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Abstract. Tensor decompositions are used in various data mining appli-
cations from social network to medical applications and are extremely
useful in discovering latent structures or concepts in the data. Many
real-world applications are dynamic in nature and so are their data. To
deal with this dynamic nature of data, there exist a variety of online
tensor decomposition algorithms. A central assumption in all those algo-
rithms is that the number of latent concepts remains fixed throughout
the entire stream. However, this need not be the case. Every incoming
batch in the stream may have a different number of latent concepts, and
the difference in latent concepts from one tensor batch to another can
provide insights into how our findings in a particular application behave
and deviate over time. In this paper, we define “concept” and “concept
drift” in the context of streaming tensor decomposition, as the man-
ifestation of the variability of latent concepts throughout the stream.
Furthermore, we introduce SeekAndDestroy (The method name is after
(and a tribute to) Metallica’s song from their first album (who also owns
the copyright for the name)), an algorithm that detects concept drift
in streaming tensor decomposition and is able to produce results robust
to that drift. To the best of our knowledge, this is the first work that
investigates concept drift in streaming tensor decomposition. We exten-
sively evaluate SeekAndDestroy on synthetic datasets, which exhibit a
wide variety of realistic drift. Our experiments demonstrate the effec-
tiveness of SeekAndDestroy , both in the detection of concept drift and
in the alleviation of its effects, producing results with similar quality to
decomposing the entire tensor in one shot. Additionally, in real datasets,
SeekAndDestroy outperforms other streaming baselines, while discover-
ing novel useful components. Code related to this paper is available at:
https://github.com/ravdeep003/conceptDrift.

Keywords: Tensor analysis · Streaming · Concept drift
Unsupervised learning

1 Introduction

Data comes in many shapes and sizes. Many real world applications deal with
data that is multi-aspect (or multi-dimensional) in nature. An example of multi-
aspect data would be interactions between different users in a social network over
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period of time. Interactions like who messages whom, who liked whose posts or
who shared (re-tweet) whose post. This can be modeled as a three-mode tensor,
user-user being two modes of the tensor and time being the third mode, where
each data point can be considered as an interaction between two users.

Tensor decomposition has been used in many data mining applications and
is an extremely useful tool for finding latent structures in tensor in an unsuper-
vised fashion. There exist a wide variety of tensor decomposition models and algo-
rithms available, interested readers can refer to [9,13] for details. In this paper, our
main focus is on CP/PARAFAC decomposition [7] (henceforth refered to as CP
for brevity), which decomposes a tensor into a sum of rank-one tensors, each one
being a latent factor (or concept) in the data. CP has been widely used in many
applications, due to its ability to uniquely uncover latent components in a variety
of unsupervised multi-aspect data mining applications [13].

In today’s world data is not static, data keeps on evolving over time. In real
world applications like stock market and e-commerce websites hundred of trans-
action (if not thousands) takes place every second, or in applications like social
media where every second, thousands of new interactions take place forming new
communities of users who interact with each other. In this example, we consider
each community of people within the graph as a concept.

There has been a considerable amount of work in dealing with online or
streaming CP decomposition [6,11,16], where the goal is to absorb the updates
to the tensor in the already computed decomposition, as they arrive, and avoid
recomputing the decomposition every time new data arrives. However, despite
the already existing work in the literature, a central issue has been left, to the
best of our knowledge, entirely unexplored. All of the existing online/streaming
tensor decomposition literature assumes that the concepts in the data (whose
number is equal to the rank of the decomposition) remains fixed throughout the
lifetime of the application. What happens if the number of components changes?
What if a new component is introduced, or an existing component splits into two
or more new components? This is an instance of concept drift in unsupervised
tensor analysis, and this paper is a look at this problem from first principles.

Our contributions in this paper are the following:

– Characterizing concept drift in streaming tensors: We define concept
and concept drift in time evolving tensors and provide a quantitative method
to measure the concept drift.

– Algorithm for detecting and alleviating concept drift in streaming
tensor decomposition: We provide an algorithm which detects drift in the
streaming data and also updates the previous decomposition without any
assumption on the rank of the tensor.

