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Abstract. Gene expression data of differentiating cells, galaxies dis-
tributed in space, and earthquake locations, all share a common property:
they lie close to a graph-structured topology in their respective spaces
[1,4,9,10,20], referred to as one-dimensional stratified spaces in math-
ematics. Often, the uncovering of such topologies offers great insight
into these data sets. However, methods for dimensionality reduction are
clearly inappropriate for this purpose, and also methods from the rela-
tively new field of Topological Data Analysis (TDA) are inappropriate,
due to noise sensitivity, computational complexity, or other limitations.
In this paper we introduce a new method, termed Local TDA (LTDA),
which resolves the issues of pre-existing methods by unveiling (global)
graph-structured topologies in data by means of robust and computation-
ally cheap local analyses. Our method rests on a simple graph-theoretic
result that enables one to identify isolated, end-, edge- and multifurca-
tion points in the topology underlying the data. It then uses this infor-
mation to piece together a graph that is homeomorphic to the unknown
one-dimensional stratified space underlying the point cloud data. We
evaluate our method on a number of artificial and real-life data sets,
demonstrating its superior effectiveness, robustness against noise, and
scalability. Code related to this paper is available at: https://bitbucket.
org/ghentdatascience/gltda-public.
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1 Introduction

Motivation. Identifying and visualizing graph-structured topologies underly-
ing point cloud data sets is a non-trivial and active topic of research, with known
applications in many fields of science, such as biology, physics, geology, geogra-
phy, and computer science [1,4,10,19,20].

E.g., consider data of differentiating cells in a high-dimensional expression
space. The way in which different cell stages are interconnected during cell dif-
ferentiation can be represented by means of a graph (which may contain cycles)
in the expression space, such that each of the differentiating cells lie close to it.
More formally, the point cloud data approaches a topological structure homeo-
morphic to (i.e., obtainable from by ‘bending’ and ‘stretching’) the embedding
of a corresponding graph in the expression space. In the mathematical litera-
ture, such an embedding is know as a one-dimensional stratified space (in this
paper referred to as a graph-structured topology), composed of 0-D strata (here
called the vertices) and 1-D linear strata (here called the edges or loops), glued
together in a particular way.

Fig. 1. When the underlying graph-structured topology of D is well-modeled by a
proximity graph, counting connected components in induced subgraphs suffices to learn
topological structures locally, as well as the presence of cycles (see Algorithm 1 in
Sect. 2, |D| = 873, ε = 3.5, r = 3, comp. time: 0.43 s). By using these identified local
topologies, we are able to reconstruct a graph homeomorphic to the underlying space
(see Algorithm 2 in Sect. 3, r′ = 4, comp. time: 8.04 s).
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A toy data set D is shown in Fig. 1 for illustration. Here the colored dots rep-
resent data points, and the black dots and lines represent vertices and edges of
the graph-structured topology. The different colors express both local and global
topological information, which we simply refer to as local topologies. E.g., near
the center of the ‘8 component’, points are marked by a (4, 2) local topology,
meaning four branches emerge from this location, and induce two cycles by con-
vergence. We will formally explain this below. As this data set is 2-dimensional,
its graph-structured topology is readily noticed. However, it is clear that such
topologies, in high-dimensional data, are hard to uncover, and standard dimen-
sionality reduction techniques will fail in all but the most trivial cases.

The emergent area of Topological Data Analysis (TDA) [5], which aims to
understand the shape of data [23], seems to be the obvious approach to han-
dle this problem. Its power for uncovering the underlying topology of data sets
has been demonstrated in several recent works [3,7,13,19–21]. However, TDA
methods designed for this problem, such as Mapper [19,20], local persistent
(co)homology [11,21], functional persistence [6], and metric graph reconstruction
[1], are either computationally inefficient, restricted to specific graph-structured
topologies, vulnerable to noise, or simply do not consider reconstructing the
topology.

In this paper, we develop a novel method to fill this gap, under the name of
Local Topological Data Analysis (LTDA). Investigating structures locally allows
one to detect the degree, denoted δ0, i.e., the number of branches emerging from a
point, as well as the number of cycles, denoted δ1, induced by the convergence of
the same branches away from this point. LTDA provides methods for classifying
data points according to their local topology (δ0, δ1), identifying isolated, end-,
edge- and multifurcation points, as well as cycles, by only tracking the number
of connected components in graphs [2,15] (Algorithm 1 in Sect. 2). Note that the
discovery of cycles in such data using state-of-the-art TDA techniques requires
the computation of the first order Betti number, the computation of which is
challenging [24]. Combining the information retrieved by LTDA with clustering
techniques allows for a fast reconstruction of the underlying graph-structured
topology (Algorithm2 in Sect. 3). These concepts are illustrated on Fig. 1.

