader. Specifically, we propose an online learning variant of the
spectral method [3], which can learn the parameters of latent variable models
offline with guarantees of convergence to a global optimum. Our online learning
setting is defined as follows. We have a sequence of n topic models, one at each
time t ∈ [n]. The prior distribution of topics can change arbitrarily over time,
while the conditional distribution of words is stationary. At time t, the learning
agent observes a document of words, which is sampled i.i.d. from the model at
time t. The goal of the agent is to predict a sequence of model parameters with
low cumulative regret with respect to the best solution in hindsight, which is
constructed based on the sampling distribution of the words over n steps.

This paper makes several contributions. First, it is the first paper to formu-
late online learning with the spectral method as a regret minimization problem.
Second, we propose SpectralLeader, an online learning variant of the spectral
method for single topic models [3]. To reduce computational and space com-
plexities of SpectralLeader, we introduce reservoir sampling. Third, we prove
a sublinear upper bound on the n-step regret of SpectralLeader. Finally, we
compare SpectralLeader to stepwise EM in extensive synthetic and real-world
experiments. We observe that stepwise EM is sensitive to the setting of its hyper-
parameters. In all experiments, SpectralLeader performs similarly to or better
than stepwise EM with optimized hyper-parameters.

2 Related Work

The spectral method by tensor decomposition has been widely applied in differ-
ent latent variable models, such as mixtures of tree graphical models [3], mix-
tures of linear regressions [7], hidden Markov models (HMM) [4], latent Dirichlet
allocation (LDA) [2], Indian buffet process [18], and hierarchical Dirichlet pro-
cess [19]. The spectral method first empirically estimates low-order moments of
observations and then applies decomposition methods with a unique solution to
recover the model parameters. One major advantage of the spectral method is
that it learns globally optimal solutions [3].
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Traditional online learning methods for latent variable models usually extend
traditional iterative methods for learning latent variable models in the offline
setting [6,11,13,14]. Offline EM calculates sufficient statistics based on all the
data, while in online EM the sufficient statistics are updated with recent data in
each iteration [6,13,14]. Online algorithms are used to learn LDA on streaming
data [1,11]. These online algorithms either have no convergence analysis or con-
verge to local minima, while we aim to develop an algorithm with a theoretical
guarantee of convergence to a global optimum.

An online spectral learning method has also been developed [12], with a focus
on improving computational efficiency, by conducting optimization of multilin-
ear operations in SGD and avoiding directly forming tensors. Online stochastic
gradient for tensor decomposition has been analyzed [9] in a different online
setting: they do not look at the online problem as regret minimization and the
analysis focuses on convergence to a local minimum. In contrast, we develop an
online spectral method with a theoretical guarantee of convergence to a global
optimum. Further, our method is robust in the non-stochastic setting where the
topics of documents are correlated over time. This non-stochastic setting has not
been previously studied in the context of online spectral learning [12].

3 Spectral Method for Single Topic Models

This section introduces the offline spectral method in latent variable models.
Specifically, we describe how the method works in the single topic model [3].

In the single topic model, the goal is to learn the latent topics of docu-
ments from the observed words in each document. Without loss of generality, we
describe the spectral method and SpectralLeader (Sect. 5) in the setting where
each document contains three words. The extension to more than three words is
straightforward (Sect. 7). Let the number of distinct topics be K and the size of
the vocabulary be d. Then our model can be viewed as a mixture model, where
the three observed words x(1), x(2), and x(3) are conditionally i.i.d. given topic
C, which is drawn from some distribution over topics. Later in Sect. 4, we study
a more general setting where the distribution of topic can change over time. Each
word is one-hot encoded, that is x(l) = ei if and only if x(l) represents word i,
where e1, . . . , ed is the standard coordinate basis in R

d. Define [n] = {1, . . . , n}.
The model is parameterized by the probability of each topic j, ωj = P (C = j)
for j ∈ [K], and the conditional probability of all words uj ∈ [0, 1]d given topic
j. The ith entry of uj is uj(i) = P (x(l) = ei|C = j) for i ∈ [d]. To recover the
model parameters, it suffices to construct a third order tensor M̄3 as

E[x(1) ⊗ x(2) ⊗ x(3)] =
∑

1≤i,j,k≤d

P (x(1) = ei,x(2) = ej ,x(3) = ek) ei ⊗ ej ⊗ ek.