– Experimental evaluation on real and synthetic data: We extensively
evaluate our method on both synthetic and real datasets and out-perform
state of the art methods in cases where the rank is not known a priori and
perform on par in other cases.

– Reproducibility: Our implementation is made publicly available1 for repro-
ducibility of experiments.

1 https://github.com/ravdeep003/conceptDrift.

https://github.com/ravdeep003/conceptDrift
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2 Problem Formulation

2.1 Tensor Definition and Notations

Tensor X is collection of stacked matrices (X1,X2, . . .XK) with dimension
R

I×J×K , where I and J represents rows and columns of matrix and K represents
number of views. In other words, a tensor is a higher order abstraction of a
matrix. For simplicity, we call the term “dimension” as “mode” of tensor, where
“modes” are the numbers of views used to index the tensor. The rank(X) is the
minimum number of rank-1 tensors computed from its latent components which
are required to re-produce X as their sum. Table 1 represents the notations used
throughout the paper.

Table 1. Table of symbols and their description

Symbols Definition

X,X,x, x Tensor, Matrix, Column vector, Scalar

R Set of Real Numbers

◦ Outer product

‖A‖F , ‖a‖2 Frobenius norm, �2 norm

X(:, r) rth column of X

� Khatri-Rao product (column-wise Kronecker product [13])

Tensor Batch: A batch is a (N-1)-mode partition of tensor X ∈ R
I×J×K

where size is varied only in one mode and other modes remain unchanged. Here,
tensor Xnew is of dimension R

I×J×tnew and existing tensor Xold is of dimension
R

I×J×told . The full tensor X = [Xold;Xnew] where its temporal mode K =
told + tnew. The tensor X can be partitioned into horizontal X(I,:,:), lateral
X(:,J,:), and frontal X(:,:,K) mode.

CP Decomposition: The most popular and extensively used tensor decompo-
sitions is the Canonical Polyadic or CANDECOMP/PARAFAC decomposition,
referred to as CP decomposition henceforth. Given a 3-mode tensor X of dimen-
sion R

I×J×K , and rank at most R can be written

X =
R∑

r=1

(ar � br � cr) ⇐⇒ X(i, j, k) =
R∑

r=1

A(i, r)B(j, r)C(k, r)

∀ i ∈ {1, 2, . . . , I}, j ∈ {1, 2, . . . , J}, k ∈ {1, 2, . . . ,K} and A ∈ R
I×R,B ∈ R

J×R

and C ∈ R
K×R. For tensor approximation, we adopted minimizing least square

criteria as L ≈ min 1
2 ||X − A(C � B)T ||2F where ||X||2F is the sum of squares

of its all elements and ||.||F is Frobenius (norm). The CP model is nonconvex
in A,B and C. We refer interested readers to popular surveys [9,13] on tensor
decompositions and its applications for more details.
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2.2 Problem Definition

Let us consider a social media network like Facebook, where a large number
of users (≈684K) update information every single minute, and Twitter, where
about ≈100K users tweet every minute2. Here, we have interactions arriving
continuously at high velocity, where each interaction consists of User Id, Tag
Ids, Device, and Location information etc. How can we capture such dynamic
user interactions? How to identify concepts which can signify a potential newly
emerging community, complete disappearance of interactions, or a merging of
one or more communities to a single one? When using tensors to represent such
dynamically evolving data, our problem falls under “streaming” or “online” ten-
sor analysis. Decomposing streaming or online tensors is challenging task, and
concept drift in incoming data makes the problem significantly more difficult,
especially in applications where we care about characterizing the concepts in the
data, in addition to merely approximating the streaming tensor adequately.

Before we conceptualize the problem that our paper deals with, we define cer-
tain terms which are necessary to set up the problem. Consider X and Y be two
incremental batches of a streaming tensors of rank R and F respectively. Let X
be the initial tensor at time t0 and Y be the batch of the streaming tensor which
arrives at time t1 such as t1 > t0. The CP decomposition for these two tensors is
given as follows:

X ≈

R∑

r=1

A(:, r) ◦ B(:, r) ◦ C(:, r) (1)

Y ≈

F∑

r=1

A(:, r) ◦ B(:, r) ◦ C(:, r) (2)

Concept: In case of tensors, we define concept as one latent component; a sum
of R such components make up the tensor. In above equations tensor X and Y
has R and F concepts respectively.