Contributions

– We develop a method, under the name of Local Topological Data Analysis
(LTDA). This method allows us to detect isolated, end-, edge- and multifur-
cation points, as well as cycles, underlying data approaching graph-structured
topologies, by merely counting the number of connected components in prox-
imity graphs (Algorithm 1 in Subsect. 2.3).

– We develop a framework that combines the information retrieved from LTDA
with clustering techniques to reconstruct and visualize the unknown under-
lying topology of such data sets (Algorithm 2 in Sect. 3).
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– We clarify and empirically validate the usefulness of our methods on a variety
of simulated and real data sets (Sects. 2, 3 and 4). We show that our methods
are competitive with current state-of-the-art approaches in terms of results
and computational efficiency.

– We discuss how future research on the potential of LTDA may open up new
possibilities to the set of TDA methods (Sect. 5).

2 LTDA of Graph-Structured Topologies

Given a Euclidean point cloud data set D ⊆ R
n with an unknown underlying

topological structure, we wish to investigate the global topology, i.e., the com-
plete and unknown topological structure, by applying TDA to small patches of
data, indicating (unknown) properties of the local topology. We start by showing
how knowing both the local topological structures, as well as how these affect
the global structure, may unravel graph-structured topologies. This leads to
an algorithm proposed in this paper for identifying and locating multifurcation
points and cycles in point cloud data approaching such topologies (Algorithm1,
Subsect. 2.3).

2.1 Overview: Illustrating the Idea Behind LTDA on a Toy Example

Here we first introduce LTDA in an intuitive and constructive way. We will do
this by means of a simple two-dimensional toy data set. The used underlying
topological structure of the toy data will show to be quite useful to understand
the intuition behind Theorem1 (Subsect. 2.2), which forms the foundation for
the proposed approach of LTDA for graph-structured topologies (Subsect. 2.3).

A Toy Data Set. The toy data set D ⊆ R
2 we consider is the subset of the

data illustrated in Fig. 1, that has the underlying topological structure of ‘the
number 8’, illustrated in Fig. 2. Without going much into detail, an n-manifold
is a topological space1 locally resembling the Euclidean space of dimension n
near every point on the space. There are essentially two (non-homeomorphic)
connected 1-manifolds: the circle S1 and the real line R. The underlying topology
τ of D is that of (homeomorphic to) two circles S1

1 and S1
2 , intersecting in one

singular point x ∈ S1
1 ∩ S1

2 .

1 Formally, a topological space is an ordered pair (X, τ), where X is a set and τ is a
collection of subsets of X, satisfying particular axioms. The elements of τ are called
open sets and the collection τ is called a topology on X. In this paper, we abuse
notation for simplicity, and use τ to refer to the set X =

⋃
τ .



LTDA of Data Approaching One-Dimensional Stratified Spaces 23

Fig. 2. The idea behind LTDA
for data that approaches a
graph-structured topology τ =
S1
1 ∪ S1

2 . For appropriate prox-
imity graphs, one finds the
underlying degree of a data
point z (black) by counting the
connected components in the
graph induced by the intersec-
tion of a spherical shell and the
data (green points), represent-
ing branches emerging from z.
Convergence of these branches
away from z indicates cycles
through z, which may be identi-
fied by comparing the obtained
degree with the number of con-
nected components in the graph
induced by the points away
from z (blue and green points).
(Color figure online)

The Idea Behind LTDA. One may assign a
point y ∈ τ to two classes: either y �= x or y = x.
If y �= x, then y inherits its local topology from
exactly one of the circles S1

1 or S1
2 . As these are

1-manifolds, y has a neighborhood homeomor-
phic to R, or equivalently, to ]0, 1[. Removing
any point c from ]0, 1[ breaks the interval into
two disjoint connected components, as one can
either move left or right from c in ]0, 1[. The
same behavior occurs at y: starting from y, we
can move into two directions, i.e., two branches
emerge from y. If we would remove y from a
neighborhood of y homeomorphic to ]0, 1[, then
this neighborhood would break into two disjoint
connected components as well. If y = x, then
four branches emerge from y, and removing y
from a small neighborhood of y in τ breaks the
neighborhood into four components.