We recover the parameters of the topic model by decomposing M̄3 as

M̄3 =
K∑

i=1

ωiui ⊗ ui ⊗ ui. (1)



382 T. Yu et al.

Unfortunately, such a decomposition is generally NP-hard [3]. Instead, we can
decompose an orthogonal decomposable tensor. One way to make M̄3 orthog-
onal decomposable is by whitening. We can define a whitening matrix as
W̄ = UA−1/2, where A ∈ R

K×K is the diagonal matrix of the positive eigen-
values of M̄2 = E[x(1) ⊗ x(2)] =

∑K
i=1 ωiui ⊗ ui and U ∈ R

d×K is the matrix
of K eigenvectors associated with those eigenvalues. After whitening, instead of
decomposing M̄3, we can decompose T̄ = E[W̄�x(1) ⊗ W̄�x(2) ⊗ W̄�x(3)] as
T̄ =

∑K
i=1 λivi ⊗ vi ⊗ vi by the power iteration method [3]. Finally, the model

parameters are recovered as ωi = 1
λ2
i

and ui = λi(W̄�)+vi, where (W̄�)+ is

the pseudoinverse of W̄�. In practice, only a noisy realization of T̄ is typi-
cally available, which is constructed from empirical counts. Such tensors can be
decomposed approximately and the errors of such decompositions are analyzed
in Theorem 5.1 of Anandkumar et al. [3].

4 Online Learning for Single Topic Models

We study the following online learning problem in the single topic model dis-
cussed in Sect. 3. We have a sequence of n topic models, one at each time t ∈ [n].
The prior distribution of topics can change arbitrarily over time, while the con-
ditional distribution of words is stationary. We denote by xt = (x(l)

t )3l=1 a tuple
of one-hot encoded words in the document at time t, which is sampled i.i.d. from
the model at time t. Non-stationary distributions of topics are common in prac-
tice. For instance, in the recommender system example in Sect. 1, user clusters
tend to be correlated over time. The clusters can be viewed as topics.

We represent the distribution of words at time t by a cube Pt = E[x(1)
t ⊗

x(2)
t ⊗ x(3)

t ] ∈ [0, 1]d×d×d. In particular, the probability of observing the triplet
of words (i, j, k) at time t is

Pt(i, j, k) =
K∑

c=1

Pt(c)P (x(1)
t = ei|c)P (x(2)

t = ej |c)P (x(3)
t = ek|c) , (2)

where Pt(c) is the prior distribution of topics at time t. This prior distribution
can change arbitrarily with t.

The learning agent predicts the distribution of words M̂3,t−1 ∈ [0, 1]d×d×d at
time t and is evaluated by its per-step loss �t(M̂3,t−1). The agent aims to min-
imize its cumulative loss, which measures the difference between the predicted
distribution M̂3,t−1 and the observations x(1)

t ⊗ x(2)
t ⊗ x(3)

t over time.
But what should the loss be? In this work, we define the loss at time t as

�t(M) = ‖x(1)
t ⊗ x(2)

t ⊗ x(3)
t − M‖2F , (3)
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where ‖.‖F is the Frobenius norm. For any tensor M ∈ R
d×d×d, we define its

Frobenius norm as ‖M‖F =
√∑d

i,j,k=1 M(i, j, k)2. This choice can be justified
as follows. Let

M̄3,n =
1
n

n∑

t=1

Pt =
1
n

n∑

t=1

E[x(1)
t ⊗ x(2)

t ⊗ x(3)
t ] (4)

be the average of distributions from which x(1)
t ⊗ x(2)

t ⊗ x(3)
t are generated in n

steps. Then

M̄3,n = argmin
M∈[0,1]d×d×d

n∑

t=1

E[�t(M)] , (5)

as shown in Lemma 3 in Sect. 6.4. In other words, the loss function is chosen
such that a natural best solution in hindsight, M̄3,n in (5), is the minimizer of
the cumulative loss.

With the definition of the loss function and the best solution in hindsight,
the goal of the learning agent is to minimize the regret

R(n) =
n∑

t=1

E[�t(M̂3,t−1) − �t(M̄3,n)] , (6)

where �t(M̂3,t−1) is the loss of our estimated model at time t and �t(M̄3,n) is
the loss of the best solution in hindsight, respectively. Minimizing the regret in
the online setting guarantees that the learnt model can provide more and more
accurate predictions over time.

Unlike traditional online algorithms that minimize the negative log-likelihood
[13], we minimize the parameter recovery loss. In the offline setting, the spectral
method minimizes the recovery loss in a wide range of models [3,7,17].