Concept Overlap: We define concept overlap as the set of latent concepts that
are common or shared between two streaming CP decompositions. Consider
Fig. 1 where R and F both are equal to three, which means both tensors X and
Y have three concepts. Each concept of X corresponds to each concept of Y.
This means that there are three concepts that overlap between X and Y. The
minimum and maximum number of concept overlaps between two tensors can be
zero and min(R,F ) respectively. Thus, the value of concept overlap lies between
0 and min(R,F ). In Sect. 3 we propose an algorithm for detecting such overlap.

0 ≤ Concept Overlap ≤ min(R,F ) (3)

New Concept: If there exists a set of concepts which are not similar to any
of the concepts already present in the most recent tensor batch, we call all
such concepts in that set as new concepts. Consider Fig. 2(a), where X has two
2 https://mashable.com/2012/06/22/data-created-every-minute/.

https://mashable.com/2012/06/22/data-created-every-minute/
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Fig. 1. Complete overlap of concepts

concepts (R = 2) and Y has three concepts (F = 3). We see that at time
t1 tensor Y batch has three concepts, out of which, two match with tensor X
concepts and one concept (namely concept 3) does not match with any concept
of X. In this scenario we say that concept 1 and 2 are overlapping concepts and
concept 3 is a new concept.

Fig. 2. (a) Concept appears (b) Concept disappears

Missing Concept: If there exists a set of concepts which was present at time
t0, but was missing at future time t1, we call the concepts in the set missing
concepts. For example, consider Fig. 2(b), at time t0, the CP decomposition of
X has three concepts, and at time t1 CP decomposition of Y has two concepts.
Two concepts of X and Y match with each other and one concept, present at
t0, is missing at t1; we label that concept, as missing concept.

Running Rank: Running Rank (runningRank) at time t is defined as the total
number of unique concepts (or latent components) seen until time t. Running
Rank is different from tensor rank of a tensor batch. It may or may not be equal
to rank of the current tensor batch. Consider Fig. 1, runningRank at time t1 is
three, since the total unique number of concepts seen until t1 is three. Similarly
runningRank of Fig. 2(b) at time t1 is three, even though rank of Y is two, since
the number unique concepts seen until t1 is three.
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Let us assume rank of the initial tensor batch X at time t0 is R and rank of
the subsequent tensor batch Y at time t1 is F . Then runningRank at time t1 is
sum of running rank at t0 and number of new concepts discovered from t0 to t1.
At time t0 running rank is equal to initial rank of the tensor batch in this case R.

runningRankt1 = runningRankt0 + num(newConcept)t1−t0 (4)

Concept Drift: Concept drift is usually defined in terms of supervised learning
[3,14,15]. In [14], authors define concept drift in unsupervised learning as the
change in probability distribution of a random variable over time. We define
concept drift in the context of latent concepts, which is based on rank of the
tensor batch. We first give an intuitive description of concept in terms of running
rank, and then define concept drift.

Intuition: Consider running rank at time t1 be runningRankt1 and running at
time t2 be runningRankt2 . If runningRankt1 is not equal to runningRankt2 , then
there is a concept drift i.e. either a new concept has appeared, or a concept
has disappeared. However, this definition does not capture every single case.
Assume if runningRankt1 is equal to runningRankt2 . In this case, there is no
drift only when there is a complete overlap. However there may be concept drift
present even if runningRankt1 is equal to runningRankt2 , since a concept might
disappear while runningRank remains the same.

Definition: Whenever a new concept appears, a concept disappears, or both
from time t1 to t2, this phenomenon is defined as concept drift.

In a streaming tensor application, a tensor batch arrives at regular intervals
of time. Before we decompose a tensor batch to get latent concepts, we need to
know the rank of the tensor. Finding tensor rank is a hard problem [8] and it
is beyond the scope of this paper. There has been considerable amount of work
which approximates rank of a tensor [10,12]. In this paper we employ AutoTen
[12] to compute a low rank of a tensor. As new advances in tensor rank estimation
happen, our proposed method will also benefit.