When a point cloud data set approaches
a graph-structured topology, it reflects similar
properties as that underlying topology. Consider
the centered black data point z ∈ D in Fig. 2,
representing the singular point x in the under-
lying topology τ . A neighborhood of x in τ
now corresponds to the points contained in a
small open ball centered at z. Removing x from
this neighborhood in τ corresponds to remov-
ing points in an even smaller ball centered at z,
strictly contained within the original ball. The
points remaining in the spherical shell deter-
mined by these two concentric circles, or in gen-
eral, hyperspheres, now represent the four com-
ponents that result from removing x from a
small neighborhood of x in τ (green points in
Fig. 2). Moreover, for an appropriate proximity
graph constructed from D (see below and Fig. 2),
the remaining points induce exactly four con-
nected components in this graph. Hence, by only
tracking the number of connected components
in graphs [2,15], we deduce the underlying degree δ0, denoting the number of
branches emerging from a data point.

While classical approaches for TDA of data approaching graph-structured
topologies stop at this point [1,11], our concept of LTDA goes one step beyond.
Not only are we interested in the local topology underlying a data point, i.e.,
the number of branches emerging from this point, but we are also interested in
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how this local topology affects the global topology. Consider again the singular
point x in our discussed topology τ . As stated before, removing x from a small
neighborhood of x breaks the neighborhood into four connected components, i.e.,
four branches emerge from x. However, moving further from x, two times two of
these branches merge back together, and form cycles passing through x. As these
branches merge back away from x, this implies that they must be connected in
another way than through x. They are connected in the global topology even
after removing x. Moreover, as removing x from a small neighborhood of x in τ
breaks the neighborhood into δ0 = 4 components, but removing x from the full
topological structure breaks the structure only into two connected components,
the difference between these two denotes a practical lower bound on the number
of convergences δ1 = δ0 − 2 = 2 induced by the branches emerging from x
(Theorem 1). In Fig. 2, this corresponds to subtracting the number of connected
components induced by the points outside the smallest circle (green and blue
points), from the number of connected components induced by the points in the
spherical shell (green points). Hence, we may not only apply LTDA to identify
the underlying local topology, i.e., the number of emerging branches, but we
may as well identify cycles by studying how the local topology affects the global
topology.

The Vietoris-Rips Complex. As D is a point cloud data set, it does not
make much sense to talk exactly about the local topology of some point x ∈ D
within the topological (normed vector) space (D, ‖·‖), as this would be just a set
of isolated points. However, for appropriate distance parameters ε ∈ R

+, which
may be found by means of persistent homology (AppendixA), the Vietoris-Rips
complex

Vε(D) :=
{
S ∈ 2D : (|S| ≤ dim(D) + 1) ∧ (∀v, w ∈ S)(‖v − w‖ < ε)

}
,

‘well-models’ topological behavior of the underlying topology τ of D
(AppendixA), and it makes more sense to talk about the local topology of a
point {x} ∈ Vε(D). The complex corresponds to the hypergraph induced by the

Fig. 3. Investigating the local topology of z ∈ D (black) by studying the underlying
topology of BR2(z, r)∩D for increasing values of r. Points in BR2(z, r)∩D are marked
in red (r = 1, 2, 3, 4), remaining points in blue. This method starts off well, but quickly
becomes susceptible to the restrictions imposed by the underlying topology on paths.
(Color figure online)
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cliques up to size dim(D) + 1 of its graph ‘skeleton’, i.e., the graph consisting
of all nodes from D and all edges {v, w} ∈ 2D, where 0 < ‖v − w‖ < ε (Fig. 2,
ε = 3.5). We will also talk about the (Vietoris-Rips) graph Vε(D) when referring
to the skeleton of the complex, as we only consider simplicial 1-complexes, i.e.,
graphs in this paper.

Fig. 4. Investigating the local topology of z ∈ D (black) by studying topologi-
cal properties of V0.3(BV0.3(D)(z, h + 1)) for increasing values of h. Vertices from
V0.3(BV0.3(D)(z, h)) are marked in red, from V0.3(BV0.3(D)(z, h + 1)\BV0.3(D)(z, h)) in
green (h = 1, 10, 20, 27), and remaining points in blue. The underlying linear structure
is preserved until all points are included at h = 27. (Color figure online)

A Metric for LTDA Derived from the Vietoris-Rips Graph. The open
balls in Fig. 2 are drawn using the Euclidean metric, i.e., the balls denote sets

BR2(z, r) := {y ∈ R
2 : ‖z − y‖ < r},

for some r > 0. Using this ‘original’ metric to investigate local topologies in
Vε(D) seems like a natural approach. However, in the general case, we may
not be able to reach one point from another by following a straight line within
the topological structure itself. In general, we are restricted to follow paths,
corresponding to new distances defined by integrating over these when possible.
Following this intuition, we ‘redefine’ the metric on D by defining the distance
between two points as the distance within the graph Vε(D). These geodesic
distances, i.e., lengths of the shortest paths between nodes in the graph, are used
to approximate the lengths of the shortest paths between the nodes’ projections
on the underlying topology. This metric corresponds to new open balls in D,
containing finitely many data points, and defined as

BVε(D)(z, h) := {y ∈ D : dVε(D)(z, y) < h}.