5 Algorithm SpectralLeader

We propose SpectralLeader, an online learning algorithm for minimizing the
regret in (6). Its pseudocode is in Algorithm 1. At each time t, the input is
observation (x(l)

t )3l=1. We maintain reservoir samples ((x(l)
z )3l=1)z∈St−1 from the

previous t − 1 time steps, where St−1 is the time indices of these samples.
The algorithm operates as follows. First, in line 1 we construct the second-

order moment from the reservoir samples, where Π2(3) is the set of all 2-
permutations of {1, 2, 3}. Then we estimate At−1 and Ut−1 by eigendecompo-
sition, and construct the whitening matrix Wt−1 in line 2. After whitening, we
build the third-order tensor Tt−1 from whitened words ((W�

t−1x
(l)
z )3l=1)z∈St−1 in

line 3, where Π3(3) is the set of all 3-permutations of {1, 2, 3}. Then in line 4
with the power iteration method [3], we decompose Tt−1 and get its eigenvalues
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Algorithm 1. SpectralLeader at time t.

Input: Observations (x(l)
t )3l=1

1 M2,t−1 ← 1
|St−1||Π2(3)|

∑
z∈St−1

∑
π∈Π2(3)

x(π(1))
z ⊗ x(π(2))

z

2 Wt−1 ← Ut−1A
−1/2
t−1 , where At−1 ∈ R

K×K is the diagonal matrix of K

positive eigenvalues of M2,t−1 and Ut−1 ∈ R
d×K is the matrix of

eigenvectors associated with these positive eigenvalues
3 Tt−1 ←

1
|St−1||Π3(3)|

∑
z∈St−1

∑
π∈Π3(3)

W�
t−1x

(π(1))
z ⊗ W�

t−1x
(π(2))
z ⊗ W�

t−1x
(π(3))
z

4 Obtain (λt−1,i)K
i=1 and (vt−1,i)K

i=1 from Tt−1 by power iteration method
5 ωt−1,i ← 1

λ2
t−1,i

, ut−1,i ← λt−1,i(W�
t−1)

+vt−1,i for all i ∈ [K]

6 Generate a random number a ∈ [0, 1]
7 if t ≤ mr then
8 St ← St−1 ∪ {t}
9 else if a ≤ mr/(t − 1) then

10 Remove a random element of St−1

11 St ← St−1 ∪ {t}
12 else
13 St ← St−1

Output: Model parameters ωt−1,i and ut−1,i

(λt−1,i)K
i=1 and eigenvectors (vt−1,i)K

i=1. Finally, in line 5 we recover the parame-
ters of the model, the probability of topics (ωt−1,i)K

i=1 and the conditional proba-
bility of words (ut−1,i)K

i=1. After recovering the parameters, we update the set of
reservoir samples in lines 6 to 13. We keep mr reservoir samples xz, z ∈ [t − 1].
When t ≤ mr, the new observation (x(l)

t )3l=1 is added to the reservoir. When
t > mr, (x(l)

t )3l=1 replaces a random observation in the reservoir with probability
mr/(t − 1).

In SpectralLeader, we use reservoir sampling for computational efficiency
reasons. Without reservoir sampling, the operations in lines 1 and 3 of Algorithm
1 would depend on t because all past observations are used to construct M2,t−1

and Tt−1. Besides, the whitening operation in line 3 would depend on t because
all past observations are whitened by a matrix Wt−1 that changes with t. With
reservoir sampling, we approximate M2,t−1, Tt−1, and Wt−1 with mr reservoir
samples. We discuss how to set mr in Sect. 6.2.

6 Analysis

In this section, we bound the regret of SpectralLeader. In Sect. 6.1, we analyze
the regret of SpectralLeader without reservoir sampling in the noise-free set-
ting. In this setting, at time t the agent knows the distribution of words (Pz)t−1

z=1.
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The regret is due to not knowing Pt at time t. In Sect. 6.2, we analyze the regret
of SpectralLeader with reservoir sampling in the noise-free setting. In this set-
ting, the agent knows (Pz)z∈St−1 at time t, which is a random sample of (Pz)t−1

z=1.
In comparison to Sect. 6.1, the additional regret is due to reservoir sampling. In
Sect. 6.3, we discuss the regret of SpectralLeader with reservoir sampling in
the noisy setting. In this setting, the agent approximates each distribution Pz

with its single empirical observation (x(l)
z )3l=1, for any z ∈ St−1. In comparison

to Sect. 6.2, the additional regret is due to noisy observations. All supplementary
lemmas are stated and proved in Sect. 6.4.