Problem 1. Given (a) tensor X of dimensions I×J ×K1 and rank R, (b) Y
of dimensions I × J × K2 of rank F at time t0 and t1 respectively as shown
in figure 3. Compute Xnew of dimension I × J × (K1 + K2) of rank equal
to runningRank at time t1 as shown in equation (5) using factor matrices
of X and Y.

Xnewt1
≈

runningRank∑

r=1

A(:, r) ◦ B(:, r) ◦ C(:, r) (5)
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3 Proposed Method

Consider a social media application where thousands of connections are formed
every second, for example, who follows whom or who interacts with whom. These
connections formed can be viewed as forming communities. Over a period of
time communities disappear, new communities appear or some communities re-
appear after sometime. Number of communities at any given point of time is
dynamic. There is no way of knowing what communities will appear or disappear
in future. When this data stream is captured as a tensor, communities refer to
latent concepts and appearing and disappearing of communities over a period of
a time is referred to as concept drift. Here we need a dynamic way of figuring
out number of communities in a tensor batch rather than assuming constant
number of communities in all tensor batches.

To the best of our knowledge, there is no algorithmic approach that detects
concept drift in streaming tensor decomposition. As we mentioned in Sect. 1,
there has been considerable amount of work [6,11,16] which deals with streaming
tensor data and applies batch decomposition on incoming slices and combine the
results. But these methods don’t take change of rank in consideration, which
could reveal new latent concept in the data sets. Even if we know the rank
(latent concept) of the complete tensor, the tensor batches of that tensor might
not have same rank as the complete tensor.

In this paper we propose SeekAndDestroy , a streaming CP decomposition
algorithm that does not assume rank is fixed. SeekAndDestroy detects the rank
of every incoming batch in order to decompose it, and finally, updates the existing
decomposition after detecting and alleviating concept drift, as defined in Sect. 2.

An integral part of SeekAndDestroy is detecting different concepts and iden-
tifying concept drift in streaming tensor. In order to do this successfully, we need
to solve following problems:

P1: Finding the rank of a tensor batch.
P2: Finding New Concept, Concept Overlap and Missing Concept between two

consecutive tensor batch decomposition.
P3: Updating the factor matrices to incorporate the new and missing concepts

along with concept overlaps.

Fig. 3. Problem formulation
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Finding Number of Latent Concepts: Finding the rank of the tensor is
beyond the scope of this paper, thus we employ AutoTen [12]. Furthermore, in
Sect. 4, we perform our experiments on synthetic data where we know the rank
(and use that information as given to us by an “oracle”) and repeat those exper-
iments using AutoTen, comparing the error between them; the gap in quality
signifies room for improvement that SeekAndDestroy will reap, if rank estimation
is solved more accurately in the future.

Finding Concept Overlap: Given a rank of tensor batch, we compute its
latent components using CP decomposition. Consider Fig. 3 as an example. At
time t1, the number of latent concepts we computed is represented by F , and we
already had R components before new batch Y arrived. In this scenario, there
could be three possible cases: (1) R = F (2) R > F (3) R < F .

For each one of the cases mentioned above, there may be new concepts appear
at t1, or concepts disappear from t0 to t1, or there could be shared concepts
between two decompositions. In Fig. 3. we see that, even though R is equal to
F , we have one new concept, one missing concept and two shared/overlapping
concepts. Now, at time t1, we have four unique concepts, which means our
runningRank at t1 is four.

Algorithm 1. SeekAndDestroy for Detecting & Alleviating Concept Drift
Input: Tensor Xnew of size I × J × Knew, Factor matrices Aold,Bold,Cold of size

I × R, J × R and Kold × R respectively, runningRank, mode.

Output: Factor matrices Aupdated,Bupdated,Cupdated of size I × runningRank,

J × runningRank and (Knew + Kold) × runningRank, ρ, runningRank.

1: batchRank ← getRankAutoten(Xnew, runningRank)

2: [A,B,C, λ] = CP(Xnew, batchRank).

3: colA, colB, colC ← Compute Column Normalization of A,B,C.

4: normMatA,normMatB,normMatC ← Absorb λ and Normalize A,B,C.