Figures 3 and 4 illustrate this for a point cloud data set approaching an ellipse.

Remark. We emphasize the difference between the (embedding of a) graph G
underlying a point cloud data set D, and the Vietoris-Rips graph Vε(D) con-
structed from D. These are generally non-homeomorphic in a graph-theoretical
sense [16]. The unknown structure of G is often simple, with only a few multi-
furcation points and cycles. The known graph topology of Vε(D) itself is often
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complex, with many multifurcation points and cycles present in the graph. This
may be seen on the toy data set in Fig. 2. As a graph itself, Vε(D) is quite com-
plex, with many cycles and multifurcation points, i.e., nodes with degree at least
equal to 3, whereas the underlying 8-structured topology of D is homeomorphic
to the planar embedding of a graph with only two cycles and one multifurcation
point. However, Vε(D) is generally constructed such that it well-models partic-
ular topological behavior of G as discussed in AppendixA. Hence, Theorem 1
in Subsect. 2.2 will reside in the field of graph theory where we consider G, not
Vε(D). In Subsect. 2.3 the theorem will be translated into a data setting within
the context of LTDA, i.e., for use on Vε(D), by means of connected components.

2.2 Locally Analyzing a Graph Gives Global Insights

We now formalize the insights obtained from the discussion above in a
graph-theoretical theorem. While this theorem applies to general graphs, in
Subsect. 2.3, we show how it can be applied to proximity graphs representing
the underlying topology of point cloud data. We assume graphs to be simple2,
finite, and undirected, and that the reader is familiar with basic concepts of
graph theory.

Notations. For a graph G = (V,E), we denote the number of connected com-
ponents by3 β0(G), and the degree of a node v ∈ V by δ0(v). The degree of any
edge e ∈ E is by definition δ0(e) := 2. If α ∈ V ∪E, we denote by G\α the graph
that results from removing α from G, as well as all edges incident to α if α ∈ V .

Theorem for LTDA of Data Approaching Graph-Structured
Topologies. The following theorem illustrates how the local topology of a node
or an edge α in a graph G, expressed by its degree δ0(α), and how this local
topology affects the connectedness of the global topology, expressed by the term
β0(G)−β0(G\α), may be used to learn a practical lower bound on the number of
cycles passing through α. Moreover, the theorem allows us to exactly determine
whether a cycle passes through a node or an edge in a graph or not.

Theorem 1. Let G = (V,E) be a graph. Then for each α ∈ V ∪ E, the number
of cycles C ⊆ E passing through α is bounded from below by

δ1(α) := δ0(α) + β0(G) − (β0(G\α) + 1) ≥ 0.

Moreover, for each α ∈ V ∪ E, a cycle passes through α iff δ1(α) > 0.

Proof. The statements easily follows by induction from the well-known fact that
inserting an edge into a graph either merges two connected components, or adds
a cycle through that edge. Details are omitted for conciseness. �
2 Loops and parallel edges may be subdivided without changing the graph topology.
3 We maintain the terminology of homology, where β0 refers to the zeroth Betti number.
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2.3 LTDA of Data Approaching Graph-Structured Topologies

To be applicable for LTDA of point cloud data approaching graph-structured
topologies, we show how to translate Theorem1 into a data setting. This will
allow us to construct an algorithm identifying multifurcation points and cycles
present in the underlying topology by merely counting the number of connected
components in a proximity graph constructed from such data (Algorithm 1).

We again emphasize the difference between the (embedding of a) graph
G underlying a point cloud data set D, and the simplicial complex Vε(D)
constructed from D. As remarked in Subsect. 2.1: these are generally non-
homeomorphic in the graph-theoretical meaning. However, they approximate
each other in terms of topological behavior as discussed in AppendixA.

Graph-Structured Topologies in a Data Setting. When a point cloud data
set D approaches (the embedding of) a graph G = (V,E) in R

n that is well-
modeled by Vε(D) for some ε ∈ R

+, we may study the topology near x ∈ D,
represented by αx ∈ V ∪ E, by letting

– β0(G) correspond to β0(Vε(D)),
– β0(G\αx) correspond to β0(Vε(D\BVε(D)(x, r))),
– δ0(αx) correspond to β0(Vε(BVε(D)(x, r′)\BVε(D)(x, r))),

for some 0 ≤ r < r′ (see the discussion in Subsect. 2.1 and Fig. 2). All results in
this paper were obtained by taking r′ − 1 = r ∈ {2, 3}.