6.1 Noise-Free Setting

We first analyze an idealized variant of SpectralLeader, where the agent knows
(Pz)t−1

z=1 at time t. In this setting, the algorithm is similar to Algorithm 1, except
that lines 1 and 3 are replaced, respectively, by M̄2,t−1 = 1

t−1

∑t−1
z=1 E[x(1)

z ⊗x(2)
z ]

and T̄t−1 = 1
t−1

∑t−1
z=1 E[W̄�

t−1x
(1)
z ⊗ W̄�

t−1x
(2)
z ⊗ W̄�

t−1x
(3)
z ].

We denote by W̄t−1 the corresponding whitening matrix in line 2, and by
ω̄t−1,i and ūt−1,i the estimated model parameters. In this noise-free setting, the
power iteration method in line 4 is exact. Therefore, the prediction of the learning
agent at time t satisfies M̂3,t−1 =

∑K
i=1 ω̄t−1,i ūt−1,i ⊗ ūt−1,i ⊗ ūt−1,i = M̄3,t−1

for any t, according to (1).

Theorem 1. Let M̂3,t−1 = M̄3,t−1 at all times t ∈ [n]. Then

R(n) ≤ 4
√

d3 log n .

Proof. From Lemma 4,
∑n

t=1 E[�t(M̄3,n)] ≥ ∑n
t=1 E[�t(M̄3,t)]. Now note that

M̂3,t−1 = M̄3,t−1 at any time t, and therefore

R(n) =
n∑

t=1

E[�t(M̄3,t−1) − �t(M̄3,n)] ≤
n∑

t=1

E[�t(M̄3,t−1) − �t(M̄3,t)] .

At any time t and for any xt,

�t(M̄3,t−1) − �t(M̄3,t) ≤ 4‖M̄3,t−1 − M̄3,t‖F

= 4

∥∥∥∥∥
1

t − 1

t−1∑

t′=1

Pt′ − 1
t

t∑

t′=1

Pt′

∥∥∥∥∥
F

=
4
t

∥∥∥∥∥
1

t − 1

t−1∑

t′=1

Pt′ − Pt

∥∥∥∥∥
F

≤ 4
√

d3

t
,

where the first inequality is by Lemma 5 and the second inequality is from the
fact that all entries of Pt are in [0, 1] at any time t ∈ [n]. Therefore, R(n) ≤∑n

t=1
4
√

d3

t ≤ 4
√

d3 log n . This concludes our proof. 
�
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6.2 Reservoir Sampling in Noise-Free Setting

We further analyze SpectralLeader with reservoir sampling in the noise-free
setting. As discussed in Sect. 5, without reservoir sampling, the construction
time of the decomposed tensor at time t would grow linearly with t, which is
undesirable. In this setting, the algorithm is similar to Algorithm 1, except that
lines 1 and 3 are replaced, respectively, by M̃2,t−1 = 1

|St−1|E[
∑

z∈St−1
x(1)

z ⊗x(2)
z ]

and T̃t−1 = 1
|St−1|E[

∑
z∈St−1

W̃�
t−1x

(1)
z ⊗ W̃�

t−1x
(2)
z ⊗ W̃�

t−1x
(3)
z ], where St−1

are indices of the reservoir samples at time t. We denote by W̃t−1 the corre-
sponding whitening matrix in line 2, and by ω̃t−1,i and ũt−1,i the estimated
model parameters. As in Sect. 6.1, the power iteration method in line 4 is
exact, and therefore the prediction of the learning agent at time t satisfies
M̂3,t−1 =

∑K
i=1 ω̃t−1,i ūt−1,i ⊗ ũt−1,i ⊗ ũt−1,i = M̃3,t−1 for any t. The main

result of this section is stated below.

Theorem 2. Let all corresponding entries of M̃3,t−1 and M̄3,t−1 be close with
a high probability,

P (∃t, i, j, k : |M̃3,t−1(i, j, k) − M̄3,t−1(i, j, k)| ≥ ε) = δ (7)

for some small ε ∈ [0, 1] and δ ∈ [0, 1]. Let M̂3,t−1 = M̃3,t−1 at all times t ∈ [n].
Then

R(n) ≤ 4
√

d3εn + 4
√

d3δn + 4
√

d3 log n .