5: rhoV al ← colA . ∗ colB . ∗ colC

6: [newConcept, conceptOverlap, overlapConceptOld] ←
findConceptOverlap(Aold,normMatA)

7: if newConcept then

8: runningRank ← runningRank + len(newConcept)

9: Aupdated ← [
Aold normMatA(:,newConcept)

]

10: Bupdated ← [
Bold normMatB(:,newConcept)

]

11: Cupdated ← update C depending on the New Concept,

Concept Overlap, overlapConceptOld indices and runningRank

12: else

13: Aupdated ← Aold

14: Bupdated ← Bold

15: Cupdated ← update C depending on the Concept Overlap, overlapConceptOld

indices and runningRank

16: end if

17: Update ρ depending on the New Concept and Concept Overlap indices

18: if newConcept or (len(newConcept) + len(conceptOverlap) < runningRank) then

19: Concept Drift Detected

20: end if



Concept Drift in Streaming Tensor Decomposition 335

In order to discover which concepts are shared, new, or missing we use the
Cauchy-Schwarz inequality which states for two vectors a and b we have aTb ≤
||a||2||b||2. Algorithm 2 provides the general outline of technique used in finding
concepts. It takes a column-normalized matrices Aold and Abatch of size I × R
and I × batchRank respectively as input. We compute the dot product for all
permutations of columns between two matrices, as shown below

AT
old(:, coli) · Abatch(:, colj)

coli and colj are the respective columns. If the computed dot product is higher
than the threshold value, the two concepts match, and we consider them as
shared/overlapping between Aold and Abatch. If the dot product between a
column in Abatch and with all the columns in Aold has a value less than the
threshold, we consider it as a new concept. This solves problem P2. In the
experimental evaluation, we demonstrate the behavior of SeekAndDestroy with
respect to that threshold.

SeekAndDestroy: This is our overall proposed algorithm, which detects con-
cept drift between the two consecutive tensor batch decompositions, as illus-
trated in Algorithm 1 and updates the decomposition in a fashion robust to
the drift. SeekAndDestroy takes factor matrices (Aold, Bold, Cold) of previous
tensor batch (say at time t0), running rank at t0(runningRankt0) and new
tensor batch (Xnew) (say at time t1) as inputs. Subsequently, SeekAndDestroy
computes the tensor rank for the batch (batchRank) for Xnew using AutoTen.

Using the estimated rank batchRank, SeekAndDestroy computes the CP
decomposition of Xnew, which returns factor matrices A,B,C. We normalize
the columns of A,B,C to unit �2 norm and we store the normalized matrices
into normMatA, normMatB, and normMatC, as shown by lines 3–4 of Algo-
rithm 1. Both Aold and normalized matrix A are passed to findConceptOverlap
function as described above. This returns the indexes of new concept and indexes
of overlapping concepts from both matrices. Those indexes inform SeekAndDe-
stroy , while updating the factor matrices, where to append the overlapped con-
cepts. If there are new concepts, we update A and B factor matrices simply
by adding new columns from normalized factor matrices of Xnew as shown in
lines 9–10 of Algorithm 1. Furthermore, we update the running rank by adding
number of new concept discovered to the previous running rank. If there is only
overlapping concepts and no new concepts, then A and B factor matrices does
not change.

Updating Factor Matrix C: In this paper, for simplicity of exposition, we
are focusing on streaming data that are increasing only on one mode. However,
our proposed method readily generalizes to cases where more than one modes
grow over time.
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In order to update the “evolving” factor matrix (C in our case), we use a
different technique from the one used to update A and B. If there is a new
concept discovered in normMatC then

Cupdated =
[

Cold zeroCol
zerosM normMatC(:, newConcept)

]
(6)

where zeroCol is of size Kold × len(newConcept), zerosM is of size Knew × R
and Cupdated is of size (Kold + Knew) × runningRank.

If there are overlapping concepts, then we update C accordingly as shown
below; in this case Cupdated is again of size (Kold + Knew) × runningRank.

Cupdated =
[

Cold(:, overlapConceptOld)
normMatC(:, conceptOverlap)

]
(7)

If there are missing concepts we append an all-zeros matrix (column vector)
to those indexes.