Hence, we may provide a mapping D → N×N : x �→ (δ0(x), δ1(x)), expressing
the underlying local topology at αx, as well as a lower bound on the number of
cycles through αx, furthermore indicating whether or not a cycle passes through
αx (Algorithm 1). We illustrate the use of this algorithm on an artificially con-
structed data set D based on the conference acronym, see Fig. 1.

E.g., the ‘ends’ of the four homeomorphic C, M, L and I-structured topologies
are truthfully marked as (1,0) local topologies, i.e., structures resembling half-
lines. The quotation mark is completely marked as having a (0,0) local topology,
meaning this structure represents an isolated point. This shows that our algo-
rithm may as well identify outlying points or areas, if the used proximity graphs
models the underlying topology well. The (4,2) local topology in the 8-structured
component marks an area with a local star-like topology with four legs, through
which, in this case exactly, two cycles pass within the global topology.

Algorithm. For computational efficiency, the proposed algorithm marks neig-
bors of a node with a particular local topology with the same local topology.
We implemented the algorithm such that nodes at a particular distance from
another node are determined by a breadth-first search construction [2]. Hence,
the total number of connected components in G is not needed to compute δ1. If
the inputted graph G has n vertices and m edges, where m = O(δn) for some
‘average’ degree δ, the while loop will be executed O(n/δ) times. As each step
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input : Prox. graph G & dist. par. r
output: (δ0, δ1)-classification of the nodes
que ← G.nodes();
LG ← matrix(length(G.nodes()), 2);
while que do

δ0 ← β0(G({v ∈ V (G) : dG(que[0], v) = r}));
δ1 ← δ0 − β0(G({v ∈ V (G) : r ≤ dG(que[0], v) < ∞}));
for v in (que[0] — G.neighbors[que[0]]) do

LG[v] ← (δ0, δ1);
que.remove(v);

end

end
return LG

Algorithm 1. Pseudocode for (δ0, δ1)-classification

in the loop can be executed in linear, i.e., O(n + m) = O(n + δn) time [2], the
total complexity is O(n2).

Tuning ε and r . The distance parameters ε and r may usually be tuned by
manual investigation. For all results in this paper, it was sufficient to investigate
the use of either r = 2 or r = 3. Tuning ε is more data dependent, and may be
done by persistent homology as well (Figs. 13 and 14 in AppendixA). One may
also integrate over different parameter ranges, which are bounded by the maxi-
mal pairwise distance for ε, and by the radius of the graph for r. Consequently,
one inspects how well the reconstructed graph (Sect. 3) approximates the original
graph, checking for a balance between reducing the Hausdorff distance, MSE, or
metric distortion, (e.g., one may redefine distances as their projected distances
on the reconstruction,) and reduction of the graph size, as also discussed in [1].

3 LTDA for Reconstructing Graph-Structured Topologies

In this section, we show the importance of LTDA for reconstructing the under-
lying topology. More concretely, we illustrate why the information retrieved by
LTDA needs to be both stored and used, and why a simple ‘edge or no-edge’
classification as used in the metric graph reconstruction algorithm [1] may not
always lead to optimal results for noisy samples. The latter method uses, similar
to our approach, spherical shell clustering in a Vietoris-Rips graph to identify
branching structures, but only classifies points according to δ0 = 2 (edge) or
δ0 �= 2 (branch). The graph reconstruction is based on placing an edge between
connected components of branch points, if they are both near one connected
component of edge points. For further details on this method, we refer to [1].

Consider the simulated noisy two-dimensional data set D approaching a Y-
structured topology with nonuniform density in Fig. 5. Our method of subgraph
clustering (Algorithm 1) correctly infers the location of the (1,0) and (3,0) local
topologies. However, due to the high amount of noise relative to the length of the
branches, no (2,0) local topologies are detected. In this case, an ‘edge or no-edge’



LTDA of Data Approaching One-Dimensional Stratified Spaces 29

Fig. 5. Classifying the local topologies
(ε = 15, r = 3, comp. time: 0.17 s), and
using these to reconstruct the underlying
graph topology (comp. time: 0.34 s) for a
noisy sample of 395 points approaching
a Y-structured topology with nonuniform
density.

Fig. 6. By a breadth-first traversal of
the (2,0)-cluster, one may construct
even better approximations of the
underlying structure (black) than the
original reconstructed graph (red).
(Color figure online)

classification as in [1] would lead to one connected component of branch points,
of which the reconstructed graph [1] would be a single vertex.