Proof. From the definition of R(n) in (6) and the bound in Theorem 1,

R(n) =
n∑

t=1

E[�t(M̃3,t−1) − �t(M̄3,t−1)] +
n∑

t=1

E[�t(M̄3,t−1) − �t(M̄3,n)]

≤
n∑

t=1

E[�t(M̃3,t−1) − �t(M̄3,t−1)] + 4
√

d3 log n .

We bound the first term above as follows. Suppose that the event in (7) does
not happen. Then �t(M̃3,t−1)− �t(M̄3,t−1) ≤ 4

√
d3ε, from Lemma 5 and the fact

that all corresponding entries of M̃3,t−1 and M̄3,t−1 are ε-close. Now suppose that
the event in (7) happens. Then �t(M̃3,t−1) − �t(M̄3,t−1) ≤ 4

√
d3, from Lemma

5 and the fact all entries of M̃3,t−1 and M̄3,t−1 are in [0, 1]. Finally, note that
the event in (7) happens with probability δ. Now we chain all inequalities and
obtain R(n) ≤ 4

√
d3εn + 4

√
d3δn + 4

√
d3 log n. 
�

Note that the reservoir at time t, St−1 ∈ [t − 1], is a random sample of size
mr for any t > mr +1. Therefore, from Hoeffding’s inequality [10] and the union
bound, we get that

δ = P (∃t, i, j, k : |M̃3,t−1(i, j, k) − M̄3,t−1(i, j, k)| ≥ ε)

≤ 2
n∑

t=mr+2

d3 exp[−2ε2mr] ≤ 2d3n exp[−2ε2mr] .
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In addition, let the size of the reservoir be mr = ε−2 log(d3n). Then the regret
bound in Theorem 2 simplifies to R(n) < 4

√
d3εn + 4

√
d3 log n + 8. This bound

can be sublinear in n only if ε = o(1). Moreover, the definition of mr and
mr ≤ n imply that ε ≥ √

log(d3n)/n. As a result of these constraints, the range
of reasonable values for ε is [

√
log(d3n)/n, o(1)).

For any ε ∈ [
√

log(d3n)/n, o(1)), the regret R(n) is sublinear in n, where ε
is a tunable parameter. At lower values of ε, R(n) = O(

√
n) but the reservoir

size approaches n. At higher values of ε, the reservoir size is O(log n) but R(n)
approaches n.

6.3 Reservoir Sampling in Noisy Setting

Finally, we discuss the regret of SpectralLeader with reservoir sampling in
the noisy setting. In this setting, the analyzed algorithm is Algorithm 1. The
predicted distribution at time t is M̂3,t−1 =

∑K
i=1 ωt−1,i ut−1,i ⊗ ut−1,i ⊗ ut−1,i.

From the definition of R(n) and our earlier analysis, R(n) can be decomposed
and bounded from above as

R(n) ≤
n∑

t=1

E[�t(M̂3,t−1) − �t(M̃3,t−1)] + 4
√

d3εn + 4
√

d3 log n + 8 (8)

when the size of the reservoir is mr = ε−2 log(d3n).
Suppose that mr → ∞ as n → ∞, for instance by setting ε = n− 1

4 . Under this
assumption, M2,t−1 in SpectralLeader approaches M̃2,t−1 (Sect. 6.2) because
M2,t−1 is an empirical estimator of M̃2,t−1 on mr observations. By Weyl’s and
Davis-Kahan theorems [8,21], the eigenvalues and eigenvectors of M2,t−1 app-
roach those of M̃2,t−1 as mr → ∞, and thus the whitening matrix Wt−1 in
SpectralLeader approaches W̃t−1 (Sect. 6.2). Since Tt−1 in SpectralLeader
is an empirical estimator of T̃t−1 (Sect. 6.2) on mr whitened observations and
Wt−1 → W̃t−1, we have Tt−1 → T̃t−1 as mr → ∞. In our online setting
(Sect. 4), over time the data samples are generated by topic models with the
same conditional distribution of words. Thus, the reservoir samples are actu-
ally generated by a topic model with this conditional distribution and an arbi-
trary distribution of topics. Therefore, Theorem 5.1 of Anandkumar et al. [3]
applies: the eigenvalues and eigenvectors of Tt−1 approach those of T̃t−1 as
Tt−1 → T̃t−1. This implies that M̂3,t−1 → M̃3,t−1, as all quantities that
M̂3,t−1 and M̃3,t−1 depend on approach each other as mr → ∞. Therefore,
limn→∞ limt→n(�t(M̂3,t−1) − �t(M̃3,t−1)) = 0 and the regret bound in (8) is
o(n), sublinear in n, as n → ∞.