The Scaling Factor ρ: When we reconstruct the tensor from updated factor
(normalized) matrices, we need a way to re-scale the columns of those factor matri-
ces. In our approach we compute element wise product on normalized columns of
factor matrices (A, B, C) of Xnew as shown in line 5 of Algorithm 1. We use the
same technique as the one used in updating C matrix, in order to match the values
between two consecutive intervals, and we add this value to previously computed
values. If it is a missing concept, we simply add zero to it. While reconstructing
the tensor we take the average of vector over the number of batches received and
we re-scale the components as follows

Xr =
runningRank∑

r=1

ρrAupd.(:, r) ◦ Bupd.(:, r) ◦ Cupd.(:, r).

4 Experimental Evaluation

We evaluate our algorithm on the following criteria:

Q1: Approximation Quality: We compare SeekAndDestroy ’s reconstruction
accuracy against state-of-the-art streaming baselines, in data that we generate
synthetically so that we observe different instances of concept drift. In cases
where SeekAndDestroy outperforms the baselines, we argue that this is due to
the detection and alleviation of concept drift.

Q2: Concept Drift Detection Accuracy: We evaluate how effectively
SeekAndDestroy is able to detect concept drift in synthetic cases, where we
control the drift patterns.

Q3: Sensitivity Analysis: As shown in Sect. 3, SeekAndDestroy expects the
matching threshold as a user input. Furthermore, its performance may depend
on the selection of the batch size. Here, we experimentally evaluate SeekAndDe-
stroy ’s sensitivity along those axes.
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Algorithm 2. Find Concept Overlap
Input: Factor matrices Aold,normMatA of size I × R, I × batchRank respectively.
Output: newConcept, conceptOverlap, overlapConceptOld

1: THRESHOLD ← 0.6
2: if R == batchRank then

3: Generate all the permutations for [1:R]
4: foreach permutation do

Compute dot product of Aold and normMatA(:,permutation)
end

5: else if R > batchRank then

6: Generate all the permutations(1:R, batchRank)
7: foreach permutation do

Compute dot product of Aold(:, permutation) and normMatA
end

8: else if R < batchRank then

9: Generate all the permutations (1:batchRank, R)
10: foreach permutation do

Compute dot product of Aold and normMatA(:,permutation)
end

11: end if
12: Select the best permutation based on the maximum sum.
13: If dot product value of a column is less than threshold its a New Concept

14: If dot product value of a column is more than threshold then its a Concept Overlap.

15: Return column index’s of New Concept and Concept Overlap for both matrices

Q4: Effectiveness on Real Data: In addition to measuring SeekAndDestroy ’s
performance in real data, we also evaluate its ability to identify useful and inter-
pretable latent concepts in real data, which elude other streaming baselines.

4.1 Experimental Setup

We implemented our algorithm in Matlab using tensor toolbox library [2] and
we evaluate our algorithm on both synthetic and real data. We use [12] method
available in literature to find rank of incoming batch.

In order to have full control of the drift phenomena, we generate synthetic
tensors with different ranks for every tensor batch, we control the batch rank of
the tensor with factor matrix C. Table 2 shows the specification of the datasets
created. For instance dataset SDS2 has an initial tensor batch whose tensor
rank is 2 and last tensor batch whose tensor rank is 10 (full rank). The batches
in between the initial and final tensor batch can have any rank between initial
and final rank (in this case 2–10). The reason we assign the final batch rank as
the full rank is to make sure the tensor created is not rank deficient. We make
the synthetic tensor generator available as part of our code release.

In order for us to obtain robust estimates of performance, we require all
experiments to either (1) run for 1000 iterations, or (2) the standard deviation
converges to a second significant digit (whichever occurs first). For all reported
results, we use the median and the standard deviation.
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Table 2. Table of Datasets analyzed

DataSet Dimension Initial
rank

Full
rank

Batch
size

Matching
threshold

SDS1 100 × 100 × 100 2 5 10 0.6

SDS2 10

SDS3 300 × 300 × 300 2 5 50 0.6

SDS4 10

SDS5 500 × 500 × 500 2 5 100 0.6

SDS6 10

4.2 Evaluation Metrics

We evaluate SeekAndDestroy and the baselines methods using relative error.
Relative Error provides the measure of effectiveness of the computed tensor
with respect to the original tensor and is defined as follows (lower is better):