Nevertheless, the (3,0) local topology ‘hints’ the presence of three surrounding
branches. Simply clustering the (1,0) local topologies in their induced subgraph
would not lead to three connected components, as two of the branches would not
be separated (cluster 2 & 3 in Fig. 5). This is a straightforward consequence of the
underlying topology: even when we remove the bifurcation point, the branches
are still at distance 0 from each other. Inseparability of the branches may even
occur for less noisy data with uniform density, when the distance parameter ε
was tuned too high. However, in this particular example there does not even
exist a single distance value ε for which the three clusters would be pairwise
separable in their induced subgraph of Vε(D), due to the nonuniform density.

Algorithm. A different clustering algorithm exploiting the information of
the (3,0) local topology is needed. Applying hierarchical clustering (we use
complete-linkage clustering unless stated otherwise), allows us to separate the
points neighboring the (3,0) local topologies in three clusters (Fig. 5), leading to
Algorithm 2 for reconstructing general underlying graph-structured topology.
The pseudocode assumes the used graph G and distance object d stored in the
output of Algorithm1.

The pseudocode of Algorithm 2 allows for many variants in its implementa-
tion. E.g., many steps implicitly assume most pairwise distances defined by d
to be unique, and we use the original Euclidean metric used to construct our
proximity graph for Algorithm1. We define the center of a set X ⊆ D as the
data point cX := arg minx∈X(maxy∈Y d(x, y)), which leads to better results than
the point closest to the mean in the case of nonuniform density. Representing
the center in our current way works well for short patches of the underlying
topology, but is less efficient for patches representing long and curvy trajectories
(red graph in Fig. 6). Using a new metric defined by distances in the weighted
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input : Output LG of Alg. 1 & dist. par. r̃
output: A graph representing the underlying topology
Cluster {x ∈ D = V (G) : δ0(x) ≥ 3} by LG-group in G;
Let N1 be the collection of obtained clusters;
∀C ∈ N1, Use d to obtain a representative center xC ∈ D;
∀C ∈ N1, use d to cluster {x ∈ D\C : dG(xC , x) ≤ r̃} in δ0(xC) components;
Let N2 be the collection of obtained clusters;
∀C ∈ N2, Use d to obtain a representative center xC ∈ D;
If for C1, C2 ∈ N2, C1 ∩ C2 
= ∅, split C1 ∪ C2 into two equally sized disjoint sets
by ordering the distances to xC1 , according to d, of the included points;

Connect C1 ∈ N1 and C2 ∈ N2 by an edge if C2 merged from C1 in Step 5 or 8;
Cluster D\(

⋃
N1 ∪ ⋃

N2) by LG-group in G;
Let N3 be the collection of obtained clusters;
Split each C ∈ N3 with uniform (2,1) local topology and disconnected from N2

in at least three consecutive connected components (this is an isolated cycle);
Connect C1 ∈ N2 ∪ N3 and C2 ∈ N3 by an edge if they are connected in G;
Connect C1, C2 ∈ N2 by an edge if they are connected in G, unless this
contradicts δ0(xC1) or δ0(xC2) in the current construction (this reduces
ε-sensitivity);

return A graph with (centers of)
⋃3

i=1 Ni as vertices and the obtained edges
Algorithm 2. Pseudocode for reconstructing the graph topology

graph Vε(D), with the Euclidean lengths of the edges as weights, may lead to
even better results for computing centers of long and curvy patches and (hierar-
chical) clustering into a given number of clusters, at the cost of computational
efficiency. An alternative method is to use a breadth-first traversal to decompose
long clusters representing edges into short and consecutive patches (black graph
in Fig. 6, note that both graphs are nevertheless homeomorphic), or one may
connect different centers by shortest paths as well. Isolated circles are separated
into four components by starting a breadth-first traversal at a random point,
dividing points according to low, medium, or high distance from the root, and
dividing the points at medium distance into two separate components. Finally,
we replace the representative point of a (1,0) component such that it is furthest
from its adjacent center.

Tuning r̃. The distance parameter r̃ may be either tuned manually (all results in
this paper were obtained by using either r̃ = r or r̃ = r +1, r being the distance
parameter used to obtain the output of Algorithm1), or tuned in an integration
scheme as discussed in Subsect. 2.3. However, a new distance parameter r̃ is not
needed for components resembling isolated points, edges, cycles or multifurcating
trees. This last observations follows from

⎧
⎨

⎩

|E| = 1
2

∑
v∈V δ0(v) = 1

2 |{v ∈ V : δ0(v) = 1}| + 1
2

∑
v∈V

δ0(v)≥3
δ0(v),

|E| = |V | − 1 = |{v ∈ V : δ0(v) = 1}| + |{v ∈ V : δ0(v) ≥ 3}| − 1,

for a tree T = (V,E) with |E| ≥ 1 and no vertices of degree 2 (these are
irrelevant for representing the underlying topology). This implies that the union
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of points having either (1,0) or (2,0) local topologies must be clustered into
|E| =

∑
v∈V

δ0(v)≥3
δ0(v)−|{v ∈ V : δ0(v) ≥ 3}|+1 components, where this number

is computed with respect to the connected components with δ0 ≥ 3. If the tree
has at least one multifurcation point, all such obtained clusters of edges will
be incident to at least one multifurcation point and represented by at least two
nodes in the reconstructed graph topology. This allows for another variant of
Algorithm 2 for tree-structured topologies: cluster the union of (1,0) and (2,0)
local topologies in the obtained number of clusters, and connect each component
with δ0 ≥ 3 to all adjacent clusters of edges.