6.4 Technical Lemmas

Lemma 3. Let �t(M) = ‖x(1)
t ⊗ x(2)

t ⊗ x(3)
t − M‖2F . Then

M̄3,n = argmin
M∈[0,1]d×d×d

n∑

t=1

E[�t(M)] , (9)
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where M̄3,n is defined in (4).

Proof. It is sufficient to show that

M̄3,n(i, j, k) = argmin
y∈[0,1]

1
n

n∑

t=1

E[(x(1)
t ⊗ x(2)

t ⊗ x(3)
t (i, j, k) − y)2] (10)

for any (i, j, k), where M̄3,n(i, j, k) and x(1)
t ⊗x(2)

t ⊗x(3)
t (i, j, k) are the (i, j, k)-th

entries of tensors M̄3,n and x(1)
t ⊗ x(2)

t ⊗ x(3)
t , respectively. To prove the claim,

let f(y) = 1
n

∑n
t=1 E[(x(1)

t ⊗ x(2)
t ⊗ x(3)

t (i, j, k) − y)2]. Then

∂

∂y
f(y) = 2y − 2

n

n∑

t=1

E[x(1)
t ⊗ x(2)

t ⊗ x(3)
t (i, j, k)] .

Now we put the derivative equal to zero and get y = M̄3,n(i, j, k). 
�
Lemma 4. For any n,

∑n
t=1 E[�t(M̄3,n)] ≥ ∑n

t=1 E[�t(M̄3,t)].

Proof. We prove this claim by induction. First, suppose that n = 0. Then triv-
ially E[�t(M̄3,0)] ≥ E[�t(M̄3,0)]. Second, by induction hypothesis, we have that

n−1∑

t=1

E[�t(M̄3,n−1)] ≥
n−1∑

t=1

E[�t(M̄3,t)] . (11)

Then
n∑

t=1

E[�t(M̄3,n)] =
n−1∑

t=1

E[�t(M̄3,n)] + E[�n(M̄3,n)]

≥
n−1∑

t=1

E[�t(M̄3,n−1)] + E[�n(M̄3,n)] ≥
n∑

t=1

E[�t(M̄3,t)] ,

where the first inequality is from (9) and the second inequality is from (11). 
�
Lemma 5. For any tensors M ∈ [0, 1]d×d×d satisfying

∑d
i,j,k=1 M(i, j, k) = 1,

and M ′ ∈ [0, 1]d×d×d satisfying
∑d

i,j,k=1 M ′(i, j, k) = 1, we have

�t(M) − �t(M ′) ≤ 4‖M − M ′‖F .

Proof. The proof follows from elementary algebra

�t(M) − �t(M ′)

= (�
1
2
t (M) + �

1
2
t (M ′))(�

1
2
t (M) − �

1
2
t (M ′))

≤ (�
1
2
t (M) + �

1
2
t (M ′))‖M − M ′‖F

=
(
‖x(1)

t ⊗ x(2)
t ⊗ x(3)

t − M‖F + ‖x(1)
t ⊗ x(2)

t ⊗ x(3)
t − M ′‖F

)
‖M − M ′‖F

≤
(
2‖x(1)

t ⊗ x(2)
t ⊗ x(3)

t ‖F + ‖M‖F + ‖M ′‖F

)
‖M − M ′‖F

= (2 + ‖M‖F + ‖M ′‖F ) ‖M − M ′‖F ≤ 4‖M − M ′‖F .



SpectralLeader: Online Spectral Learning for Single Topic Models 389

The first equality is from α2−β2 = (α+β)(α−β). The first inequality is from the
reverse triangle inequality. The second inequality is from the triangle inequality.
The third equality is from the fact that only one entry of x(1)

t ⊗ x(2)
t ⊗ x(3)

t

is 1 and all the rest are 0, by the definition of (x(l)
t )3l=1 in Sect. 4. The third

inequality is from ‖M‖F =
√∑d

i,j,k=1 M(i, j, k)2 ≤
√∑d

i,j,k=1 |M(i, j, k)| = 1,
and similarly ‖M ′‖F ≤ 1, which follows from the fact that tensors M and M ′

represent distributions with all entries in [0, 1] and summing up to 1. 
�

7 Extensions of SpectralLeader

SpectralLeader can be extended as follows. First, it can easily be extended
to documents with L ≥ 3 words. Then, at time t, Tt−1 in Algorithm 1 is
calculated by averaging over all