RelativeError =
( ||Xoriginal − Xcomputed||F

||Xoriginal||F
)

(8)

4.3 Baselines for Comparison

To evaluate our method, we compare SeekAndDestroy with two state-of-the-art
streaming baselines: OnlineCP [16] and SamBaTen [6]. Both baselines assume
that the rank remains fixed throughout the entire stream. When we evaluate
the approximation accuracy of the baselines, we run two different versions of
each method, with different input ranks: (1) Initial Rank, which is the rank of
the initial batch, same as the one that SeekAndDestroy uses, and (2) Full Rank,
which is the “oracle” rank of the full tensor, if we assume we could compute that
in the beginning of the stream. Clearly, Full Rank offers a great advantage to
the baselines since it provides information from the future.

4.4 Q1: Approximation Quality

The first dimension that we evaluate is the approximation quality. More specif-
ically, we evaluate whether SeekAndDestroy is able to achieve good approxima-
tion of the original tensor (in the form of low error) in case where concept drift
is occurring in the stream. Table 3 contains the general results of SeekAndDe-
stroy ’s accuracy, as compared to the baselines. We observe that SeekAndDestroy
outperforms the two baselines, in the pragmatic scenario where they are given
the same starting rank as SeekAndDestroy (Initial Rank). In the non-realistic,
“oracle” case, OnlineCP performs better than SamBaTen and SeekAndDestroy ,
however this case is a very advantageous lower bound on the error for OnlineCP.
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Through extensive experimentation we made the following interesting obser-
vation: in the cases where most of the concepts in the stream appear in the begin-
ning of the stream (e.g., in batches 2 and 3), SeekAndDestroy was able to further
outperform the baselines. This is due to the fact that, if SeekAndDestroy has
already “seen” most of the possible concepts early-on in the stream, it is more
likely to correctly match concepts in later batches of the stream, since there
already exists an almost-complete set of concepts to compare against. Indica-
tively, in this case SeekAndDestroy achieved 0.1176± 0.0305 where as OnlineCP
achieved 0.1617 ± 0.0702.

4.5 Q2: Concept Drift Detection Accuracy

The second dimension along which we evaluate SeekAndDestroy is its ability to
successfully detect concept drift. Figure 4 shows the rank discovered by SeekAnd-
Destroy at every point of the stream, plotted against the actual rank. We observe
that SeekAndDestroy is able to successfully identify changes in rank, which, as
we have already argued, signify concept drift. Furthermore, Table 4(b) shows
three example runs that demonstrate the concept drift detection accuracy.

Fig. 4. SeekAndDestroy is able to successfully detect concept drift, which is manifested
as changes in the rank throughout the stream

Table 3. Approximation error for SeekAndDestroy and the baselines. SeekAndDestroy
outperforms the baselines in the realistic case where all methods start with the same
rank

DataSet OnlineCP
(Initial Rank)

OnlineCP
(Full Rank)

SamBaTen
(Initial Rank)

SamBaTen
(Full Rank)

SeekAndDestroy

SDS1 0.2782 ± 0.0221 0.197 ± 0.086 0.261±0.048 0.317 ± 0.058 0.283 ± 0.075

SDS2 0.2537 ± 0.0125 0.168 ± 0.507 0.244±0.028 0.480 ± 0.051 0.253 ± 0.0412

SDS3 0.2731 ± 0.0207 0.205 ± 0.164 0.385 ± 0.021 0.445 ± 0.164 0.266±0.081

SDS4 0.245 ± 0.013 0.171 ± 0.537 0.299 ± 0.045 0.402 ± 0.049 0.221±0.0423

SDS5 0.2719 ± 0.0198 0.206 ± 0.022 0.559 ± 0.046 0.519 ± 0.0219 0.256±0.105

SDS6 0.238 ± 0.013 0.171 ± 0.374 0.510 ± 0.036 0.547 ± 0.0276 0.208±0.0433
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4.6 Q3: Sensitivity Analysis

The results we have presented so far for SeekAndDestroy have used a matching
threshold of 0.6. The threshold was chosen because it is intuitively larger than
a 50% match, which is a reasonable matching threshold. In this experiment, we
investigate the sensitivity of SeekAndDestroy to the matching threshold param-
eter. Table 4(a) shows exemplary approximation errors for thresholds of 0.4, 0.6,
and 0.8. We observe that (1) the choice of threshold is fairly robust for values
around 50%, and (2) the higher the threshold, the better the approximation,
with threshold of 0.8 achieving the best performance.