4 Experimental Results

Our method is validated on two more real point cloud data sets approaching
graph-structured topologies. All our results were obtained using non-optimized
R code on a basic laptop.

Earthquake Data. We considered a geological data set D of 1479 strong to
great earthquakes (Richter magnitude ML > 6.5), scattered across the world in
the rectangular domain [140, 315]× [−75, 65] of (longitude, latitude)-coordinates
(180◦ were added to negative longitudes to obtain a continuous structure). The
raw data is freely accessible from USGS Earthquake Search. A distance to mea-
sure [8] from the R-package TDA was used to remove most outliers (m0 = 0.1),
keeping 1440 observations with DTM < 30. The local topologies were classified
in 0.90 s (ε = 10, r = 2), after which the underlying graph was reconstructed
in 4.16 s (r̃ = r = 2). Two clusters representing long edges were decomposed
into respectively 15 and 5 consecutive patches, resulting in the graph depicted
in black in Fig. 7, approximating the underlying graph-structured topology well.

Fig. 7. LTDA and underlying graph recon-
struction of earthquake data. Separating
long trajectories in consecutive patches
allows for a smooth reconstruction.

Fig. 8. Reconstructed graphs of the
earthquake data set by the method
discussed in [1].
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We compared our method with the original underlying graph reconstruction
method as discussed in [1], where parameters were tuned to capture the single
self-loop present in the underlying topology. We used both the original Euclidean
metric (Fig. 8, bottom left, 4 min 11 s), as well as the metric induced by the
weighted graph V10(D) (Fig. 8, top right, 2 min 41 s), but were unable to retrieve
the full underlying topology with either of the metrics.

Fig. 9. The 4647
analyzed bone mar-
row cells consist of
four cell types that
are interconnected
by means of cell dif-
ferentiation.

Cell Trajectory Data. We considered a normalized
expression data set D of 4647 manually analyzed bone mar-
row cells containing measurements of five surface markers
(CD34, CD1632, CD117, CD127 & Sca1). These cells are
known to differentiate from long-term hematopoietic stem
cells (LT-HSC) into short-term hematopoietic stem cells
(ST-HSC), which can in turn differentiate into either com-
mon myeloid progenitor cells (CMP) or common lymphoid
progenitor cells (CLP) [10]. I.e., the topology underlying
this data set is that of an embedding in R

5 of the graph
depicted in Fig. 9. No data preprocessing was applied, and
the Euclidean distance was used as the original metric. A
PCA plot of the data is shown in Fig. 10. Comparing Figs. 9
and 10, we indeed note the presence of the Y-structured
topology. However, it is clear that identifying this topology
would be a crucial problem in absence of the cell labeling. Hence, our method
may serve as a first step in the context of cell trajectory inference [4,10], iden-
tifying the branching structure and different stages within a cell differentiation
process. Our method classified local topologies in 15.55 s (ε = r = 2), and used
these to reconstruct the underlying topology in 5.46 s. Note that the local topol-
ogy classes ((1,0) and (3,0)) imply an underlying tree-structured topology, and
no new distance parameter r̃ is needed for the graph-reconstruction. We inferred
the exact same graph using both complete and McQuitty’s linkage. However,
the labeling induced by using the latter method, of which the result is shown
in Fig. 11, correlated slightly better with the original cell types. The obtained
branch-assignments correlate well with the original assignments, except for, most
notably, non-CLP cells near the base of the ST-HSC→CLP branch assigned to
the branch itself.

We again compared our method to the original method [1] using two metrics
(Euclidean: 1 h 17 min, and induced by the weighted graph V2(D): 1 h 35 min),
but were unable to capture the underlying topology, as these methods resulted
in an isolated cycle in both cases (> 98% of the data was marked as branch
point, remaining edge points were inseparable). We also compared our method
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with Mapper4 [19,20], using the freely accessible tool from the R package
TDAmapper. Experimenting with different filter functions, only the projec-
tion onto the first principal component allowed us to correctly infer the under-
lying topology in 11.85 s. However, this was a matter of luck, as the assignments
induced by the Mapper graph correlate badly with the original assignments
(Fig. 12).