(
L
3

)
3! ordered triplets of words [3,22]. The

analysis essentially remains the same and the regret bound still holds. Second,
SpectralLeader can be extended to more complicated latent variable models.
For example, we can use SpectralLeader in Algorithm 1 to learn Gaussian mix-
ture models (GMM) online, by redefining M2,t−1 and Tt−1 according to Theorem
3.2 of Anandkumar et al. [3]. The current analysis does not apply to GMM, since
Pt in (2) is not bounded in GMM. We leave the analysis of SpectralLeader in
such more complicated models for future work.

8 Experiments

In this section, we evaluate SpectralLeader and compare it empirically with
stepwise EM [6]. We experiment with both stochastic and non-stochastic syn-
thetic problems, as well as with two real-world problems.

Our chosen baseline is stepwise EM [6], an online EM algorithm. We choose
this baseline as it outperforms other online EM algorithms [13], such as incre-
mental EM [14]. Stepwise EM has two key tuning parameters: the step-size
reduction power α and the mini-batch size m [6,13]. The smaller the α, the
faster the old sufficient statistics are forgotten. The mini-batch size m is the
number of documents to calculate the sufficient statistics for each update of
stepwise EM. With larger m, we can usually add stability to stepwise EM. We
compared SpectralLeader to stepwise EM with varying α and m.

All compared algorithms are evaluated by their models at time t, θt−1 =
((ωt−1,i)K

i=1, (ut−1,i)K
i=1), which are learned from the first t − 1 steps. We report

two metrics: average negative predictive log-likelihood up to step n, L(1)
n =

1
n

∑n
t=2

(
− log

∑K
i=1 Pθt−1(C = i)

∏L
l=1 Pθt−1(x = x(l)

t | C = i)
)
, where L is the

number of observed words in each document; and average recovery error up to
step n, L(2)

n = 1
n

∑n
t=2 ‖M3,∗ −M̂3,t−1‖2F . The latter metric is the average differ-

ence between the distribution in hindsight M3,∗ and the predicted distribution
M̂3,t−1 at time t, and measures the parameter reconstruction error. Specifically,
M3,∗ =

∑K
i=1 ω∗,iu∗,i⊗u∗,i⊗u∗,i and M̂3,t−1 =

∑K
i=1 ωt−1,iut−1,i⊗ut−1,i⊗ut−1,i,
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Fig. 1. Evaluation on stochastic synthetic problems and non-stochastic synthetic prob-
lems. We compare SpectralLeader to stepwise EM with varying step-size reduction

power α and mini-batch size m. The first column shows results under metric L(1)
n and

the second column shows results under metric L(2)
n .
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where θ∗ = ((ω∗,i)K
i=1, (u∗,i)K

i=1) are the parameters of the unknown model. In
synthetic problems, we know θ∗. In real-world problems, we learn θ∗ by the
spectral method since we have all data in advance. The recovery error is related
to the regret, through the relation of our loss function and the Frobenius norm
in Lemma 5. Note that EM in the offline setting minimizes the negative log-
likelihood, while the spectral method in the offline setting minimizes the recovery
error of tensors. All reported results are averaged over 10 runs.

8.1 Synthetic Problems

Stochastic Synthetic Problems. In this stochastic setting, the topic of the
document at all times t is sampled i.i.d. from a fixed distribution. This setting
represents a scenario where the sequence of topics is not correlated. The number
of distinct topics is K = 3, the vocabulary size is d = 3, and each document has 3
observed words. In practice, some topics are typically more popular than others.
Therefore, we sample topics as follows. At each time, the topic C is randomly
sampled from the distribution where P (C = 1) = 0.15, P (C = 2) = 0.35,
and P (C = 3) = 0.5. Given the topic, the conditional probability of words is
P (x = ei|C = j) = p when i = j, and P (x = ei|C = j) = 1−p

2 when i �= j. With
smaller p, the conditional distribution of words given different topic becomes
similar, and the difficulty of distinguishing different topics increases. For m = 1,
we evaluate on two problems where p = 0.7 and p = 0.9. For m = 100, we further
focus on the more difficult problem where p = 0.7. We show the results before
the different methods converge: for m = 1, we report results before n = 1000,
and for m = 100 we report both results before n = 100.