Table 4. (a) Experimental results for error of approximation of incoming batch
with different matching threshold values. Dataset SDS2 and SDS4 are of dimension
R

100×100×100 and R
300×300×300, respectively. We see that the threshold is fairly robust

around 0.5, and a threshold of 0.8 achieves the highest accuracy (b) Experimental
results on SDS1 for error of approximation of incoming slices with known and pre-
dicted rank

Table 5. Evaluation on Real dataset

Running
rank

Predicted
full rank

Batch
size

Approximation error

SeekAndDestroy SambaTen OnlineCP

7 ± 0.88 4 ± 0.57 22 0.68 ± 0.002 0.759 ± 0.059 0.941 ± 0.001

4.7 Q4: Effectiveness on Real Data

To evaluate effectiveness of our method on real data, we use the Enron time-
evolving communication graph dataset [1]. Our hypothesis is that in such com-
plex real data, there should exists concept drift in streaming tensor decomposi-
tion. In order to validate that hypothesis, we compare the approximation error
incurred by SeekAndDestroy against the one incurred by the baselines, shown
in Table 5. We observe that the approximation error of SeekAndDestroy is lower
than the two baselines. Since the main difference between SeekAndDestroy and
the baselines is that SeekAndDestroy takes concept drift into consideration, and
strives to alleviate its effects, this result (1) provides further evidence that there
exists concept drift in the Enron data, and (2) demonstrates SeekAndDestroy ’s
effectiveness on real data.
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Fig. 5. Timeline of concepts discovered in Enron

The final rank for Enron as computed by SeekAndDestroy was 7, indicating
the existence of 7 time-evolving communities in the dataset, as shown in Fig. 5.
This number of communities is higher than what previous tensor-based analysis
has uncovered [1,5]. However, analyzing the (static) graph using a highly-cited
non-tensor based method [4], we were able to detect 7 communities, therefore
SeekAndDestroy may be discovering subtle communities that have eluded pre-
vious tensor analysis. In order to verify that, we delved deeper into the commu-
nities and we plot their temporal evolution (taken from matrix C) along with
their annotations (when inspecting the top-5 senders and receivers within each
community). Indeed, a subset of the communities discovered matches with the
ones already known in the literature [1,5]. Additionally, SeekAndDestroy was
able to discover community #3, which refers to a group of executives, including
the CEO. This community appears to be active up until the point that the CEO
transition begins, after which point it dies out. This behavior is indicative of
concept drift, and SeekAndDestroy was able to successfully discover and extract
it.

5 Related Work

Tensor Decomposition: Tensor decomposition techniques are widely used
for static data. With the explosion of big data, data grows at a rapid speed
and an extensive study required on the online tensor decomposition prob-
lem. Sidiropoulos [11] introduced two well-known PARAFAC based methods
namely RLST (recursive least square) and SDT (simultaneous diagonalization
tracking) to address the online 3-mode tensor decomposition. Zhou et al. [16]
proposed OnlineCP for accelerating online factorization that can track the
decompositions when new updates arrived for N-mode tensors. Gujral et al. [6]
proposed Sampling-based Batch Incremental Tensor Decomposition algorithm
which updates online computation of CP/PARAFAC and performs all computa-
tions in the reduced summary space. However, no prior work addresses concept
drift.
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Concept Drift: The survey paper [14] provides the qualitative definitions of
characterizing the drifts on data stream models. To the best of our knowledge,
however, this is the first work to discuss concept drift in tensor decomposition.

6 Conclusions

In this paper we introduce the notion of “concept drift” in streaming tensors. and
provide SeekAndDestroy , an algorithm which detects and alleviates concept drift
it without making any assumption on the rank of the tensor. SeekAndDestroy
outperforms other state-of-the-art methods when the rank is unknown and is
effective in detecting concept drift. Finally, we apply SeekAndDestroy on a real
time-evolving dataset, discovering novel drifting concepts.
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