Fig. 10. PCA plot of
the expression data.

Fig. 11. LTDA of the
expression data.

Fig. 12. Mapper graph and
its induced assignments.

5 Conclusion and Further Work

Applying clustering techniques to study local topologies, and how these affect
the global topology, introduces new possibilities for learning graph-structured
topologies underlying point cloud data sets, as one may even detect cycles with-
out the need of 1-dimensional homology. Current state-of-the-art approaches for
investigating local topological structures either do not bother with reconstruc-
tion techniques, are vulnerable to noise, or miss out on the fact that knowledge
of the local topologies is crucial for reconstructing underlying graph-structured
topologies. We combined both LTDA and reconstruction techniques in a sim-
ple and intuitive way, leading to a framework for reconstructing the underlying
graph in many practical examples, improving both on the computational level
as well as the obtained results compared to current state-of-the-art approaches.

Contrary to [1], we prioritized explaining and validating our method by means
of empirical results on simulated and real data sets, rather than providing the-
oretical results guaranteeing the correctness of the reconstructed graph topol-
ogy. Real data will most often violate the stated assumptions, and the ‘one-for-
all’ parameter approach posed by these may not be suitable when extending
our method to even more complex and high-dimensional data sets approach-
ing graph-structured topologies with nonuniform noise. For this, one needs local
4 Mapper uses a filter f : D → R

d that maps the data to a lower-dimensional space
R

d (usually d ∈ {1, 2}), builds a grid of overlapping bins (intervals for d = 1, squares
for d = 2, . . . ) on top of R

d, clusters the preimage f−1(B) for each bin B, and
connects clusters based on the overlap of the data and bins. This method results in
the construction of a graph meant to resemble the unknown underlying topology,
and has shown it may reveal a Y-structured topology in expression data before. For
such an example and further details on the Mapper algorithm, we refer to [19].
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parameter integration schemes, combining results from the the fields of TDA
(e.g., persistent local homology [11]), statistics, and machine learning. This pro-
vides new research both on the mathematical and experimental level.

Acknowledgments. This work was funded by the ERC under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement no. 615517,
and the FWO (G091017N, G0F9816N).

A Background on TDA: Persistent Homology

Finding an appropriate proximity graph is a crucial step for our method, as it
identifies the number of emerging branches by counting the connected compo-
nents in subgraphs induced by the intersection of our data and spherical shells
(Fig. 2). Our choice of using Vietoris-Rips graphs is not arbitrary, as experimen-
tal results have shown that these are far more useful for our method than a
wide variety of other proximity graphs, such as, e.g., k-nearest neighbor graphs.
Moreover, Rips-graphs are well studied within the field of TDA, more concretely
persistent homology, allowing to appropriately tune the distance parameter ε.

Persistent Homology [12,22] tracks the (dis)appearance of distinct shape fea-
tures across a filtration, i.e., a sequence of simplicial complexes [14]

σε1(D) ⊆ σε2(D) ⊆ . . . ⊆ σεn
(D),

constructed from a point cloud data set D embedded in a metric space, for an
increasing sequence of parameters ε1, . . . , εn. By evaluating how long certain

Fig. 13. Persistent homology of a point
cloud data set approaching an ellipse.
(Top) Each bar represents a connected
component in Vε(D) for varying ε. The
long persisting bar indicates that there
is one connected component present
in the underlying topological structure.
(Bottom) Each bar represents one of
the non-equivalent cycles in Vε(D) for
varying ε. The long persisting bar indi-
cates that there is one cycle present in
the underlying topological structure.

Fig. 14. The resulting graph (skeleton of)
Vε(D) for one of the distance parameters
ε = 0.3 occurring at both persisting bars
in Fig. 13 (edges in black). The uniform
(2,1) local topology indicates a cycle (see
Subsect. 2.3, r = 2, comp. time: 0.14 s),
and allows us to reconstruct the under-
lying topology (edges in red, see Sect. 3,
comp. time: 0.17 s). (Color figure online)
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features exist, one is able to deduce topological invariants of its underlying
topological structure [17]. The evolution of these (dis)appearing shape fea-
tures may be modelled by means of barcodes, computed by methods of linear
algebra [18,24]. The number of bars occuring at a fixed value of ε denotes the
k-th Betti number, i.e., the number of k-dimensional holes, at the point ε in the
filtration. Long bars resemble topological features that ‘persist’ for many consec-
utive values εi, εi+1, . . . , εj , and indicate features of the underlying topology of
point cloud data. See Fig. 13, where the used filtration consists of Vietoris-Rips
complexes.
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