Results for the stochastic setting are reported in Fig. 1. We observe three
trends. First, under metric L(1)

n , stepwise EM is very sensitive to its parameters
α and m, while SpectralLeader is competitive or even better, compared to
stepwise EM with its best α and m. For example, the best α is 0.7 in Fig. 1a,
and the best α is 0.9 in Fig. 1c. Even for the same problem with different m,
the best α is different: the best α is 0.9 in Fig. 1c, while the best α is 0.5 in
Fig. 1e. In all cases, SpectralLeader performs the best. Second, similar to [13],
stepwise EM improves when the mini-batch size increases to m = 100. But
SpectralLeader still performs better compared to stepwise EM with its best α.
Third, SpectralLeader performs much better than stepwise EM under metric
L(2)

n . These results indicate that a careful grid search of α and m is usually needed
to optimize stepwise EM. Such grid search in the online setting is nearly impos-
sible, since future data are unknown in advance. In contrast, SpectralLeader
is very competitive without any parameter tuning.

Non-Stochastic Synthetic Problems. The non-stochastic setting is the same
as the stochastic setting, except that topics of the documents are strongly corre-
lated over time. We look at an extreme case of correlated topics in the steaming
data. In each batch of 100 steps, sequentially we have 15 documents from topic
1, 35 documents from topic 2, and 50 documents from topic 3. We focus on the
more difficult problem where p = 0.7.
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Fig. 2. Evaluation on real-world datasets. We compare SpectralLeader to stepwise
EM with varying step-size reduction power α and mini-batch size m. The first column
shows results under metric L(1)

n and the second column shows results under metric
L(2)

n .
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Our results in this non-stochastic setting are reported in Figs. 1g and h.
For stepwise EM, the α leading to lowest negative log-likelihood is 0.5. This
result matches well the fact that the smaller the α, the faster the old sufficient
statistics are forgotten, and the faster stepwise EM adapts to the non-stochastic
setting. SpectralLeader is even better than stepwise EM with α = 0.5. Note
that α = 0.5 is the smallest valid value of α for stepwise EM [13].

8.2 Real World Problems

In this section, we evaluate on Newspapers data1 over multiple years and Twitter
data2 during the 2016 United States elections. They provide streaming data with
timestamps and the distributions of topics change over time. After preprocessing,
we retain the 500 most frequent words in the vocabulary. We set K = 5. We
evaluate all algorithms on 100 K documents.3 We compare SpectralLeader to
stepwise EM with multiple α, and mini-batch sizes m = 10 and m = 1000. We
show the results before the different methods converge: for m = 10, we report
results before n = 1000, and for m = 1000 we report results before n = 100. To
handle large-scale streaming data, such as 5 M words in Newspapers data, we
introduce reservoir sampling, and set the window size of reservoir to 10,000.

Our results are reported in Fig. 2. We observe four major trends. First, under
metric L(2)

n , SpectralLeader performs better than stepwise EM. Second, under
metric L(1)

n , for m = 10 versus m = 1000, the optimal α for stepwise EM are
different on both datasets. Third, when m = 10, under L(1)

n , SpectralLeader
performs competitive with or better than stepwise EM with its best α. Fourth,
when m = 1000, under L(1)

n , SpectralLeader is not as good as stepwise EM
with its best α. However, directly using SpectralLeader without tuning any
parameters can still provide good performance. These results suggest that, even
when the mini-batch size is large, SpectralLeader is still very useful under the
log-likelihood metric. In practice, we can quickly achieve reasonable results with
SpectralLeader without any parameter tuning.

9 Conclusions

We develop SpectralLeader, a novel online learning algorithm for latent vari-
able models. In an instance of a single topic model, we define a novel per-step
loss function, prove that SpectralLeader converges to a global optimum, and
derive a sublinear regret bound for SpectralLeader. Our experimental results
suggest that SpectralLeader performs similarly to or better than a fine-tuned
online EM. In future work, we want to extend our method to more complicated
latent-variable models, such as HMMs and LDA [3].
1 Please see https://www.kaggle.com/snapcrack/all-the-news.
2 Please see https://www.kaggle.com/kinguistics/election-day-tweets.
3 The per-step computational cost of SpectralLeader is larger than that of stepwise

EM, when the number of topics, number of observed words and vocabulary size
increase. We leave improving the efficiency of SpectralLeader as future work.

https://www.kaggle.com/snapcrack/all-the-news
https://www.kaggle.com/kinguistics/election-day-tweets
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